Worksheet 8: Proof or disproof?

Decide whether the following statements are True or False, and prove/disprove them:

1. Let \(\{u_n\} \) be a sequence of real numbers. \(\text{Reminder: we say that } u_n \to +\infty \text{ if } \forall N \exists m, (n \geq m \Rightarrow u_n > N). \)

(a) If \(u_n \to +\infty \), then \(-2u_n \to -\infty \).

\(\{u_n\} \) is a sequence s.t. \(u_n \to +\infty \)

TRUE. see next page (p. 2)

(b) If \(u_n \to +\infty \) then there does not exist \(m \) such that \(u_m < 0 \).

FALSE. Disproof: find a counterexample

see p. 3

(c) If \(u_n \to +\infty \) then \(\forall n \quad U_{n+1} \geq U_n \).

If \(u_n \to +\infty \), then \(\{u_n\} \) is increasing.

FALSE. see p. 4

(d) The converse of (c). (First state this converse).

If \(\forall u_n \), \(U_{n+1} \geq U_n \), then \(u_n \to +\infty \) - the converse.

FALSE. Counterexample: \(u_n = 1 + \frac{1}{n} \)

2. \(\exists x \), \(\forall y \quad x^2 - y < 0 \).

\(\exists x \), \(\forall y \quad x^2 - y < 0 \)

FALSE. see p. 6

Negation: \(\forall x \), \(\exists y \quad x^2 - y \geq 0 \).

3. \(\forall y \), \(\exists x \quad x^2 - y < 0 \).

FALSE. see p. 6
Ps of 1(a). Let \(u_n \to +\infty \).

Sequence: doesn't have to have a formula

\[\begin{align*}
 u_1 &= 1, \text{ any number} \\
 u_2 &= \pi \\
 u_3 &= e^3 + 2 \\
 u_4 &= -7 \\
 u_5 &= 1001 \\
 \vdots
\end{align*} \]

Then, by definition,

\[\forall N \exists m : n \geq m \Rightarrow u_n > N. \]

Want to prove: first need a definition of what it means that \(u_n \to -\infty \).

Make this definition:

\[\forall N \exists m : n \geq m \Rightarrow u_n < -N \]

(to emphasize, could write:

\[\forall N > 0 \exists m \text{ s.t. } n \geq m \Rightarrow u_n < -N \]

(The numbers \(u_n \) have to get "large negative" eventually)

Want to prove: Let \(v_n = -2u_n \).

\[\forall N > 0 \exists m : n \geq m \Rightarrow v_n < -N \]

Let \(N \) be given.

we want: \(v_n < -N \), i.e. \(-2u_n < -N \)

\[\Rightarrow u_n > \left[\frac{N}{2} \right] \]

By definition, \(\exists m \) such that

\[\forall n \geq m, \text{ we have } u_n > \left[\frac{N}{2} \right] \]

Then for this \(m \), we'll have \(v_n < -N \), so we are done.
Want an example of a sequence \(\{u_n\} \) such that:

- \(u_n \to \infty \) and exists \(m \) s.t. \(u_m < 0 \).

Examples: \(-1, 0, 1, 2, 3, \ldots, n, \ldots\)

\[u_n = n - 2 \]

Comment: To disprove we could try to prove the negation is true:

"\(u_n \to \infty \) doesn't imply that there are no negative \(u_m \)"

there exists a sequence \(\{u_n\} \) s.t. \(u_n \to \infty \) and \(\exists m: u_m < 0 \).

why did we put this here? — because our statement was about all sequences even though we did not write that explicitly:
(c) "False because it just has to 'stay large','
doesn't have to increase.

Use our intuition to help us find a counterexample.

Example: \(U_n = n^3 - 5n^2 \)

To prove it works, we need to prove:
1) \(\lim_{n \to \infty} U_n = \infty \)
2) \(\exists n \) s.t. \(U_n < U_m \)

Given \(N \), you have to find \(m \) s.t.
\[n \geq m, \quad n^3 - 5n^2 > N \]

OK counterexample but it gives us more work than we want.
Easier: suggestion: \(U_n = \begin{cases} -n & \text{if } n \text{ is even} \\ -3n & \text{if } n \text{ is odd} \end{cases} \)

Does it work? \(-1, 2, -3, 4, -5, 6, \ldots\)

Unfortunately doesn't work.

Need: \(\lim_{n \to \infty} U_n \) for all \(n \geq m \)

That we find:

Need it for all \(n \geq m \) not just even \(n \).

Suggestion: \(U_n = n^2 \). \(U_n \to \infty \) is easy to check

Unfortunately it is increasing so gives no counterexample.

Suggestion: \(U_n = N \) constant sequence only makes sense if \(N \) is really a constant (cannot change it!)

Doesn't go to \(\infty \).
Example: $u_n = (n-1)^2$: goes to ∞ (easy to check; do it using the def.)

$u_0 = 0$
$u_1 = 0$
$u_2 = 1$
$u_3 = 4$

$u_2 > u_1$ is true, so not quite increasing.
$u_1 > u_0$ is false. (usually don't have u_0!)

Limit $\lim n \to \infty$ doesn't depend on what happens for the first few members.

Example: $u_n = n + (-1)^n$ — “oscillates a bit,” gets large.

Or: $u_n = n^2$ if $1000/n$
$n^2 - 1$ if $1000/n$

In the previous example, u_n was “eventually increasing.”

If $u_n \leq u_m$ for all $m < n$ then $u_m \leq u_n$ for all $m < n$.

In this example, such m does not exist!

Both examples work and illustrate different points about sequences.
(e) TRUE by definition:

\[\exists m, \forall n \geq m, \quad un \geq 1000. \]

To disprove an existential statement, we prove its negation.

Given \(x \), need \(y \) s.t. \(x^2 - y \geq 0 \)

"for all \(x \)"

Take \(y = x^2 \)

get \(x^2 - x^2 = 0 \)

#3 \(\forall y, \exists x : x^2 - y < 0 \)

FALSE.

To prove this universal statement is FALSE, we just need a counterexample:

a \(y \) such that there is no \(x \) s.t.

\[x^2 - y \leq 0 \]

Take \(y_0 = -1 \) (any negative number would work)

Then for all \(x \in \mathbb{R} \),

\[x^2 - y_0 = x^2 + 1 > 0 \]

so \(y_0 \) works.
Induction: (Chapter 10) - method of proof of statements about sequences, or generally statements indexed by natural numbers:

\[P(n) \] - open sentence with \(n \in \mathbb{N} \).

\(P \) could be about anything but depends on \(n \in \mathbb{N} \).

- base case: (usually \(n = 1 \))
- prove induction step: \(P(n) \Rightarrow P(n+1) \)
- conclude by "the principle of mathematical induction" that \(P(n) \) holds for all \(n \).

Examples: \(P(n) \): sum of all odd numbers equals \(n^2 \)

Pf: base case: \(n = 1 \). odd natural numbers: \(1 \)

\[1 = 1 = 1^2 \]

induction step: Need to prove: \(P(n) \Rightarrow P(n+1) \)

Assume \(P(n) \). Assume we know:

\[1 + 3 + 5 + \cdots + (2n-1) = n^2 \]

first \(n \) odd number

Need to prove:

\[1 + 3 + 5 + \cdots + (2n-1) + (2n+1) = (n+1)^2 \]

first \(n+1 \) odd numbers.

Will finish next class. Please read it in the book!