Basic problems: these should be easy!

- 1. Let $A_n = [0, \frac{1}{n}] \times [0, n]$. Draw the picture representing $\bigcup_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} A_n$. (Both should be subsets of \mathbb{R}^2).
- 2. Let $T_a = \{x \in \mathbb{R} : x \ge 0 \text{ and } x < a 2\}$. Prove that if $T_a = \emptyset$ then $a \le 2$.

What is wrong with the following start of an argument:

"Since $x \ge 0$ and x < a - 2 we must have $0 \le x < a - 2$. Then ... "

- 3. Prove that $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ (one of DeMorgan laws for sets), and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 4. Prove or disprove: $(A \cup B) \setminus B = A$.
- 5. Write the converse, contrapositive, and the negation of the following statement:

If the collection of vectors $v_1, \ldots v_n$ is spanning, then for every $v \in V$ there exist real numbers a_1, \ldots, a_n such that $v = a_1v_1 + \cdots + a_nv_n$.

Remark: It does not matter what 'spanning' means, and what the expression $v = a_1v_1 + \cdots + a_nv_n$ means; this is simply an exercise in formal language, you should be able to write these statements without knowing the definitions of all these terms.

- 6. Fill in the details in the proof on p. 3 of the notes for January 11.
- 7. Prove that if $f : A \to B$ is injective and $g : B \to C$ is injective, then $g \circ f : A \to C$ is injective. Is the converse statement true?
- 8. Does the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \tan(x)$ have an inverse? How can we modify this function to make the inverse function welldefined?

1

- 9. True or false: $\arcsin(\sin(x)) = x$ for all $x \in \mathbb{R}$? What about $\sin(\arcsin(x)) = x$ for all $x \in [-1, 1]$? Write both statements in terms of composition of functions.
- 10. Explain why multiplication by 2 defines a bijection from \mathbb{R} to \mathbb{R} , but not from \mathbb{Z} to \mathbb{Z} . <u>Remark:</u> Even though f and g are defined by the same formula (multiplication by 2), they are different functions because their domains and codomains are different.