
(solutions will be posted on Wednesday)

1. Determine the range of the functions $f : \mathbb{R} \to \mathbb{R}$ defined as follows:

 (a) $f(x) = \frac{x^2}{1 + x^2}$

 (b) $f(x) = \frac{x}{1 + |x|}$

2. Let $f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ be defined by

 $$f(a, b) = \frac{(a + 1)(a + 2b)}{2}$$

 Show that the image of f is contained in \mathbb{N}, so that $f : \mathbb{R} \to \mathbb{N}$ is a well-defined function.

3. Explain why multiplication by 2 defines a bijection from \mathbb{R} to \mathbb{R}, but not from \mathbb{Z} to \mathbb{Z}.

4. Write four different bijections $f : \mathbb{N} \to \mathbb{N}$.

5. Final Exam - Dec 2010 Prove that the following function is bijective

 $$f : \mathbb{R} - \{-2\} \to \mathbb{R} - \{1\}$$

 defined by $f(x) = \frac{x + 1}{x + 2}$