This test has 3 questions on 4 pages, for a total of 28 points.

Duration: 45 minutes

- Write your name on every page.
- You need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. A one-sided cheat sheet is allowed. Electronic devices of any kind (including calculators, cell phones, etc.) are NOT allowed.

Full Name (including all middle names): __

Student-No: __

Signature: ___

Section number/time of class: 11-12, section 202. __________________________________

Name of the instructor: __

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Find the maximum volume of a box that fits into the part of the paraboloid \(z = 4 - x^2 - 9y^2 \) that lies above the \(xy \)-plane.

Solution: A maximal box that fits into the paraboloid would have to have a vertex on it (otherwise it could be enlarged); let such a vertex in the first octant have the coordinates \((x, y, z)\). Then the volume of the box is \((2x)(2y)z\). Thus, we are trying to maximize the function \(f(x, y, z) = 4xyz \) subject to the constraint \(g(x, y, z) = 4 - x^2 - 9y^2 - z = 0 \). Use Lagrange multipliers (we can just maximize the function \(xyz \) instead of \(4xyz \) for simplicity of the calculation). We get:

\[
\begin{align*}
yz + 2\lambda x &= 0 \\
xz + 18\lambda y &= 0 \\
xy + \lambda &= 0 \\
4 - x^2 - 9y^2 - z &= 0.
\end{align*}
\]

If we multiply the first equation by \(x \) and the second equation by \(y \) and subtract, we get: \(2\lambda x^2 - 18\lambda y^2 = 0 \), which gives \(x = \pm 3y \) or \(\lambda = 0 \). If \(\lambda = 0 \), we get \(xy = 0 \) from the third equation, which means the volume of the box would be zero; this clearly cannot be maximum (it actually would give minimum volume), so since we are looking for a maximum, we ignore this point and get \(x = 3y \) (We recall that our convention, when we made an association between a point on the paraboloid and a box, was \(x, y, z > 0 \), so we take \(x = 3y, y > 0 \), and proceed. Plug the third equation into the first equation: \(\lambda = -xy, yz - 2x^2y = 0 \), which gives \(z = 2x^2 \) or \(y = 0 \). Again, the solution \(y = 0 \) would give us a minimum point, not a maximum, so we discard it. Now plug \(z = 2x^2 = 18y^2 \) into the last equation. We get: \(4 - 18y^2 - 18y^2 = 0 \), so \(36y^2 = 4 \), \(y = 1/3 \) (since we are only interested in \(y > 0 \)). Then we get: \(x = 1, z = 2 \). We have found that the point with \(x, y, z > 0 \) on the paraboloid that gives the maximum \(xyz \) is \((1, 1/3, 2)\). Now, in principle we need to check also the points on the paraboloid where \(x \) or \(y \) or \(z = 0 \) (the boundary of the part of the paraboloid we just investigated), but as already noted, they would give minimal volume not maximal volume of a box. So the answer is:

\[
V_{\text{max}} = 4 \cdot 1 \cdot \frac{1}{3} \cdot 2 = \frac{8}{3}.
\]
2. Let D be the (bounded) domain in \mathbb{R}^2 bounded by the parabolas $x = y^2$ and $x = 9 - 2y^2$.

(a) Sketch D.

Solution: We need to find the intersection points of the two parabolas: $y^2 = 9 - 2y^2 \iff 3y^2 = 9 \iff y = \pm \sqrt{3}$. (The corresponding value of x is 3.)

![Diagram of the domain](image)

(b) Fill in the limits:

$$\iint_D ye^x \, dA = \int \int ye^x \, dxdy$$

and evaluate the integral.

Solution:

$$\iint_D ye^x \, dA = \int_{-\sqrt{3}}^{\sqrt{3}} \int_{y^2}^{9-2y^2} ye^x \, dxdy.$$

(Note that the limits for y were found above in Part (a).) We evaluate:

$$\int_{-\sqrt{3}}^{\sqrt{3}} \int_{y^2}^{9-2y^2} ye^x \, dxdy = \int_{-\sqrt{3}}^{\sqrt{3}} y e^{x=9-2y^2} \, dy = \int_{-\sqrt{3}}^{\sqrt{3}} y (e^{9-2y^2} - e^{y^2}) \, dy = 0.$$

(There are two ways to see that the last integral is zero: you could note that we are integrating an odd function of y over a symmetric interval, or do a substitution $u = y^2$ (we have, conveniently, $ydy = \frac{1}{2}du$), and arrive at the same answer.)

(c) Write the same integral in the order

$$\iint ye^x \, dydx$$

(do not evaluate again).

Solution: We see from Part (a) that the integral will split at $x = 3$. More precisely, when $0 \leq x \leq 3$, we are integrating along y from the bottom branch of the parabola $x = y^2$ to the top branch; when $3 \leq x \leq 9$, we are integrating from the bottom branch of the parabola $x = 9 - 2y^2$ to the top branch. We need to rewrite the equations of these parabolas so that y is expressed in terms of x. The first one is: $y = \pm \sqrt{x}$, and the second one is: $y = \pm \sqrt{(9-x)/2}$. We get the answer:

$$\int_0^3 \int_{-\sqrt{x}}^{\sqrt{x}} ye^x \, dydx + \int_3^9 \int_{-\sqrt{(9-x)/2}}^{\sqrt{(9-x)/2}} ye^x \, dydx.$$
3. Find the y-coordinate of the centroid of the lamina that is shaped as the part of the cardioid given by the equation $r = 2(1 - \cos(\theta))$ that lies in the second quadrant (to the left of the y-axis and above the x-axis).

Solution: Since we are interested in the part that lies in the second quadrant, we have $\pi/2 \leq \theta \leq \pi$. Then the total mass of the lamina (with density 1 since we are looking for the centroid, so mass is the same as total area) is:

$$M = \int_{\pi/2}^{\pi} \int_{0}^{2(1 - \cos(\theta))} 1 \cdot r \, dr \, d\theta;$$

and (using that $y = r \sin \theta$),

$$\bar{y} = \frac{1}{M} \int_{\pi/2}^{\pi} \int_{0}^{2(1 - \cos(\theta))} r \sin \theta \, dr \, d\theta.$$

First evaluate M:

$$M = \int_{\pi/2}^{\pi} \int_{0}^{2(1 - \cos(\theta))} r \, dr \, d\theta = \frac{1}{2} \int_{\pi/2}^{\pi} r^2 \left(1 - \cos(\theta) \right) d\theta$$

$$= 2 \int_{\pi/2}^{\pi} (1 - \cos \theta)^2 d\theta = 2 \int_{\pi/2}^{\pi} (1 - 2 \cos \theta + \cos^2 \theta) d\theta$$

$$= 2 \left(\frac{\pi}{2} - 2 \sin \theta \big|_{\pi/2}^{\pi} + \int_{\pi/2}^{\pi} \frac{1 + \cos(2\theta)}{2} d\theta \right) = \pi + 4 + \frac{\pi}{2} + 0 = 4 + \frac{3\pi}{2}.$$

Now evaluate the integral for \bar{y}:

$$\int_{\pi/2}^{\pi} \int_{0}^{2(1 - \cos(\theta))} r^2 \sin \theta \, dr \, d\theta = \frac{1}{3} \int_{\pi/2}^{\pi} \sin \theta r^3 \left(1 - \cos(\theta) \right) d\theta$$

$$= \frac{8}{3} \int_{1}^{2} u^3 \, du = \frac{2}{3} (16 - 1) = 10,$$

where the substitution was: $u = 1 - \cos(\theta)$, $du = \sin \theta \, d\theta$.

Final answer:

$$\bar{y} = \frac{10}{4 + \frac{3\pi}{2}}.$$