Worksheet 15: Triple integrals

1. Set up, in any order, the integral representing the x-coordinate of the centroid of the solid bounded by the planes $x = 0$, $y = 0$, $z = 0$, $y + x = 1$, and the parabolic cylinder $z = 1 - x^2$.

Inequalities: $x, y \geq 0$, $z \geq 0$

$\int_{y=0}^{y=1-x} \int_{x=0}^{x=1-y} \int_{z=0}^{z=1-x^2} x \, dz \, dy \, dx$

2. Change the order of integration so that the integral from the previous problem is written as

$\iiint x \, dx \, dy \, dz$

(\text{All inequalities need to be satisfied!})

(see next page for the inequalities defining the solid)
Inequalities:

\[
\begin{align*}
&x \geq 0 \\
&y \geq 0 \\
&z \geq 0
\end{align*}
\]

\[y \leq 1 - x \quad \text{vertical plane } x + y = 1\]
\[z \leq 1 - x^2 \quad \text{parabolic cylinder } z = 1 - x^2\]

Decide on the order.

Convenient to put \(x \) on the outside.

(then we can use \(x \) for limits of the inside integrals)

What are the limits for \(x \)?

- from our partial sketch: \(0 \leq x \leq 1 \).

or: (if no sketch): \(x > 0 \).

how big can \(x \) get?

we have: \(y \leq 1 - x \).

when \(x \) is the largest, it should meet \(y = 0 \).

looks like \(0 < x \leq 1 \).

Check against \(z \): \(z = 1 - x^2 \) meets \(z = 0 \)
at \(x = 1 \).

Answer:

\[
\int_0^1 \int_0^{1-x} \int_0^{1-x^2} dy \\ dx
\]

Computing M

\[x \text{ if } x \text{.} \]
Check: outside double integral: \[\iiint_{V} 1 \, dy \, dx \, dz \]

\[\int_{0}^{1} \int_{0}^{1-x} dy \, dx \]

← agrees with the bottom face of our solid.

- Looks like no limits depend on \(y \)?
 What does this mean?

Geometrically this says, for every \(x \), the cross section of our solid by the plane \(x = x_0 \), is a rectangle \((1-x_0) \times (1-x_0^2) \).

Go back to the sketch.

- Can improve the sketch: missing: the intersection of the red parabolic cylinder with the blue plane \(x+y = 1 \).

Look for common points.

Draw the common curve.

Shading: vertical plane by vertical lines.

- We see: cross sections with fixed \(x \) are indeed rectangles:
 square \([0,1] \times [0,1] \) on the \(yz \)-plane \((x=0)\)
 and get smaller and collapse to a point when \(x = 1 \),

\[\int_{0}^{1} \int_{1-x}^{1} \int_{0}^{z} \, dy \, dx \, dz \]

\[z = 1 - x^2 \]

\[x = \sqrt{1 - z} \]
We need:

\[y + x \leq 1, \quad x \leq 1 - y. \]

but:

\[x^2 + 2 \leq 1, \quad \text{so } x \leq \sqrt{1 - 2}. \]

Both have to hold.

There is a competition between \(1 - y \) and \(\sqrt{1 - 2} \):

Where is \(1 - y \leq \sqrt{1 - 2} \)?

\[1 - y = \sqrt{1 - 2} \]

\[(1 - y)^2 = 1 - 2 \]

\[2 = 1 - (1 - y)^2 \]

\[y = 1 - \sqrt{1 - 2} \]

Equation of the border of "competing bounds for x".
Our integral splits:

\[\int_0^1 \int_0^{1-x} \int_{1-x}^{\sqrt{1-x^2}} x \, dx \, dy \, dz + \int_0^1 \int_{1-x}^1 \int_0^{\sqrt{1-x^2}} x \, dx \, dy \, dz \]

\[= \int_0^1 \int_0^{1-x} \int_0^{\sqrt{1-x^2}} x \, dx \, dy \, dz + \int_0^1 \int_0^{1-x} \int_0^{\sqrt{1-x^2}} x \, dx \, dy \, dz \]