Department of Mathematics University of British Columbia MATH 226 Final Exam December 11, 2012, 12:00PM - 2:30PM

Family Name: _____ Initials: _____

I.D. Number: _____ Signature: _____

CALCULATORS, NOTES OR BOOKS ARE NOT PERMITTED. JUSTIFY ALL OF YOUR ANSWERS (except as otherwise specified). THERE ARE 8 PROBLEMS ON THIS EXAM.

Question	Mark	Out of				
1		10				
2		10				
3		10				
		10				
4		10				
5		10				
6		10				
7		10				
8		10				
Total		80				

Ι.

Let $f(x, y) = x^2 - 2xy + 3y^2$. Let $(x_0, y_0) = (1, 2)$,

- (a) At the point (x_0, y_0) , find the direction in which f increases most rapidly.
- (b) At the point (x_0, y_0) , find the set directions in which the rate of increase of f is at least 1/2 of the maximum rate of increase. Give your answer in terms of the range of angles of deviation from the direction of maximum increase.
- (c) Find an equation of the tangent line to the level curve of f passing through (x_0, y_0) .

For each of the following subsets of \mathbb{R}^3 , determine if the set is:

- open
- \bullet closed
- bounded

No justification required.

Enter Y for Yes and N for No in the table.

	a	b	c	d	e	f	g	h	i	j
open										
closed										
bounded										

(a) $\{(x, y, z) \in \mathbb{R}^3 : 0 < x^2 + y^2 + z^2\}$ (b) $\{(x, y, z) \in \mathbb{R}^3 : 3x^2 + 4y^2 + 5z^2 = 1\}$ (c) $\{(x, y, z) \in \mathbb{R}^3 : 3x^2 + 4y^2 - 5z^2 = 1\}$ (d) $\{(x, y, z) \in \mathbb{R}^3 : 2 < x^2 + y^2 + z^2 \le 3\}$ (e) \mathbb{R}^3 (f) $\{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, -4, 2)\}$ (g) $\{(x, y, z) \in \mathbb{R}^3 : y = 0\}$ (h) The x-axis (i) The complement of the x-axis

(j) The complement of $\{(x, y, z) : x > 0\}$

Compute

 $\int \int_D xy \ dxdy$

where D is the domain

$$x^2 + y^2 + x \le \sqrt{x^2 + y^2}, \ y \ge 0$$

Compute

$$\int \int_D x^2 y \log y + 2x^2 y \, dx dy$$

where D is the domain

$$e^x \le y \le e^{2x}, \quad 1 \le x^2 y \le 2.$$

Note: log is the natural logarithm.

Re-write the integral

$$\int_{z=0}^{1} \int_{y=0}^{\sqrt{z}} \int_{x=0}^{\sqrt{z-y^2}} f(x, y, z) \, dx dy dz$$

as

(a) $\int_{x=\Box}^{\Box} \int_{z=\Box}^{\Box} \int_{y=\Box}^{\Box} f(x, y, z) \, dy dz dx$ (b) $\int_{y=\Box}^{\Box} \int_{x=\Box}^{\Box} \int_{z=\Box}^{\Box} f(x, y, z) \, dz dx dy$

NO justification required.

In this problem, give careful arguments, but you do NOT need to give $\epsilon-\delta$ proofs.

(a) Let

$$f(x,y) = \left\{ \begin{array}{ll} \frac{x\sin(x^2+y^2)+y^3-xy^2}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{array} \right\}$$

- i. Compute the partial derivatives of f at (0,0).
- ii. At (0,0), is f continuous? differentiable? continuously differentiable?
- (b) For each *real* number $r \ge 0$, consider the function

$$g(x,y) = \left\{ \begin{array}{cc} (x^2 + y^2)^r \sin(\frac{1}{x^2 + y^2}) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{array} \right\}$$

Find all values of $r \ge 0$ such that at (0,0), g is

- i. continuous
- ii. differentiable
- iii. continuously differentiable

Prove that the following functions are continuous everywhere by using the $\epsilon - \delta$ definition. Do not use any other properties of limits or continuous functions.

(a)
$$f(x, y) = \frac{1}{x^2 + y^2 + 1}$$

(b)
$$f(x, y, z) = xyz$$

8. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function. Assume that for all $(x, y, z), \nabla f(x, y, z)$ is parallel to the vector $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Show that f is a function of $\rho(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, i.e., there is a function F such that for all $(x, y, z), \quad f(x, y, z) = F(\rho(x, y, z))$.