Written assignment 3. Due Wednesday October 21.

Problems:

(1) Using $\epsilon-\delta$ definition, prove that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}=0
$$

(2) Using $\epsilon-\delta$ definition, prove that $f(x, y)=x^{2} y$ is a continuous function on \mathbb{R}^{2}.
(3) Using the properties of continuous functions (you do not have to do an $\epsilon-\delta$ proof), prove that the function defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+1\right) \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 1 & (x, y)=(0,0)\end{cases}
$$

is continuous at the origin.
(4) (The "claim" from class on October 7):

Suppose $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=L$ exists. Let $g(x)$ be any continuous function, such that $\lim _{x \rightarrow 0} g(x)=0$. Prove that then the limit of $f(x, y)$ along the curve $y=g(x)$ (as x approaches 0) exists and equals L. In other words, prove that

$$
\lim _{x \rightarrow 0} f(x, g(x))=L
$$

Hint: the proof is very similar to (and simpler than) the proof of continuity of the composite function that we did in class on October 9.
(5) (Bonus question): Let $f(x, y)$ be a continuous function, and let r be a real number. Prove that the set

$$
S=\{(x, y) \mid f(x, y)<r\}
$$

is open.
Hint: Use the definition of an open set, and then the definition of a continuous function.

