Homework 7: Euclidean spaces
Due Thursday March 23 at 10 pm on Canvas.

1. Problem 8.1 from Janisch
2. Problem 8.2 from Jänisch, but there is a typo in the matrix A-it should be symmetric, i.e., a_{23} should be 1 , not 0)
3. Problem 2 chapter 15 (p. 129) from Curtis
4. Problem 6 chapter 15 (p.129) from Curtis
5. (a) Prove that for any real numbers $a_{1}, \ldots a_{n}$ satisfying $a_{1}+\cdots+a_{n}=1$, we have

$$
a_{1}^{2}+\ldots a_{n}^{2} \geq \frac{1}{n}
$$

(b) Find the minimum of the function $f\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{2}+\cdots+x_{n}^{2}$ on the hyperplane $x_{1}+\cdots+x_{n}=1$.
6. Find the maximum of the function $x+2 y+3 z$ on the unit sphere $x^{2}+y^{2}+z^{2}=1$.

