1. Does there exist a continuous bijective function \(f : \mathbb{R} \rightarrow \mathbb{R} - \{1\} \)? Explain.

Hint: Recall the Intermediate Value Theorem.

Solution: The answer is “No”. Suppose \(f : \mathbb{R} \rightarrow \mathbb{R} - \{1\} \) is bijective. Then there exists \(a \in \mathbb{R} \), such that \(f(a) = 0 \), and there exists \(b \in \mathbb{R} \), such that \(f(b) = 2 \). Then, since \(f \) is continuous, by the Intermediate Value Theorem, there exists \(c \in (a, b) \), such that \(f(c) = 1 \). Thus, the range of such a continuous function has to contain 1.

2. Let \(A_1, A_2, B_1, B_2 \) be non-empty sets such that \(|A_i| = |B_i| \) for \(i = 1, 2 \). Prove that

(a) \(|A_1 \times A_2| = |B_1 \times B_2| \).

(b) If \(A_1 \cap A_2 = B_1 \cap B_2 = \emptyset \), then \(|A_1 \cup A_2| = |B_1 \cup B_2| \).

Remember — the sets may or may not be finite. This also applies to the remaining questions below.

Solution: (a)

- Since \(|A_i| = |B_i| \) there exist bijections \(f_i : A_i \rightarrow B_i \), \(i = 1, 2 \).
- Define \(h : A_1 \times A_2 \rightarrow B_1 \times B_2 \) by \(h(a_1, a_2) = (f_1(a_1), f_2(a_2)) \). We must show it is a bijection.
- Injection. Let \((a_1, a_2), (a'_1, a'_2) \in A_1 \times A_2 \). Assume that \(h(a_1, a_2) = h(a'_1, a'_2) \). By our definition of \(h \) we know that \(f_1(a_1) = f_1(a'_1) \) and so \(a_1 = a'_1 \). Similarly, \(f_2(a_2) = f_2(a'_2) \) and so \(a_2 = a'_2 \). Thus \((a_1, a_2) = (a'_1, a'_2) \) and so \(h \) is injective.
- Surjection. Let \((b_1, b_2) \in B_1 \times B_2 \). Since \(f_1 \) and \(f_2 \) are surjective there are \(a_1 \in A_1 \) and \(a_2 \in A_2 \) so that \(f_i(a_i) = b_i \), for \(i = 1, 2 \). Now \((a_1, a_2) \in A_1 \times A_2 \) and \(h(a_1, a_2) = (b_1, b_2) \). Thus \(h \) is surjective.
- Since \(h \) is injective and surjective, it is bijective and the two sets have the same cardinality.

(b) Since \(|A_1| = |B_1| \) and \(|A_2| = |B_2| \), there exist bijective functions \(f_1 : A_1 \rightarrow B_1 \) and \(f_2 : A_2 \rightarrow B_2 \). We need to construct a bijective function \(h : A_1 \cup A_2 \rightarrow B_1 \cup B_2 \). Let us define it piece-wise:

\[
 h(x) = \begin{cases}
 f_1(x) & \text{if } x \in A_1 \\
 f_2(x) & \text{if } x \in A_2.
 \end{cases}
\]

The function \(h \) is well-defined since the sets \(A_1 \) and \(A_2 \) do not have any common elements. It is easy to see that \(h \) is bijective. First, show that \(h \) is injective. Suppose \(h(a) = h(b) \) for some \(a, b \in A_1 \cup A_2 \). There are three cases:

- Case 1: both \(a \) and \(b \) are in \(A_1 \). Then \(h(a) = f_1(a) \) and \(h(b) = f_1(b) \) by definition of \(h \). Then, since \(f_1 \) is injective, we get \(a = b \).
• Case 2: both \(a \) and \(b \) are in \(A_2 \). This case is similar: since \(f_2 \) is injective, we get \(a = b \).

• Case 3: one of the elements is in \(A_1 \), and the other – in \(A_2 \). We denote the one that is in \(A_1 \) by \(a \). So, we have \(a \in A_1 \) and \(b \in A_2 \). Then \(h(a) = f_1(a) \in B_1 \), and \(h(b) = f_2(b) \in B_2 \), but since \(B_1 \cap B_2 = \emptyset \), in this case the equality \(h(a) = h(b) \) is impossible.

Now let us prove that \(h \) is surjective. Let \(b \in B_1 \cup B_2 \). Then either \(b \in B_1 \) or \(b \in B_2 \). If \(b \in B_1 \), since \(f_1 \) is surjective, there exists \(a \in A_1 \) such that \(f_1(a) = b \). Since \(a \in A_1 \), by definition of \(h \), we have \(h(a) = f_1(a) = b \). So, we proved that there exists \(a \in A_1 \cup A_2 \) such that \(h(a) = b \). The case \(b \in B_2 \) is similar (replace \(A_1 \) with \(A_2 \) everywhere).

3. Let \(A \) be an non-empty set. Prove that \(|A| \leq |A \times A|\).

Solution:

- It suffices to find an injection from \(A \) to \(A \times A \).
- Define \(f : A \to A \times A \) by \(f(a) = (a, a) \).
- Let \(a, b \in A \) and assume \(f(a) = f(b) \). Thus \((a, a) = (b, b)\) and so we must have \(a = b \). Hence \(f \) is injective.

4. Prove that if \(A \) is a denumerable set, and there exists a surjective function from \(A \) to \(B \) (and \(B \) is infinite), then \(B \) is denumerable.

Solution: Since \(A \) is denumerable, by definition there exists a bijective function \(f : \mathbb{N} \to A \). It is given that there exists a surjective function \(g : A \to B \). Then \(g \circ f \) is surjective function from \(\mathbb{N} \) to \(B \). (recall that a composition of two surjective functions is surjective – you should know the proof of this fact). So, it is enough to prove the following statement:

* if \(B \) is an infinite set such that there is a surjective function from \(\mathbb{N} \) to \(B \), then \(B \) is denumerable.

Proof of the statement: let \(h : \mathbb{N} \to B \) be a surjective function. We will define a subset \(A \) of \(\mathbb{N} \) such that the restriction of the function \(h \) to the set \(A \) is bijective. Then we will have that \(B \) is in bijection with an infinite subset of \(\mathbb{N} \) (namely, the set \(A \)), which is denumerable by a theorem we proved in class. So it remains to construct the set \(A \). We construct it *inductively* – this means, we will define a procedure that allows us to decide whether a number \(n \) should be in \(A \) or not, assuming we have already decided that about the numbers \(1, \ldots, n - 1 \). We start at 1, and decide that \(A \) should contain 1. Now, assuming we already made a decision about the numbers
5. Prove that if A and B are denumerable sets, and C is a finite set, then $A \cup B \cup C$ is denumerable.

Note: We use this fact, as well as the previous problem, when proving that the set of rational numbers \mathbb{Q} is denumerable.

Solution: We will prove that there is a surjective function from \mathbb{N} to $A \cup B \cup C$. Then, since this set is infinite (as a set containing a denumerable set), the statement will follow from Problem 4.

Since A and B are denumerable, there exist bijective functions $f_1 : \mathbb{N} \to A$, and $f_2 : \mathbb{N} \to B$. Let $d = |C|$ (it is a positive integer, since C is finite), and let $C = \{c_1, \ldots, c_d\}$. Define the function $h : \mathbb{N} \to A \cup B \cup C$ by: $h(n) = c_m$ when $1 \leq n \leq d$; and $h(n) = f_1\left(\frac{n - d + 1}{2}\right)$ if $n - d$ is odd, and $h(n) = f_2\left(\frac{n - d}{2}\right)$ if $n - d$ is even, for $n > d$. Then h is surjective, since for every $a \in A$, there exists $m \in \mathbb{N}$ such that $f_1(m) = a$; then $h(2m + d - 1) = a$; similarly, for every $b \in B$, there exists $q \in \mathbb{N}$ such that $f_2(q) = b$, and then $h(2q + d) = b$. (In fact, all we are doing here is listing the elements of $A \cup B \cup C$ in the following order: $c_1, \ldots, c_d, a_1, b_1, a_2, b_2, \ldots$)

Note that h doesn’t have to be injective (there could be repetitions on this list if A, B and C have some elements in common), but it suffices to construct a surjective function.

6. Prove that if a set A contains an uncountable subset, then A is uncountable.

Note: We use this statement in the proof that the interval $(0,1)$ is uncountable.
Solution: Proof by contradiction: suppose A was countable. Then either A is finite or it is denumerable. Clearly, a finite set cannot contain an uncountable subset (all subsets of a finite set are finite). Then, A is denumerable. But we proved in class that every subset of a denumerable set is either denumerable or finite. We get a contradiction with the assumption that A contains an uncountable subset.

7. Let A be any uncountable set, and let $B \subset A$ be a countable subset of A. Prove that $|A| = |A - B|$.

Hint. This is a generalization of one of the last problems from Workshop 5, and has a very similar solution.

Solution: By the previous problem, $A - B$ is infinite (if it was finite, A would have been a union of a finite set and a countable set, and therefore, countable). Let $C = \{c_1, \ldots c_n, \ldots \}$ be any denumerable subset of $A - B$ (it seems obvious that we can just pick an element c_1 from the infinite set $A - B$, then pick any element c_2 from the set of remaining elements, and keep doing it; note, however, that technically, this is the axiom of choice, which is mentioned in 10.5; it’s not on the exam though). Once we have the set C, we know that C and $C \cup B$ are both denumerable, and therefore there exists a bijective function $f : C \cup B \to C$. Now, define $h : A \to A - B$ by:

$$h(x) = \begin{cases}
 x, & x \in A - (C \cup B) \\
 f(x) & x \in C \cup B.
\end{cases}$$

Then by the problem 2b) (see its solution), h is a bijective function from A to $A - B$.

8. (a) If $\mathcal{P}_{\text{fin}}(\mathbb{N})$ denotes the set of finite subsets of \mathbb{N}, show that $\mathcal{P}_{\text{fin}}(\mathbb{N})$ is denumerable.

(b) If $\mathcal{P}_{\text{inf}}(\mathbb{N})$ denotes the set of infinite subsets of \mathbb{N}, show that $\mathcal{P}_{\text{inf}}(\mathbb{N})$ is uncountable.

Hint: Use the previous problem.

Solution: (a) Let A_n denote the set of subsets of \mathbb{N} that are contained in $\{1, \ldots, n\}$. Then $|A_n| = 2^n$ (we proved this by induction). Now, note that any finite subset of \mathbb{N} is contained in $\{1, \ldots, n\}$ for a large enough number n. Therefore $\mathcal{P}_{\text{fin}}(\mathbb{N}) = \bigcup_{n=1}^{\infty} A_n$ is a denumerable union of finite sets and is clearly an infinite set. By Problem 2 on Workshop 5 this set is denumerable.

(b) Assume to the contrary that $B_1 = \mathcal{P}_{\text{inf}}(\mathbb{N})$ is countable. By (a) $B_2 = \mathcal{P}_{\text{fin}}(\mathbb{N})$ is denumerable. If $B_n = \emptyset$ for all $n \geq 3$ then $\mathcal{P}(\mathbb{N}) = \bigcup_{n=1}^{\infty} B_n$ is a denumerable union of countable sets and so by Q3 on Workshop 5 is also denumerable (it is trivially infinite so that result applies). This contradicts the fact (proven in class) that $\mathcal{P}(\mathbb{N})$ is uncountable. Therefore the set of infinite subsets of \mathbb{N} must be uncountable.

9. Let A, B be sets. Prove that
if \(|A - B| = |B - A|\) then \(|A| = |B|\).

Hint: draw a careful picture.

Solution: Given a bijection \(f : (A - B) \to (B - A)\) define

\[
g : A \to B \\
g(x) = \begin{cases}
 f(x) & x \in (A - B) \\
 x & x \not\in (A - B)
\end{cases}
\]

![Diagram of sets A, B, A \cap B, and function f](image)

- Let \(g : A \to B\) be defined as above. We need to show that \(g\) is injective and surjective.

- **Injective.** Let \(x, z \in A\) and assume \(g(x) = g(z)\). This image must be in \(B\), but it may either be in \(A\) or not in \(A\) (that is, either \(y \in A \cap B\) or \(y \in B - A\)).

 - Assume \(g(x) = g(z) \not\in A\). Then both \(x, z \in A - B\) (otherwise their images under \(g\) would be in \(A\)). Hence \(g(x) = f(x)\) and \(g(z) = f(z)\). Since \(f\) is injective, it follows that \(x = z\).

 - Now assume that \(g(x) = g(z) \in A\). Then both \(x, z \in A\) (otherwise their images under \(g\) would be in \(B - A\)). Then \(g(x) = x\) and \(g(z) = z\) and so \(x = z\).

Hence \(g\) is injective.

- **Surjective.** Let \(y \in B\). Either \(y \in A\) or \(y \not\in A\) (that is, either \(y \in A \cap B\) or \(y \in B - A\)).

 - Assume \(y \in A\) then let \(x = y\). By the definition of \(g\), \(g(x) = x = y\).

 - Now assume \(y \not\in A\), then since \(f\) is surjective, there exists \(x \in A - B\) so that \(f(x) = y\). Now since \(x \in A - B\), it follows that \(g(x) = f(x) = y\).

Hence \(g\) is surjective.

- Hence \(g(x)\) is bijective as required.

10. Let \(\{0, 1\}^\mathbb{N}\) be the set of all possible sequences of 0s and 1s. Corollary 10.22 in the text states that in fact, the cardinality of this set is continuum: \(|\mathbb{R}| = |\{0, 1\}^\mathbb{N}|\) (see also Problem 5 on Workshop 6). Using this fact, prove that \(|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|\).
Solution: Define $f : \{0,1\}^\mathbb{N} \times \{0,1\}^\mathbb{N} \to \{0,1\}^\mathbb{N}$ by

$$f(\{x_n\}, \{y_n\})_m = \begin{cases} x_{(m+1)/2} & \text{if } m \text{ is odd} \\ y_{m/2} & \text{if } m \text{ is even.} \end{cases}$$

We claim f is bijective. Let $\{z_n\} \in \{0,1\}^\mathbb{N}$. Define $x_n = z_{2n-1}$ and $y_n = z_{2n}$. Then the above definitions easily imply that $\{z_n\} = f(\{x_n\}, \{y_n\})$. Therefore f is onto. Assume $f(\{x_n\}, \{y_n\}) = f(\{x'_n\}, \{y'_n\})$. Equating the even coefficients of these two sequences we find that $\{x_n\} = \{x'_n\}$ and equating the odd coefficients we get $\{y_n\} = \{y'_n\}$. Therefore $(\{x_n\}, \{y_n\}) = (\{x'_n\}, \{y'_n\})$, and so f is one-to-one.

It follows from the above that $|\{0,1\}^\mathbb{N} \times \{0,1\}^\mathbb{N}| = |\{0,1\}^\mathbb{N}|$. Now use Question 2(a) and Corollary 10.22, the above equality and finally Corollary 10.22 again to conclude that

$$|\mathbb{R} \times \mathbb{R}| = |\{0,1\}^\mathbb{N} \times \{0,1\}^\mathbb{N}| = |\{0,1\}^\mathbb{N}| = |\mathbb{R}|.$$

This completes the proof.