Spherical coordinates

Recall:

\[x = \rho \sin \varphi \cos \theta \]
\[y = \rho \sin \varphi \sin \theta \]
\[z = \rho \cos \varphi \]

\[r = \sqrt{x^2 + y^2} = \rho \sin \varphi \]

What about volume?

\[dV = \rho^2 \sin \varphi \ d\varphi \ d\psi \ d\theta \]

in any order

Put it all together:

Volume of our piece

\[V \approx \Delta \varphi \cdot \rho \sin \varphi \cdot \Delta \theta \cdot \Delta \psi \]

\[= \rho^2 \sin \varphi \ \Delta \varphi \ \Delta \theta \ \Delta \psi \]

Why the volume factor?

"spherical wedges":

- arc of a circle of radius \(\rho \) correspond to the angle \(\Delta \varphi \)

- its length \(\approx \rho \Delta \varphi \)

horizontal circles

angular measure \(\Delta \theta \)

radius of these circles \(\approx \rho \sin \varphi \)

length: \(\approx \rho \sin \varphi \ \Delta \theta \)
\(y = \text{const} : \text{cone} \)
\(\rho = \text{const} : \text{sphere} \)
\(\Theta = \text{const} : \text{half of a vertical plane} \)

Example: Use spherical coordinates to find the \(z \)-coordinate at the centroid of a cone with angle 30° at the vertex, of radius 2 at the base.

\[
\bar{z} = \frac{1}{\text{Vol (cone)}} \iiint_{\text{cone}} z \, dV
\]
\[\text{vol}(\text{cone}) = \iiint_{\text{cone}} 1 \, dv = \iiint_{\text{cone}} \rho^2 \sin \phi \, dp \, d\rho \, d\theta \]

Limits: \(0 \leq \theta \leq 2\pi \) - cross-sections by horizontal planes are circles centred at \(0 \).

\(0 \leq \phi \leq 30^\circ \) (have to use radians!)

\[\frac{\pi}{6} \]

- this gives our cone

Wrong thing to try:

\[\iiint_{\text{cone}} \rho^\frac{1}{2} \, dp \, d\rho \, d\theta \]

Need to find \(d \):

\[d \sin 30^\circ = 2 \]

\[d = 4 \]

How to correct?
Need the equation of this horizontal plane in spherical coördinates.

The plane is given by

\[z = 2 \sqrt{3} \]

\[z = s \cos \psi \]

So:

\[s \cos \psi = 2 \sqrt{3} \]

Correct integral:

\[
\int_0^{2\pi} \int_{\pi/6}^{\pi/3} \int_0^{2\sqrt{3}/\cos \psi} \frac{1}{r^2} r^2 \sin \phi \, dr \, d\psi \, d\theta = V_{\text{orl}}.
\]

\[V_{\text{ol}} = \int_0^{2\pi} \int_{\pi/6}^{\pi/3} \int_0^{2\sqrt{3}/\cos \psi} r^2 \sin \phi \, dr \, d\psi \, d\theta. \]

\[\bar{z} = \left(\int_0^{2\pi} \int_{\pi/6}^{\pi/3} \int_0^{2\sqrt{3}/\cos \psi} r^2 \cos \psi \cdot r^2 \sin \phi \, dr \, d\psi \, d\theta \right) \cdot \frac{1}{V}
\]

Note: here total mass = volume (so we are using \(\frac{1}{V} \) for centre of mass because density = 1.)