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1.

(a) Find an equation of the tangent plane to the surface

2x2 + 3y2 + 4z3 = 9 at the point (1, 1, 1).

(b) Find an equation of the tangent plane to the surface z = 2x2 − y3

at the point (1, 1, 1).

(c) Find an equation of the tangent line to the curve of intersection of

these surfaces at the point (1, 1, 1).

Solution:

a. The surface is a level set of the function F (x, y, z) = 2x2+3y2+4z3

and so the normal to the tangent plane is ∇F (1, 1, 1). Since

∇F = (4x, 6y, 12z2)

the normal is (4, 6, 12) equivalently (2, 3, 6). The equation of the tangent

plane is 2(x− 1) + 3(y − 1) + 6(z − 1) = 0.

b. The surface is the graph of the function f (x, y) = 2x2 − y3. So,

the normal to the tangent plane is (fx, fy,−1) = (4x,−3y2,−1) which

evaluates to (4,−3,−1) at the given point. The equation of the tangent

plane is 4(x− 1)− 3(y − 1)− (z − 1) = 0.

Note: this surface can also be considered a level set of a function of 3

variables.

c. A vector parallel to the tangent line of the curve of intersection is

(2, 3, 6)× (4,−3,−1) = (15, 26,−18). Thus an equation of the tangent

line is:
x− 1

15
=

y − 1

26
=

1− z

18
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2.

(a) Let A be an m× n matrix. Let F : Rn → Rm be defined by

F (x) = AxT

Find the Jacobian, DF , of F , in terms of A.

(b) Let B be a symmetric n×n matrix. Let g : Rn → R be defined by

g(x) = xBxT

Find the Hessian of g in terms of B.

Solution:

a. Write

F (x1, . . . , xn) = [F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)]

Thus, the ij entry of the Jacobian DF is

∂Fi

∂xj
=

∂

∂xj

n∑
k=1

Aikxk = Aij.

Thus, DF = A.

b.

g(x) = xBxT =

n∑
i=1

n∑
j=1

Bijxixj

Thus,

∂g

∂xk
=

n∑
i=1

n∑
j=1

Bij
∂(xixj)

∂xk
=

n∑
j=1, j ̸=k

Bkjxj +

n∑
i=1, i ̸=k

Bikxi + 2Bkkxk.

So
∂2g

∂xℓ∂xk
=

{
Bkℓ +Bℓk ℓ ̸= k

2Bkk ℓ = k

}
= 2B.

by symmetry.
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3.

Evaluate ∫ 2

0

∫ √
4−x2

0

√
x2 + y2 dydx

Solution: The domain is the quarter disk in the first quadrant centered

at the origin of radius 2. Switch to polar coordinates:∫ π/2

θ=0

∫ 2

r=0

r2 drdθ

= 4π/3.
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4.

Re-iterate the integral∫ 2

x=1

∫ 2

y=x

∫ log y

z=log x

f (x, y, z) dzdydx

in the following orders by filling in the upper and lower limits of the

integrals.

(a) ∫ ∫ ∫
f (x, y, z) dxdzdy

(b) ∫ ∫ ∫
f (x, y, z) dydxdz

NO justification required.

Solution:

1 ≤ x ≤ 2

x ≤ y ≤ 2

log x ≤ z ≤ log y

1 ≤ y ≤ 2

0 ≤ z ≤ log y

1 ≤ x ≤ ez

0 ≤ z ≤ log 2

1 ≤ x ≤ ez

ez ≤ y ≤ 2
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5.

Evaluate
∫ ∫ ∫

D x2 + y2 + z2 dV where D is the solid lying inside the

sphere of radius 1 centered at (0, 0, 1) and inside (i.e above) the cone

x2 + y2 = 3z2.

Solution:

The domain is the intersection of the solids

x2 + y2 + (z − 1)2 ≤ 1

equivalently,

x2 + y2 + z2 ≤ 2z

and

x2 + y2 ≤ 3z2

Substituting spherical coordinate representations for x, y, z we get

ρ2 ≤ 2ρ cosϕ, ρ2 sin2 ϕ ≤ 3ρ2 cos2 ϕ

This is equivalent to

ρ ≤ 2 cosϕ, 0 ≤ ϕ ≤ π/3.

Thus the integral becomes∫ 2π

θ=0

∫ π/3

ϕ=0

∫ 2 cosϕ

ρ=0

ρ4 sinϕ dρdϕdθ
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(2π/5)

∫ π/3

ϕ=0

ρ5 sinϕ]2 cosϕρ=0 dϕ

= (2π/5)

∫ π/3

ϕ=0

(2 cosϕ)5 sinϕdϕ =

= (64π/5)

∫ 1

u=1/2

u5du = (64π/30)(1− 1/26)
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6.

Give ϵ− δ proofs to justify the following statements.

(a) f (x, y) =
√

x2 + y4 is continuous at (0, 0).

(b) g(x, y) = x2y is differentiable at (1, 1).

For part b, you do NOT need to justify computation of partial derivatives

with ϵ− δ proofs.

Solution:

a. If
√
x2 + y2 < δ, then |x| < δ and |y| < δ. Thus√

x2 + y4 ≤
√
δ2 + δ4 = δ

√
1 + δ2

which is <
√
2δ if δ < 1.

Choose δ = min(1, ϵ/
√
2).

Alternative. If
√

x2 + y2 < δ < 1, then |y| < 1 and so y4 ≤ y2. So,√
x2 + y4 ≤

√
x2 + y2 < δ.

Choose δ = min(1, ϵ).

b. gx = 2xy, gy = x2. So, gx(1, 1) = 2, gy(1, 1) = 1.

So, we must verify that

lim
(x,y)→(1,1)

x2y − 1− 2(x− 1)− (y − 1)√
(x− 1)2 + (y − 1)2

= 0.

The numerator can be written as

x2y− y− 2x+ 2 = y(x− 1)(x+ 1)− 2(x− 1) = (x− 1)(y(x+ 1)− 2)

Thus,

|x
2y − 1− 2(x− 1)− (y − 1)√

(x− 1)2 + (y − 1)2
| = |x− 1|√

(x− 1)2 + (y − 1)2
|y(x + 1)− 2|
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The first factor is bounded above by 1 and the second factor may be

re-written

|(y − 1)(x + 1) + (x− 1)| ≤ |y − 1||x + 1| + |x− 1|

So, if
√

(x− 1)2 + (y − 1)2 < δ and δ < 1, the second factor is bounded

by 4δ. So, choose δ = min(1, ϵ/4).
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7. (a) Show that the intersection of any two open sets is open.

(b) Show that the intersection of any two closed sets is closed.

(c) Show that the boundary of any set is closed.

Solution:

a. Let U and V be open. Let x ∈ U ∩ V . Since U and V are open,

there exist r > 0 and s > 0 such that Br(x) ⊆ U and Bs(x) ⊆ V . Let

t = min(r, s). Then Bt(x) ⊆ Br(x) ∩Bs(x) ⊆ U ∩ V .

b. Since (A ∩ B)c = Ac ∪ Bc, it suffices to show that the union of any

two open sets is open. For this, let U and V be open and x ∈ U ∪ V .

Without loss of generality, we may assume x ∈ U . Then there exists

r > 0 such that Br(x) ⊆ U ⊆ U ∪ V .

c. Let D be any set. It suffices to show that (∂D)c is open. For this, let

x ∈ (∂D)c. Then there exists r > 0 such that either Br(x) ∩D = ∅ or

Br(x) ∩Dc = ∅.
In the former case Br(x) ⊆ Dc. We show that Br(x) ⊆ (∂D)c. For any

y ∈ Br(x), let s = r − d(x, y) > 0. Then by the triangle inequality,

Bs(y) ⊆ Br(x) ⊆ Dc. Thus, y ∈ (∂D)c.

In the latter case Br(x) ⊆ D. We show that Br(x) ⊆ (∂D)c. For any

y ∈ Br(x), let s = r − d(x, y) > 0. Then by the triangle inequality,

Bs(y) ⊆ Br(x) ⊆ D. Thus, y ∈ (∂D)c.
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8.

Find the absolute maxima and absolute minima (and their values) of the

function

f (x, y, z) = x log x + y log y + z log z

subject to the constraints x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0.

You may assume 0 log 0 = 0.

Solution:

Set up as a Lagrange multipliers problem:

The constraint conditions define the surface which is the union of the

interior and boundary of the triangle with vertices (1,0,0), (0,1,0) and

(0,0,1).

Let g(x, y, z) = x + y + z. The Lagrangian is

L(x, y, z) = x log x + y log y + z log z + λ(x + y + z − 1)

The critical points of the Lagrangian are given by:

A : log x + 1 + λ = 0

B : log y + 1 + λ = 0

C : log z + 1 + λ = 0

D : x + y + z = 1

From A, B, and C, we find that x = y = z. From D, we find that

x = y = z = 1/3. And f (1/3, 1/3, 1/3) = − log 3

There are no singular points in the interior of the triangle and ∇g =

(1, 1, 1) is of course never 0. So, it remains to examine the boundary

points (“endpoints”). By symmetry we need only consider one side of

the triangle, say the line from (1,0,0) to (0,1,0). On this line f (x, y, z) =

x log x + y log y (recall that for z = 0, z log z = 0).
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This amounts to extremizing the function g(x) = x log x+(1−x) log(1−
x) on 0 ≤ x ≤ 1.

Now, g′(x) = log x+1−log(1−x)−1 which is 0 exactly when x = 1−x,

i.e., x = 1/2. And g(1/2) = − log 2. So, a candidate for an extremum

is (1/2, 1/2, 0) and f (1/2, 1/2, 0) = − log 2

Finally, we must consider the vertices (1, 0, 0) and (0, 1, 0) and (0.0.1),

and f (1, 0, 0) = f (0, 1, 0) = f (0, 0, 1)0.

Since − log 3 < − log 2 < 0, the absolute minimum is (1/3, 1/3, 1/3)

with absolute maximum value − log 3 and the absolute maxima are the

vertices with f -values = 0. This assumes that absolute max and min

exist. But this is true since f is a continuous function on a closed

bounded set (for continuity, one uses L’Hopital’s rule).


