This midterm has 4 questions on 7 pages, for a total of 30 points.

Duration: 40 minutes

- Write your name on every page.
- You need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. Electronic devices of any kind (including calculators, cell phones, etc.) are NOT allowed.

Full Name (including all middle names): ________________________________

Student-No: ________________________________

Signature: ________________________________

Section number: ________________________________

Name of the instructor: ________________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>8</td>
<td>13</td>
<td>4</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. (a) Find a unit vector perpendicular to \(\langle 3, 2 \rangle \).

Let \(\vec{u} = \langle a, b \rangle \).

We have: \(\vec{u} \cdot \langle 3, 2 \rangle = 0 \), so \(3a + 2b = 0 \).

We can take \(a = -2 \), \(b = 3 \): \(\langle -2, 3 \rangle \) perpendicular to \(\langle 3, 2 \rangle \).

Now, we make it into a unit vector:

\[
\vec{u} = \frac{\langle -2, 3 \rangle}{\sqrt{(-2)^2 + 3^2}} = \frac{\langle -2, 3 \rangle}{\sqrt{4 + 9}} = \frac{\langle -2, 3 \rangle}{\sqrt{13}} = \langle \frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \rangle
\]

(b) Let \(\vec{w} = \langle 1, 2, 2 \rangle \). Find the vector projection \(\text{proj}_w \langle 3, 4, 5 \rangle \).

Let \(\vec{u} = \frac{\vec{w}}{||\vec{w}||} = \frac{\langle 1, 2, 2 \rangle}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{\langle 1, 2, 2 \rangle}{\sqrt{1 + 4 + 4}} = \frac{\langle 1, 2, 2 \rangle}{3} = \langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle \).

\[
\text{Proj}_w \langle 3, 4, 5 \rangle = \frac{\langle 3, 4, 5 \rangle \cdot \vec{w}}{||\vec{w}||} \cdot \frac{\vec{w}}{||\vec{w}||} = \left(\langle 3, 4, 5 \rangle \cdot \langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle \right) \cdot \langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle
\]

\[
= \left(3 \cdot \frac{1}{3} + 4 \cdot \frac{2}{3} + 5 \cdot \frac{2}{3} \right) \cdot \langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle = \left(1 + \frac{8}{3} + \frac{10}{3} \right) \cdot \langle \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle = \frac{21}{3} \cdot \frac{1}{3}, \frac{2}{3}, \frac{2}{3} \rangle = \langle \frac{7}{9}, \frac{4}{9}, \frac{4}{9} \rangle
\]

\[
= \langle \frac{7}{9}, \frac{1}{3}, \frac{1}{3} \rangle
\]

(c) Let \(\vec{w} = \langle 1, 2, 2 \rangle \) as above. Find two vectors \(\vec{v}_1 \) and \(\vec{v}_2 \) such that \(\vec{v}_1 + \vec{v}_2 = \langle 3, 4, 5 \rangle \), and \(\vec{v}_1 \) is parallel to \(\vec{w} \), and \(\vec{v}_2 \) is perpendicular to \(\vec{w} \).

We know that \(\vec{v} - \text{proj}_w \vec{v} \) is perpendicular to \(\vec{w} \).

So, \(\vec{v}_1 = \text{proj}_w \vec{v} \) — from (b)

\[
\vec{v}_2 = \vec{v} - \text{proj}_w \vec{v}
\]

Answer:

\[
\vec{v}_1 = \langle \frac{7}{3}, \frac{14}{3}, \frac{14}{3} \rangle
\]

\[
\vec{v}_2 = \langle 3, 4, 5 \rangle - \langle \frac{7}{3}, \frac{14}{3}, \frac{14}{3} \rangle = \langle \frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \rangle
\]
(d) Find the volume of the parallelepiped defined by the vectors \((1, 2, 3), (1, 0, 1)\) and \((0, 3, 5)\).

\[
V = \left| \begin{vmatrix} 1 & 2 & 3 \\ 1 & 0 & 1 \\ 0 & 3 & 5 \end{vmatrix} \right| = \left| \langle 1, 2, 3 \rangle \times \langle 1, 0, 1 \rangle \cdot \langle 0, 3, 5 \rangle \right|
\]

\[
\langle 1, 2, 3 \rangle \times \langle 1, 0, 1 \rangle = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 1 & 0 & 1 \end{vmatrix} = 2\hat{i} + 2\hat{j} - 2\hat{k}
\]

\[
\langle 1, 2, 3 \rangle \times \langle 1, 0, 1 \rangle \cdot \langle 0, 3, 5 \rangle = \langle 2, 2, -2 \rangle \cdot \langle 0, 3, 5 \rangle
\]

\[
= 6 - 10 = -4.
\]

\[
V = |-4| = 4.
\]
2. Consider the lines given in parametric form by:

\[L_1 : \mathbf{r}_1(t) = (2, 5, 1) + t(1, 2, 0) \quad \text{and} \quad L_2 : \mathbf{r}_2(t) = (-1, 2, 0) + t(6, 6, 2). \]

2 marks
(a) Write \(L_1 \) in symmetric form.

First, write it in coordinate form:

\[
\begin{align*}
&x = 2 + t \\
y = 5 + 2t \\
z = 1
\end{align*}
\]

symmetric:

\[
\begin{align*}
x - 2 &= \frac{y - 5}{2} \\
z &= 1
\end{align*}
\]

3 marks
(b) Find the distance from the point \((-1, 0, 2)\) to \(L_1 \).

Two ways to do it:

1. \[P (\mathbf{a}) = (-1, 0, 2) \]

\[\mathbf{a} = (2, 5, 1) \]

\[\mathbf{v} = (1, 2, 0) \]

- direction vector of \(L_1 \).

we can use the formula

\[d = \left| \mathbf{PA} - \text{proj}_{\mathbf{v}} \mathbf{PA} \right| \]

\[= \left| \begin{pmatrix} -3 \\ -5 \\ 1 \end{pmatrix} - \frac{\begin{pmatrix} -3 \\ -5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}}{5} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right| \]

\[= \left| \begin{pmatrix} -3 \\ -5 \\ 1 \end{pmatrix} + \frac{13}{5} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right| \]

\[= \left| \begin{pmatrix} -\frac{2}{5} \\ -\frac{1}{5} \\ 1 \end{pmatrix} \right| = \frac{\sqrt{4 + 1 + 25}}{5} = \frac{\sqrt{30}}{5} \]

(2) Different solution:

use the formula \[d = \left| \frac{\mathbf{PA} \times \mathbf{v}}{15} \right| = \left| \begin{pmatrix} -3 \\ -5 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right| \]

\[\hat{i} \hat{j} \hat{k} \\
-3 -5 1 \\
1 2 0 \\
= -2 \hat{i} + \hat{j} - \hat{k} \]

\[= \frac{\sqrt{4 + 1 + 1}}{\sqrt{5}} = \frac{\sqrt{6}}{\sqrt{5}} \]

Note: \[\frac{\sqrt{30}}{5} = \frac{\sqrt{6}}{\sqrt{5}} \]
(c) Find the intersection point of \(L_1 \) and \(L_2 \).

To find the intersection point, we need to rename the variable for \(L_2 \):

\(L_1 \) is given by \(\begin{cases} x = 2 + t \\ y = 5 + 2t \\ z = 1 \end{cases} \)

\(L_2 \) is given by \(\begin{cases} x = -1 + 6s \\ y = 2 + 6s \\ z = 2s \end{cases} \)

Intersection point:

\[
\begin{align*}
2 + t &= -1 + 6s \\
5 + 2t &= 2 + 6s \\
1 &= 2s
\end{align*}
\]

Then \(t = 0 \) gives us

the intersection point: \((2, 5, 1) \)

(d) Does there exist a plane containing both \(L_1 \) and \(L_2 \)? If yes, find its equation.

we have two intersecting lines. They determine a plane.

normal \(\vec{n} \) to this plane is perpendicular to both direction vectors.

\[
\vec{n} = \vec{v}_1 \times \vec{v}_2 = \begin{vmatrix} i & j & k \\ 1 & 2 & 0 \\ 3 & 3 & 1 \end{vmatrix} = 2\vec{i} - \vec{j} - 3\vec{k}
\]

so we have:

we have the intersection point \((2, 5, 1) \) from (c)

(or could use any point on either line)

Answer:

\[
2(x - 2) = (y - 5) - 3(z - 1) = 0
\]
3. Describe the set of points in space that are equidistant from the plane \(x = y \) and the plane with the equation \(x + z = 0 \).

The first plane has normal vector \(\vec{v}_1 = \langle 1, 1, 0 \rangle \)

The second plane has normal \(\vec{v}_2 = \langle 1, 0, 1 \rangle \)

The formula for the distance from a point \((x_1, y_1, z_1) \) to the first plane gives:

\[
\langle x_1, y_1, z_1 \rangle \cdot \frac{\vec{v}_1}{\|\vec{v}_1\|} = d_1
\]

Vector from \((0,0,0)\) to point in the plane \(x = y \)

Vector from \((0,0,0)\) to our point \((x_1, y_1, z_1)\)

Similarly, the distance from \((x_1, y_1, z_1)\) to the second plane is

\[
d_2 = \langle x_1, y_1, z_1 \rangle \cdot \frac{\vec{v}_2}{\|\vec{v}_2\|}
\]

We get: \(d_1 = d_2 \) means:

\[
\left| \langle x_1, y_1, z_1 \rangle \cdot \langle 1, 1, 0 \rangle \right| = \left| \langle x_1, y_1, z_1 \rangle \cdot \langle 1, 0, 1 \rangle \right|
\]

\[
|x-y| = |x+z| \therefore x-y = \pm (x+z)
\]

and

\[
\begin{align*}
2 + y &= 0 \\
x + z - y &= 0
\end{align*}
\]

Answer: The planes

\[
2 = -y, \quad \text{and} \quad 2x + z - y = 0
\]
4. (a) Let \(\ell \) be the line that lies in the \(xy \)-plane and is given by the equation \(2x + 3y = 6 \) in the \(xy \)-coordinates. Find an equation of a plane containing the line \(\ell \) and perpendicular to the \(xy \)-plane. Sketch \(\ell \) and sketch your plane.

Our plane is perpendicular to the \(xy \)-plane, so it is parallel to the \(z \)-axis. So \[2x + 3y = 6\] is the equation of the required plane.

(b) Find an equation of a plane containing the same line \(\ell \) and forming the angle \(\pi/6 \) with the \(xy \)-plane.

Let \(\overrightarrow{n} \) be the normal vector to our plane. Then we know: \(\overrightarrow{n} \) is perpendicular to \(\ell \) and \(\overrightarrow{n} \) forms the angle \(\pi/6 \) with \(\langle 0,0,1 \rangle \langle 0,0,1 \rangle \) normal of the \(xy \)-plane.

Let \(\overrightarrow{n} = \langle a, b, c \rangle \). Assume \(\overrightarrow{n} \) is unit.

We get: \[\langle a, b, c \rangle \cdot \langle 0,0,1 \rangle = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \]

So: \[\langle a, b, c \rangle \cdot \langle -3, 2, 0 \rangle = 0\]

\[c = \frac{\sqrt{3}}{2} \quad \text{from the angle with the \(xy \)-plane} \]

\[a^2 + b^2 + c^2 = 1 \quad \text{\(\overrightarrow{n} \) is unit.} \]

\[\begin{cases} -3a + 2b = 0 \\ c = \frac{\sqrt{3}}{2} \\ a^2 + b^2 + c^2 = 1 \end{cases} \]

Answer: \[\langle \frac{1}{\sqrt{13}}, \frac{3}{2\sqrt{13}}, \frac{\sqrt{3}}{2} \rangle \]

\[\overrightarrow{n} = \langle \frac{1}{\sqrt{13}}, \frac{3}{2\sqrt{13}}, \frac{\sqrt{3}}{2} \rangle \]

\[\frac{13}{4}a^2 = \frac{1}{4} \quad \text{and} \quad a = \pm \frac{1}{\sqrt{13}} \]