Quiz 1: vectors; dot product. Section 202.

(1) Find the unit vector in the opposite direction from the vector \(\langle 2, 3 \rangle \).

Answer: \(\frac{1}{\sqrt{13}} \langle 2, 3 \rangle = \langle \frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \rangle \).

(2) Let \(P \) be the point \((0, 3, 0) \). Find the point \(A \) that lies on the \(xz \)-plane, such that the vector \(\overrightarrow{AP} \) is parallel to the vector \(\langle 4, 6, 5 \rangle \).

Solution: Since \(A \) lies on the \(xz \)-plane, it has to have coordinates of the form \((a, 0, b) \), where we need to find \(a \) and \(b \). Then \(\overrightarrow{AP} = \langle -a, 3, -b \rangle \). We want it to be parallel to \(\langle 4, 6, 5 \rangle \), which means that there exists a scalar \(c \) such that

\[\langle -a, 3, -b \rangle = c \langle 4, 6, 5 \rangle. \]

Equating components, we get: \(-a = 4c, 3 = 6c, -b = 5c\). From the second equation we find \(c = 1/2 \), and then \(a = -2 \), \(b = -5/2 \). Thus the answer is \(A \) is the point \((-2, 0, -5/2)\).

(3) Suppose the vectors \(\mathbf{v} \) and \(\mathbf{w} \) have the property that

\[|\text{proj}_w \mathbf{v}| = \frac{1}{2} |\mathbf{v}|. \]

Find the angle between \(\mathbf{v} \) and \(\mathbf{w} \).

Solution: We know the formula for the projection:

\[\text{proj}_w \mathbf{v} = \frac{\mathbf{w} \cdot \mathbf{v}}{|\mathbf{w}|^2} \mathbf{w}, \]

and therefore taking the magnitude, we get:

\[|\text{proj}_w \mathbf{v}| = \left| \frac{\mathbf{w} \cdot \mathbf{v}}{|\mathbf{w}|^2} \right| |\mathbf{w}| = \frac{|\mathbf{w} \cdot \mathbf{v}|}{|\mathbf{w}|} = |\mathbf{v}| |\cos(\alpha)|, \]

where \(\alpha \) is the angle between \(\mathbf{v} \) and \(\mathbf{w} \). Thus we get: \(|\mathbf{v}| |\cos(\alpha)| = \frac{1}{2} |\mathbf{v}| \), which happens if and only if \(|\cos(\alpha)| = 1/2 \) (or \(\mathbf{v} = \mathbf{0} \)). Thus if \(\mathbf{v} \neq \mathbf{0} \), we have \(\cos(\alpha) = \pm 1/2 \), so \(\alpha = \pi/3 \) or \(\alpha = 2\pi/3 \).

Answer: \(\alpha = \pi/3 \) or \(\alpha = 2\pi/3 \), if \(\mathbf{v} \neq \mathbf{0} \).