Extra credit assignment: harder problems.

You can hand in any number of these problems by 11:59pm on April
23 (on Canvas). Each complete problem adds 2% to your total term mark
(except for Problem 2, which is very easy, and only adds 0.5%).

1. Vandermonde Determinant. The goal of this problem is to compute
the determinant of the matrix A defined by a;; =z}, fori,j =0,...,n,
where zo, ..., z, are variables (so it is an (n + 1) x (n + 1) -matrix.

The goal of this problem is to prove that det(A) = [[o<; <, (zi — ;).

(a) Compute the 2 x 2 and 3 x 3 Vandermonde determinants.
Hint. We actually did this in lecture.

(b) Use column operations to make the first row have the form 10 ...0.
Record the resulting matrix.

(¢) Now use induction to prove the result.

Remark. Many other proofs exist. One of my favourite ones uses the
properties of polynomials: fix the values of all the variables except for
xo, and think of xg as a variable. Now if you plug any of the fixed values
x; for zp, the determinant clearly becomes 0. Then (by the properties
of polynomials that you will study in Math 323) the expression zy — x;
has to divide the determinant (viewed as a polynomial in the x;). Since
you could swap rows, this applies to every expression z; —z;. Now just
comparing the degrees and leading coefficients of these polynomials, we
obtain the result.

2. Operator calculus. Let A:V — V be a linear operator on a vector
space V over a field F' (we are not assuming that V' is finite-dimensional
in this problem). We define the powers A™ : V' — V as the composition
of A with itself n times: A™(v) = A(A(..(Av))..). Then given a polyno-
mial p(z) = a,2™ +- - - +ag, where a; € F, we can define p(4) : V — V
to be the linear operator p(A) = a, A" + -+ + agl, where [ : V — V' is
the identity. Suppose that v is an eigenvector for A with eigenvalue A,
ie, Av = \v, and v # 0.

(a) Prove that v is an eigenvector for A™ with eigenvalue \".

(b) Prove that v is an eigenvalue for p(A) with eigenvalue p(A).



3. Linear recurrences. Let V' be the complex vector space of all se-
quences T = (o, Z1,...,Ty,...) with z; € C (it is infinite-dimensional).
We say that a sequence z € V satisfies a linear relation of degree
k if there exist coefficients cg,...,c._1 € C with ¢y # 0 such that
Ty = Z?:_ol ¢iTpy; for all n > 0. The goal of this problem is to ex-
plore how to find all the sequences satisfying a given linear recurrence
relation of degree k. We define the characteristic polynomial of a linear
recurrence relation by

k—1
p(t) =" =) it
=0

(a) Write down in this form the linear relation defining the Fibonacci
sequence. What is its degree?
(b) Explain why we require ¢y # 0.

(¢) Let L : V — V be the left shift operator: L(zg,x1,...) = (x1,22,...).
Prove that a sequence & € V satisfies a linear recurrence relation if
and only if it lies in the kernel of the linear operator p(L) : V — V
(see the above problem for the meaning of p(L)).

(d) Prove that a sequence satisfying a linear recurrence of degree k
is determined by the k initial values xg,...,x,r_1. Conclude that
ker p(L) has dimension k.

(e) Assuming that p(t) has k distinct roots Aq, ..., \,, find a basis for
ker p(L).

(f) Let (Fy, F1,..., Fr_1) be any numbers. Show that the system of k
equations Zf;ol AN = F; (1 <j <k)in the unknowns A; has a
unique solution.

(g) Show that for any recurrence relation of degree k, any initial k-tuple
of values extends to a unique solution of the recurrence relation.

(h) Find a non-recursive formula for the n-th Fibonacci number.
4. Applications of Cauchy-Schwarz inequality.

(a) Prove that if the series > 7 |a,|* and > oo |b,|* converge, then
the series >~ | a,b, converges absolutely.

(b) If a; + as + - - - + a, = n show that af + -+ + at > n.
Hint: Apply Cauchy-Schwarz twice.



