Implication (Conditional Statements)
Direct proof (Theorems, Definitions...)

Last time: Conditional Statement:

\[P \implies Q \]

"P implies Q" \rightarrow new statement

\[
\begin{array}{ccc}
P & Q & P \implies Q \\
T & T & T \\
T & F & F \\
F & T & T \\
F & F & T \\
\end{array}
\]

\(\text{\textup{a} - definition of the truth of } P \implies Q. \)

Discussion: Usually, if we say P implies Q, then P has something to do with Q. (we think, P causes Q.)

In formal logic, this does not have to be the case: if P has nothing to do with Q, but both are true, or P is false, then P \(\implies Q \) is still true.

Ex: If the Sun rises in the west (I have green hair.)

\(\implies \)

True: P false, Q false, P \(\implies Q \) - true.

Words: If P then Q, P therefore, Q... P implies Q
Worksheet 2: Conditional statements; divisibility

1. Decide whether the following statements are True or False; discuss why.

(a) If 2 is even, then 3 is odd.
\[P \quad \Rightarrow \quad T \quad \Rightarrow \quad T \quad \rightarrow \quad \text{True} \]

(b) If \(a \) is even, then \(a^2 \) is even.
\[P \text{ needs proof (will do later)} \]
\[\quad \text{open sentence depends on } a, \text{ whether T/F} \]

(c) 5 is even, therefore 3 is odd.
\[P \quad \text{False} \quad \Rightarrow \quad Q \quad \text{False} \]
\[\rightarrow \quad \text{True (again: } F \Rightarrow F) \]
\[\text{(it's an example of (b), except } P \text{ is false).} \]

(d) 5 is even implies that 25 is even.
\[\text{True (again: } F \Rightarrow F) \]
\[\text{(but this is not relevant)} \]

(e) If a number \(a \) is even, then the number \(2a + 3 \) is odd.
\[a = 5 \]

(f) For any integer \(a \), the number \(24a + 3 \) is odd.

2. Find the set of all positive divisors of 60.

3. Prove that for any integer \(n \), the number \(n(n + 1)(n + 2) \) is divisible by 6.

Convention: We imply that the statement should be true for all \(a \) if we say it is True.
About theorems:
some of them (the majority) are stated in the form $P \rightarrow Q$
Often, P and Q are open sentences, depending on some variables.

When we prove the theorem, we only argue about the variables that make P True.
(Also, to prove a theorem, we need to prove it for all values of the variables for which P is True.)

In our example (b) $P(a)$ $\quad Q(a)$

Theorem: If a is even, then a^2 is even.

This means we need to prove it for all a.
sufficient to only consider even a
(a is odd \implies anything)

First, need
Definition: What is an even number?
An even number is a number of the form $a = 2k$, where $k \in \mathbb{Z}$.
(k is an integer)

An odd number is a number of the form $a = 2k + 1$ for some $k \in \mathbb{Z}$. See below.

Even/odd applies only to integers.

$\mathbb{Z} = \text{(even)} \cup \text{(odd)}$

\cup union of sets

$\{ n \in \mathbb{Z} : n = 2k \text{ for some } k \in \mathbb{Z} \} \cup \{ n \in \mathbb{Z} : n = 2k + 1 \text{ for some } k \in \mathbb{Z} \}$
What does \(a = 2k + 1 \) for some \(k \in \mathbb{Z} \) mean?

A few examples:

\[
\begin{align*}
\text{yes:} & \quad a = 10 \\
& \quad \text{can you find } k \in \mathbb{Z} \text{ such that } a = 2k? \\
& \quad k = 5 \\
\text{cannot find such } l \\
& \quad l \leq 4, 2l + 1 \leq 10 \\
& \quad 10 = 2 \cdot 4 + 1 \quad \text{False} \\
& \quad 10 = 2 \cdot 5 + 1 \quad \text{False} \\
& \quad l > 5, 2l + 1 > 10
\end{align*}
\]

For any \(a \), only one of these questions has the answer "yes."

If the first question has "yes" answer, then \(a \) is even.

If the second one has "yes", then \(a \) is odd.

Question: where do we name our number?

If I talk about a number, have to give it a name: \(a \), or \(n \), or \(k \), ...

"A number \(n \) is even if there is an integer \(k \) such that \(n = 2k. \)"

...new name for a new number.
Proof of our Theorem:

Then: If \(a \) is even then \(a^2 \) is even.

Let \(a \) be an even integer. \(\Rightarrow \) make \(P(a) \) True

Then there is \(k \in \mathbb{Z} \) such that
\[a = 2k \]

Then \(a^2 = (2k)^2 = 4k^2 \)
\[= 2 \cdot (2k^2) \]

Then \(a^2 = 2\ell \) where \(\ell = 2k^2 \) - an integer!

as required to prove

How to get there: Last line: want to have

"Then \(a^2 \) is even"

this means, I want to show

that there is an integer \(\ell \)

such that \(a^2 = 2 \cdot \ell \)
Worksheet 2: Conditional statements; divisibility

1. Decide whether the following statements are True or False; discuss why.

(a) If 2 is even, then 3 is odd.

(b) If a is even, then a^2 is even.

(c) 5 is even, therefore 3 is odd.

(d) 5 is even implies that 25 is even.

(e) If a number a is even, then the number $2a + 3$ is odd.

\[
\text{Let } a \text{ be even. Then } a = 2k \text{ for some } k \in \mathbb{Z}.
\]

\[
\text{Then } 2a + 3 = 2(2k) + 3 = 4k + 3 = 2 \cdot (2k + 1) + 1
\]

(f) For any integer a, the number $24a + 3$ is odd.

3. Find the set of all positive divisors of 60.

2. Prove that for any integer n, the number $n(n + 1)(n + 2)$ is divisible by 6.

Want: $2a + 3$ is odd, so want to express $2a + 3$ as $2 \cdot \ell + 1$

Complaint: Theorem is true, but its assumption was unnecessary! $2a + 3$ is odd for any integer a, not just even a.

Our (e) is a special case of this general statement.

OK to prove a more general statement.
Divisibility

Def: Let a,b be integers, $b \neq 0$.

We say $b \mid a$ ("b divides a") if $a = bk$ for some integer k.

(b is called a divisor of a)

Hint for #3: from worksheet: (we will prove next time. Think about it!)

Lemma: $n \in \mathbb{Z}$. If $2 \mid n$ and $3 \mid n$, then $6 \mid n$.

* a theorem used in a proof of a bigger theorem.
Worksheet 2: Conditional statements; divisibility

1. Decide whether the following statements are True or False; discuss why.

 (a) If 2 is even, then 3 is odd.

 (b) If \(a \) is even, then \(a^2 \) is even.

 (c) 5 is even, therefore 3 is odd.

 (d) 5 is even implies that 25 is even.

 (e) If a number \(a \) is even, then the number \(2a + 3 \) is odd.

 (f) For any integer \(a \), the number \(24a + 3 \) is odd.

2. Find the set of all positive divisors of 60.

\[
\{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\} = \{n \in \mathbb{Z} : n \mid 60\}
\]

3. Prove that for any integer \(n \), the number \(n(n + 1)(n + 2) \) is divisible by 6.

Proof in 3 steps:

Step 1: Prove it is divisible by 2
Step 2: Prove it is divisible by 3
Step 3: Prove the lemma (see prev. page)