
Written assignment 2. Due Wednesday September 30. Solutions.

Let S be a set in R
n, as in Section 10.1. Also as in 10.1, we say that a set is

closed if its complement Sc is open.
Recall also that the set S is called open if every point of this set has a neigh-

bourhood (that is, an open ball centred at that point), which is contained in S.
This is the same as saying that every point of S is an interior point.

Let ∂S denote the set of the boundary points of S.

Problems:

(1) Using these definitions, prove that S is a closed set if and only if S ⊇ ∂S.
Proof. First, observe the simple fact: the boundary of S is the same as

the boundary of the complement of S (this can be written as ∂S = ∂Sc).
This is so by definition of a boundary point (check and make sure you
understand this statement).

Now, let us prove the required statement. We need to prove two state-
ments:
(a) If S is closed, then S ⊇ ∂S, and
(b) If S ⊇ ∂S, then S is closed.
Proof of (1): We are given that S is closed, which, by definition of a closed
set, means that its complement Sc is open.

Now we need to show that the set ∂S is contained in S, which means:
if a point b belongs to ∂S, then b belongs to S. Take a point b in ∂S. We
want to prove that b is in S, which is equivalent to proving that b cannot

be contained in Sc. So, let us prove that a boundary point of S cannot be
contained in Sc. Remember, we are given that S is closed, which means
that its complement Sc is open. So if b belonged to Sc, then there would
have been a whole neighbourhood of b contained entirely in Sc (by definition
of an open set). But this contradicts the definition of a boundary point.
Then b cannot be in Sc, and therefore it has to be in S, and the statement
∂S ⊆ S is proved.

Proof of (2): We are given that ∂S ⊆ S, and we need to prove that S
is closed, or equivalently, that Sc is open. A point a of Sc has only two
options: it can be an interior point of Sc, or a boundary point of Sc. But
if it was a boundary point of Sc it would have been a boundary point of
S also; and we know that no boundary points of S belong to Sc since S
contains them all. Thus, a cannot be a boundary point, and therefore has
to be an interior point. So we proved that every point of Sc is interior to
Sc, so Sc is open, and therefore S is closed.

(2) Is the complement of the x-axis in R
2 an open subset? (Include proof).

Solution. Yes, it is open. Let S be the complement of the x-axis. Then
S = {(x, y) | y 6= 0}.

We need to show that for any point (x0, y0) ∈ S, there exists a neigh-
bourhood Br(x0, y0) of some radius r, such that Br(x0, y0) ⊂ S. Let us
take r = |y0|/2. Now we want to show that if a point (x, y) belongs to the
disc of radius r centred at (x0, y0), then (x, y) ∈ S. This means, we need
to show that y 6= 0. Since (x, y) ∈ Br(x0, y0), we have |y − y0| < r, which
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means, y ∈ (y0 − r, y0 + r). We have chosen r = |y0|/2. If y0 > 0, then
y0 − r = y0/2, and we have y > y0/2 > 0. If y0 < 0, then r = −y0/2,
and we have y < y0 + r = y0/2 < 0. In any case we see that y 6= 0, and
therefore (x, y) ∈ S, and the proof is completed.

(3) (Problem 11 from 10.4) Give a condition on the position vectors of four
points in R

3 that guarantees that these four points lie in the same plane.
Prove that your condition is necessary and sufficient.

Solution. Let rA, rB , rC , and rD be the position vectors of our four
points A, B, C and D, respectively.

There exists a plane containing all four points if and only if the vectors
AB, AC, and AD lie in the same plane. These vectors can be expressed
as: AB = rB − rA, AC = rC − rA,AD = rD − rA.

Now, there are two cases: either the vectors AB and AC are parallel or
not. Consider the case they are not parallel first. Then they define a plane.
Then the condition is that the third vector, AD, lies in this plane, which
is equivalent to saying that it is perpendicular to the normal vector of this
plane, which, in turn, is equivalent to:

AD · (AB ×AC) = 0.

Now note that if AB and AC were parallel, this condition would have been
satisfied for any D, because then the cross product AB × AC would be
zero; and also for any point D there would exist a plane containing A,B,C
and D. So no additional condition is required to cover the second case.

Thus, we get that the condition (written in terms of the position vectors)
is:

(rD − rA) · ((rB − rA)× (rC − rA)) = 0.

Remarks. 1. Of course you could use any other point (meaning, B, C,
or D) as the ”base point” for making your vectors. You would obtain an
equivalent condition.

2. You could also say that for these points to be in the same plane, you
need the normal to the plane (ABC) to be parallel to the normal of the
plane (BCD) (again, some other choices of planes are possible here). This
would lead to a seemingly different condition

((rC − rA)× (rB − rA))× ((rD − rB)× (rC − rB)) = 0.

(Note that here the parentheses are very important because cross product is
not associative). In fact, this condition is equivalent to the one we derived
first (so this is also a correct solution). It is a slightly tricky question to
check their equivalence algebraically. If you want to do that (just out of
curiosity), use Problems 23 and 25 on p.587 as hints.


