Extra credit assignment: harder problems.

You can hand in any number of these problems by 11:59pm on April 23 (on Canvas). Each complete problem adds 2% to your total term mark (except for Problem 2, which is very easy, and only adds 0.5%).

1. Vandermonde Determinant. The goal of this problem is to compute the determinant of the matrix A defined by $a_{i j}=x_{i}^{j}$, for $i, j=0, \ldots, n$, where x_{0}, \ldots, x_{n} are variables (so it is an $(n+1) \times(n+1)$-matrix.
The goal of this problem is to prove that $\operatorname{det}(A)=\prod_{0 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$.
(a) Compute the 2×2 and 3×3 Vandermonde determinants.

Hint. We actually did this in lecture.
(b) Use column operations to make the first row have the form $10 \ldots 0$.

Record the resulting matrix.
(c) Now use induction to prove the result.

Remark. Many other proofs exist. One of my favourite ones uses the properties of polynomials: fix the values of all the variables except for x_{0}, and think of x_{0} as a variable. Now if you plug any of the fixed values x_{i} for x_{0}, the determinant clearly becomes 0 . Then (by the properties of polynomials that you will study in Math 323) the expression $x_{0}-x_{i}$ has to divide the determinant (viewed as a polynomial in the x_{i}). Since you could swap rows, this applies to every expression $x_{i}-x_{j}$. Now just comparing the degrees and leading coefficients of these polynomials, we obtain the result.
2. Operator calculus. Let $A: V \rightarrow V$ be a linear operator on a vector space V over a field F (we are not assuming that V is finite-dimensional in this problem). We define the powers $A^{n}: V \rightarrow V$ as the composition of A with itself n times: $A^{n}(v)=A(A(. .(A v)) .$.$) . Then given a polyno-$ mial $p(x)=a_{n} x^{n}+\cdots+a_{0}$, where $a_{i} \in F$, we can define $p(A): V \rightarrow V$ to be the linear operator $p(A)=a_{n} A^{n}+\cdots+a_{0} I$, where $I: V \rightarrow V$ is the identity. Suppose that v is an eigenvector for A with eigenvalue λ, i.e, $A v=\lambda v$, and $v \neq 0$.
(a) Prove that v is an eigenvector for A^{n} with eigenvalue λ^{n}.
(b) Prove that v is an eigenvalue for $p(A)$ with eigenvalue $p(\lambda)$.
3. Linear recurrences. Let V be the complex vector space of all sequences $\bar{x}=\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$ with $x_{i} \in \mathbb{C}$ (it is infinite-dimensional). We say that a sequence $\bar{x} \in V$ satisfies a linear relation of degree k if there exist coefficients $c_{0}, \ldots, c_{k-1} \in \mathbb{C}$ with $c_{0} \neq 0$ such that $x_{n+k}=\sum_{i=0}^{k-1} c_{i} x_{n+i}$ for all $n \geq 0$. The goal of this problem is to explore how to find all the sequences satisfying a given linear recurrence relation of degree k. We define the characteristic polynomial of a linear recurrence relation by

$$
p(t)=t^{k}-\sum_{i=0}^{k-1} c_{i} t^{i}
$$

(a) Write down in this form the linear relation defining the Fibonacci sequence. What is its degree?
(b) Explain why we require $c_{0} \neq 0$.
(c) Let $L: V \rightarrow V$ be the left shift operator: $L\left(x_{0}, x_{1}, \ldots\right)=\left(x_{1}, x_{2}, \ldots\right)$. Prove that a sequence $\bar{x} \in V$ satisfies a linear recurrence relation if and only if it lies in the kernel of the linear operator $p(L): V \rightarrow V$ (see the above problem for the meaning of $p(L)$).
(d) Prove that a sequence satisfying a linear recurrence of degree k is determined by the k initial values x_{0}, \ldots, x_{k-1}. Conclude that ker $p(L)$ has dimension k.
(e) Assuming that $p(t)$ has k distinct roots $\lambda_{1}, \ldots, \lambda_{n}$, find a basis for $\operatorname{ker} p(L)$.
(f) Let $\left(F_{0}, F_{1}, \ldots, F_{k-1}\right)$ be any numbers. Show that the system of k equations $\sum_{i=0}^{k-1} A_{i} \lambda_{i}^{j}=F_{j}(1 \leq j \leq k)$ in the unknowns A_{i} has a unique solution.
(g) Show that for any recurrence relation of degree k, any initial k-tuple of values extends to a unique solution of the recurrence relation.
(h) Find a non-recursive formula for the n-th Fibonacci number.

4. Applications of Cauchy-Schwarz inequality.

(a) Prove that if the series $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}$ and $\sum_{n=1}^{\infty}\left|b_{n}\right|^{2}$ converge, then the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges absolutely.
(b) If $a_{1}+a_{2}+\cdots+a_{n}=n$ show that $a_{1}^{4}+\cdots+a_{n}^{4} \geq n$.

Hint: Apply Cauchy-Schwarz twice.

