Table of integrals to remember.

Power functions:

$$
\begin{aligned}
& \int x^{\alpha} d x=\frac{1}{\alpha+1} x^{\alpha+1}+C \quad \text { for all real numbers } \alpha \neq-1 . \\
& \int x^{-1} d x=\ln |x|+C
\end{aligned}
$$

Rational functions:

For expressions of the form $P(x) / Q(x)$, where both P and Q are polynomials, if the degree of P is less than the degree of Q, use partial fractions.

If the degree of P is bigger or equal to the degree of Q, then do long division to get it to the form $P(x)=Q(x) P_{1}(x)+R(x)$, where $R(x)$ has degree smaller than the degree of Q. Then you'll get: $P(x) / Q(x)=$ $P_{1}(x)+R(x) / Q(x)$, and the first term $P_{1}(x)$ is very easy to integrate, and for the second term $R(x) / Q(x)$ you can use partial fractions.

Exponential and logarithmic functions:

$$
\begin{aligned}
& \int e^{x} d x=e^{x}+C . \\
& \int a^{x} d x=\frac{1}{\ln a} a^{x}+C . \\
& \int \ln (x) d x=x \ln x-x+C .
\end{aligned}
$$

For expressions such as $x^{n} \ln x$ or $x^{n} e^{x}$, use integration by parts.

Trigonometric functions:

$$
\begin{array}{ll}
\int \sin (x) d x=-\cos (x)+C ; & \\
\int \cos (x) d x=\sin (x)+C . \\
\int \sec (x)=\ln |\sec (x)+\tan (x)|+C ; & \int \cot (x)=\ln |\sin (x)|+C . \\
\int \sec ^{2}(x)=\tan (x)+C & \int \csc (x)=\ln |\csc (x)-\cot (x)|+C . \\
\int \sec x \tan x d x=\sec (x)+C . & \int \csc (x)^{2}=-\cot (x)+C .
\end{array}
$$

Note: the startegy for integrating $\sin ^{n}(x) \cos ^{m}(x) d x$ is to make a substitution $u=\cos (x)$ or $u=\sin (x)$ (use the function whose power is odd); if both powers are even, use double-angle formulas to reduce to smaller powers of the functions of $2 x$.

The strategy for integrating $\tan ^{n}(x) \sec ^{m}(x)$ is: if $m \geq 2$ is even, use the substitution $u=\tan x$. If n is odd, use $u=\sec (x)$ (remember that $\sec ^{\prime}(x)=\sec (x) \tan (x)$. In other cases, sometimes can use integration by parts to reduce to the integral of $\sec (x)$ or $\tan (x)$, which you should remember (see the table above).

Derivatives of the inverse trigonometric functions:

$$
\begin{aligned}
& \int \frac{1}{\sqrt{1-x^{2}}}=\sin ^{-1}(x) \\
& \int \frac{1}{1+x^{2}}=\tan ^{-1}(x) \\
& \int \frac{1}{x \sqrt{a^{2}-x^{2}}}=\frac{1}{a} \sec ^{-1}(x / a)+C .
\end{aligned}
$$

Note: if in these integrals, instead of $1-x^{2}$ or $1+x^{2}$ you have $a^{2}-x^{2}$ or $a^{2}+x^{2}$, then use the substitution $u=x / a$; if you have some other quadratic polynomial, then complete the square, and reduce it to $a^{2}-x^{2}, a^{2}+x^{2}$, or $x^{2}-a^{2}$.

Strategy for the other functions involving $\sqrt{a^{2}-x^{2}}$ or $a^{2}+x^{2}$: for $\sqrt{a^{2}-x^{2}}$, use the substitution $x=a \sin (u)$, for $a^{2}+x^{2}$, use the substitution $x=a \tan (u)$. If you have a quadratic polynomial inside a square root, then complete the square to reduce it to $a^{2}-x^{2}, x^{2}-a^{2}$, or $x^{2}+a^{2}$.

Always look for an easy way out first: when computing definite integrals, do not forget to look for symmetry; always look for easy substitutions that could make the integral simpler. See if there is a clever integration by parts that could make it simpler, too.

