Written assignment 4. Due Wednesday November 25.

 Review of gradients, Jacobians, Chain Rule, and the Implicit Function Theorem.(1) Suppose it is given that the direction of the steepest increase of a function $f(x, y)$ at the origin is $\langle 1,2\rangle$. Find a unit vector \mathbf{u} that is tangent to the level curve of $f(x, y)$ that passes through the origin.
(2) (From an old final exam) The shape of the hill is given by $z=1000-$ $0.1 x^{2}-y^{2}$. Assume that the x-axis is pointing East, and the y-axis is pointing North, and all distances are in metres.
(a) What is the direction of the steepest ascent at the point $(0,20,600)$? (The answer should be in terms of directions of the compass).
(b) What is the slope of the hill in the direction from (a)?
(c) If you ride a bicycle on this hill in the direction of the steepest descent at $5 \mathrm{~m} / \mathrm{s}$, what is the rate of change of your altitude (with respect to time) as you pass through the point $(0,20,600)$?
(3) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $f(r, \theta, z)=(x, y, z)$, where $x=r \cos (\theta)$, $y=r \sin (\theta), z=z$ (the cylindrical coordinates transformation, which we will use for computing integrals later). Find its Jacobian matrix (it should be a 3×3-matrix).
(4) Let $g(x, y, z)=\left(x^{2}+y^{2}, x / y, 3 z\right)$. Let $f(r, \theta, z)$ be the transformation from the previous problem. Find the Jacobian matrix of the transformation $g(f(r, \theta, z))$ in two ways: directly by finding the formula for this composition of transformations, and also by multiplying the Jacobian matrices of f and of g (i.e., by using the Chain Rule). (Hint: it should be diagonal).
(5) (Problem 14 on p.744) The equations $F(x, y, z)=0$ and $G(x, y, z)=0$ together can define any two of the variables x, y and z as functions of the remaining variable. Show that

$$
\frac{d x}{d y} \frac{d y}{d z} \frac{d z}{d x}=1
$$

(6) (modified Problem 15 on p.744) The equations

$$
\left\{\begin{array}{l}
x=u^{3}-u v \\
y=3 u v+2 v^{2}
\end{array}\right.
$$

define u and v implicitly as functions of x and y near the point P where $(u, v, x, y)=(-1,2,1,2)$.
(a) Let $F(x, y, u, v)=u^{3}-u v-x$, and $G(x, y, u, v)=3 u v+2 v^{2}-y$ (the functions defining the two equations above). Write down the Jacobian matrix (differentiating the equations with respect to the dependent variables u and v): $\left[\begin{array}{ll}\frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v}\end{array}\right]$.
(b) Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ at P (hint: use the answer form (a): you should see the inverse of this matrix).
(c) Find the approximate value of u when $x=1.02$ and $y=1.97$.
(7) (modified Problem 16 on p.744) The equations

$$
\left\{\begin{array}{l}
u+v=x^{2}+y^{2} \\
u-v=x^{2}-2 x y^{2}
\end{array}\right.
$$

define x and y implicitly as functions of u and v for values of (x, y) near $(1,2)$, and values of (u, v) near $(-1,6)$.
(a) Find $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial u}$ at $(u, v)=(-1,6)$.

Hint: write down the Jacobian matrix, differentiating the equations with respect to the dependent variables x and y in this case, as in the previous problem.
(b) If $z=\ln \left(y^{2}-x^{2}\right)$, find $\frac{\partial z}{\partial u}$ at $(u, v)=(-1,6)$.

Hint: use chain rule.

