Homework 5: Linear transformations; matrices. Part 2. Due Monday February 27.

1. Consider the linear space V of degree n polynomials over a field $F \subset \mathbb{C}$ (that is, the space of all functions $f: F \rightarrow F$ of the form $f(x)=$ $a_{n} x^{n}+\cdots+a_{1} x+a_{0}$, where $\left.a_{0}, \ldots, a_{n} \in F\right)$.
(a) Find the dimension of the space V.
(b) Let $D: V \rightarrow V$ be the linear map $D(f)=f^{\prime}$ (the derivative). Find the kernel and image of D.
2. Let $C(\mathbb{R})$ be the space of all infinitely differentiable functions $f: \mathbb{R} \rightarrow$ \mathbb{R}. Let $D(f)=f^{\prime \prime}+f$. Show that D is a linear operator on the space $C(R)$, and describe its kernel. Is its kernel finite-dimensional? Make a guess at its dimension (you do not have to include a rigorous proof, but explain your guess.)
3. Let V be an arbitrary vector space over a field F, and let $P: V \rightarrow V$ be a linear operator with the property that $P^{2}=P$ (here by P^{2} we mean P composed with itself). Such linear operators are called projectors.
(a) Prove that $V=\operatorname{Ker}(P) \oplus \operatorname{Im}(P)$.
(b) Make an example of such a linear operator on \mathbb{R}^{3}.
4. Problem 5.1 from Jänisch
5. Problem 5.2 from Jänisch
6. Problem 5.3 from Jänisch
7. Problem 7.1 from Jänisch. In addition, find a basis for the space $\operatorname{Ker}(A)$ for the matrix of this system of equations.
8. Problem 7.2 from Jänisch. In addition, find a basis for the space $\operatorname{Ker}(A)$ for the matrix of this system of equations.
