
Extra credit assignment: harder problems.
You can hand in any number of these problems by 11:59pm on April

23 (on Canvas). Each complete problem adds 2% to your total term mark
(except for Problem 2, which is very easy, and only adds 0.5%).

1. Vandermonde Determinant. The goal of this problem is to compute
the determinant of the matrix A defined by aij = xji , for i, j = 0, . . . , n,
where x0, . . . , xn are variables (so it is an (n+ 1)× (n+ 1) -matrix.

The goal of this problem is to prove that det(A) =
∏

0≤i<j≤n(xi − xj).

(a) Compute the 2× 2 and 3× 3 Vandermonde determinants.

Hint. We actually did this in lecture.

(b) Use column operations to make the first row have the form 1 0 . . . 0.
Record the resulting matrix.

(c) Now use induction to prove the result.

Remark. Many other proofs exist. One of my favourite ones uses the
properties of polynomials: fix the values of all the variables except for
x0, and think of x0 as a variable. Now if you plug any of the fixed values
xi for x0, the determinant clearly becomes 0. Then (by the properties
of polynomials that you will study in Math 323) the expression x0− xi
has to divide the determinant (viewed as a polynomial in the xi). Since
you could swap rows, this applies to every expression xi−xj. Now just
comparing the degrees and leading coefficients of these polynomials, we
obtain the result.

2. Operator calculus. Let A : V → V be a linear operator on a vector
space V over a field F (we are not assuming that V is finite-dimensional
in this problem). We define the powers An : V → V as the composition
of A with itself n times: An(v) = A(A(..(Av))..). Then given a polyno-
mial p(x) = anx

n + · · ·+a0, where ai ∈ F , we can define p(A) : V → V
to be the linear operator p(A) = anA

n + · · ·+ a0I, where I : V → V is
the identity. Suppose that v is an eigenvector for A with eigenvalue λ,
i.e, Av = λv, and v 6= 0.

(a) Prove that v is an eigenvector for An with eigenvalue λn.

(b) Prove that v is an eigenvalue for p(A) with eigenvalue p(λ).
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3. Linear recurrences. Let V be the complex vector space of all se-
quences x̄ = (x0, x1, . . . , xn, . . . ) with xi ∈ C (it is infinite-dimensional).
We say that a sequence x̄ ∈ V satisfies a linear relation of degree
k if there exist coefficients c0, . . . , ck−1 ∈ C with c0 6= 0 such that
xn+k =

∑k−1
i=0 cixn+i for all n ≥ 0. The goal of this problem is to ex-

plore how to find all the sequences satisfying a given linear recurrence
relation of degree k. We define the characteristic polynomial of a linear
recurrence relation by

p(t) = tk −
k−1∑
i=0

cit
i.

(a) Write down in this form the linear relation defining the Fibonacci
sequence. What is its degree?

(b) Explain why we require c0 6= 0.

(c) Let L : V → V be the left shift operator : L(x0, x1, . . . ) = (x1, x2, . . . ).
Prove that a sequence x̄ ∈ V satisfies a linear recurrence relation if
and only if it lies in the kernel of the linear operator p(L) : V → V
(see the above problem for the meaning of p(L)).

(d) Prove that a sequence satisfying a linear recurrence of degree k
is determined by the k initial values x0, . . . , xk−1. Conclude that
ker p(L) has dimension k.

(e) Assuming that p(t) has k distinct roots λ1, . . . , λn, find a basis for
ker p(L).

(f) Let (F0, F1, . . . , Fk−1) be any numbers. Show that the system of k
equations

∑k−1
i=0 Aiλ

j
i = Fj (1 ≤ j ≤ k) in the unknowns Ai has a

unique solution.

(g) Show that for any recurrence relation of degree k, any initial k-tuple
of values extends to a unique solution of the recurrence relation.

(h) Find a non-recursive formula for the n-th Fibonacci number.

4. Applications of Cauchy-Schwarz inequality.

(a) Prove that if the series
∑∞

n=1 |an|2 and
∑∞

n=1 |bn|2 converge, then
the series

∑∞
n=1 anbn converges absolutely.

(b) If a1 + a2 + · · ·+ an = n show that a41 + · · ·+ a4n ≥ n.

Hint: Apply Cauchy-Schwarz twice.
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