This midterm has 5 questions on 6 pages, for a total of 50 points.

Duration: 80 minutes

- Write your name on every page.
- you need to show enough work to justify your answers.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (including all middle names): \qquad

Student-No: \qquad

Signature: \qquad

Section number:

Name of the instructor: \qquad

Question:	1	2	3	4	5	Total
Points:	12	12	9	7	10	50
Score:						

1. Let $F(x, y, z)=e^{3 x} \sqrt{y z}$.

4 marks
(a) Find the linearization (linear approximation) of $F(x, y, z)$ near the point $P=$ $(0,25,1)$.
(b) Use the answer from (a) to estimate $F(0.01,25.02,0.99)$.
(c) Write the equation of the level surface of F that contains the point P.
(d) Find an equation of the tangent plane at P to the level surface of the function F that contains this point.

Solution: (a). We have $F_{x}=3 e^{3 x} \sqrt{y z}, F_{y}=\frac{\sqrt{z} e^{3 x}}{2 \sqrt{y}}, F_{z}=\frac{\sqrt{y} 3^{3 x}}{2 \sqrt{z}}$. Evaluating these partial derivatives at P, we get $\left.F_{x}\right|_{P}=15,\left.F_{y}\right|_{P}=0.1, F_{z}=5 / 2=2.5$. We also have $F(0,25,1)=5$. Then the linearization of F at P is

$$
L(x, y, z)=5+15 x+0.1(y-25)+2.5(z-1) .
$$

(b). Plugging in the point $(0.01,25.02,0.99)$ into L, we get

$$
F(0.01,25.02,0.99) \simeq 5+0.15+0.002-0.025=5.127
$$

(c). $F(x, y, z)=5$.
(d). The gradient of F at P is normal to the tangent plane to the level surface; we have $\nabla_{P} F=\langle 15,0.1,2.5\rangle$. Then the equation of the tangent plane is:

$$
15 x+0.1(y-25)+2.5(z-1)=0 .
$$

Note that this is also $L(x, y, z)=5$.
2. A slug is crawling on the flat metal surface with the temperature of the surface at a point (x, y) given by $T=x e^{x^{2}+y}$.
(a) At the point $(1,2)$, what is the direction of the greatest decrease of the temperature? (The answer should be a unit vector).
(b) Find the rate of change of the temperature the slug would experience if it crawled from the point $(1,2)$ at speed 1 in the direction of the vector $\langle 3,4\rangle$.
(c) Suppose at a time t (in seconds) the slug is at the point $(x(t), y(t))$ with $x(t)=0.1 t$, $y(t)=0.02 t^{2}$. What is the rate of change of temperature the slug experiences as it passes through the point $(1,2)$?

Solution: We find the gradient of T at (1, 2): $T_{x}=2 x^{2} e^{x^{2}+y}+e^{x^{2}+y}=e^{x^{2}+y}\left(2 x^{2}+1\right)$, $T_{y}=x e^{x^{2}+y}$, and $\nabla_{(1,2)} T=\left\langle 3 e^{3}, e^{3}\right\rangle$.
(a). The unit vector in the direction opposite to the gradient is $u=\left\langle-\frac{3}{\sqrt{10}},-\frac{1}{\sqrt{10}}\right\rangle$.
(b). The unit vector in the direction of $\langle 3,4\rangle$ is $u_{1}=\langle 3 / 5,4 / 5\rangle$. Then

$$
\left.D_{u_{1}} T\right|_{(1,2)}=\nabla_{(1,2)} T \cdot u_{1}=9 e^{3} / 5+4 e^{3} / 5=13 e^{3} / 5 .
$$

Since the slug is crawling at speed 1 , the rate of change of temperature it experiences is exactly the directional derivative in the direction it is crawling in, so the answer is $13 e^{3} / 5$.
(c). By Chain Rule,

$$
\frac{d T}{d t}=\frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d y}{d t}
$$

Now, let us find the time t at which the slug is at $(1,2)$. We have $0.1 t=1$ and $0.02 t^{2}=2$, so $t=10$. Then we have:

$$
\left.\frac{d T}{d t}\right|_{t=10}=\left.\left.\frac{\partial T}{\partial x}\right|_{(1,2)} \frac{d x}{d t}\right|_{t=10}+\left.\left.\frac{\partial T}{\partial y}\right|_{(1,2)} \frac{d y}{d t}\right|_{t=10}
$$

Compute $\frac{d x}{d t}=0.1, \frac{d y}{d t}=0.04 t$. Finally, we get

$$
\left.\frac{d T}{d t}\right|_{t=10}=3 e^{3} \cdot 0.1+e^{3} \cdot 0.04 \cdot 10=0.7 e^{3}
$$

4 marks
5 marks
3. (a) Let $w=v e^{u}$, and let $u(x, y, z)=x^{3} / z, v(x, y, z)=y^{3} / z$. Find $\frac{\partial w}{\partial x}$.
(b) Let $w=f(u, v)$, where f is a differentiable function, and $u(x, y, z)=x^{3} / z, v(x, y, z)=$ y^{3} / z. Compute $\left(x w_{x}+y w_{y}\right) / w_{z}$.

Solution: (a). We have:

$$
\begin{gathered}
\frac{\partial w}{\partial x}=\frac{\partial w}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial x}=\frac{3 x^{2}}{z} ; \quad \frac{\partial v}{\partial x}=0 ; \quad \frac{\partial w}{\partial u}=v e^{u} ; \quad \frac{\partial w}{\partial v}=e^{u} .
\end{gathered}
$$

Then,

$$
\frac{\partial w}{\partial x}=v e^{u} \frac{3 x^{2}}{z}=\frac{3 x^{2} y^{3} e^{x^{3} / z}}{z^{2}}
$$

(b).

$$
\begin{gathered}
\frac{\partial w}{\partial x}=\frac{\partial w}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial x} ; \quad \frac{\partial u}{\partial x}=\frac{3 x^{2}}{z} ; \quad \frac{\partial v}{\partial x}=0 \\
\frac{\partial w}{\partial y}=\frac{\partial w}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial y} ; \quad \frac{\partial u}{\partial y}=0 ; \quad \frac{\partial v}{\partial y}=\frac{3 y^{2}}{z} \\
\frac{\partial w}{\partial z}=\frac{\partial w}{\partial u} \frac{\partial u}{\partial z}+\frac{\partial w}{\partial v} \frac{\partial v}{\partial z} ; \quad \frac{\partial u}{\partial z}=-\frac{x^{3}}{z^{2}} ; \quad \frac{\partial v}{\partial x}=-\frac{y^{3}}{z^{2}} .
\end{gathered}
$$

Then:

$$
\begin{aligned}
x w_{x}+y w_{y} & =\frac{\partial w}{\partial u} \frac{3 x^{3}}{z}+\frac{\partial w}{\partial v} \frac{3 y^{3}}{z}, \text { and } \\
\frac{x w_{x}+y w_{y}}{w_{z}} & =-\frac{\frac{\partial w}{\partial u} \frac{3 x^{3}}{z}+\frac{\partial w}{\partial v} \frac{3 y^{3}}{z}}{\frac{\partial w}{\partial u} \frac{x^{3}}{z^{2}}+\frac{\partial w}{\partial v} \frac{y^{3}}{z^{2}}}=-3 z .
\end{aligned}
$$

7 marks 4. Find and classify all the critical points of $f(x, y)=\cos x+y^{2}$.

Solution: $f_{x}=-\sin (x), f_{y}=2 y$. Then the critical points are $(\pi k, 0)$, where k is an integer. $f_{x x}=-\cos (x), f_{x y}=0, f_{y y}=2$. Then $D>0$ if $-\cos (x)>0$, that is, when k is odd; $D<0$ if $-\cos (x)<0$, that is, k is even. Then we have local minima at the points of the form $(\pi(2 n+1), 0)$, and saddle points at $(2 \pi n, 0)$ for all integers n.

10 marks 5. Produce the complete list of points where the absolute max or min of $f(x, y)=x^{2}+$ $3 x y-2 y^{2}$ on the triangle T with vertices $(-1,2),(-1,-1)$ and $(2,-1)$ could occur; do not evaluate the function at these points.

Solution: $f_{x}=2 x+3 y, f_{y}=3 x-4 y$. The only critical point is $(0,0)$. Now, analyze the boundary.

1. The bottom edge, $y=-1,-1<x<2$. Get $f(x,-1)=x^{2}-3 x-2$; this function has a critical point at $x=3 / 2$. This point is within the interval $[-1,2]$, so we add the point $(3 / 2,-1)$ to the list.
2. The left edge, $x=-1,-1<y<2$. We have $f(-1, y)=1-3 y-2 y^{2}$. The critical point of this function is at $y=-3 / 4$; we add the point $(-1,3 / 4)$ to the list.
3. $y=1-x,-1<x<2$. Get
$f(x, 1-x)=x^{2}+3 x(1-x)-2(1-x)^{2}=x^{2}+3 x-3 x^{2}-2-2 x^{2}+4 x=-4 x^{2}+7 x-2$.
The critical point of this function is at $x=7 / 8$, so we add the point $(7 / 8,1 / 8)$ to the list.
4. Finally, all the vertices are on the list. Thus, the list of points where max/min could occur is $(0,0) ;(3 / 2,-1),(-1,3 / 4),(7 / 8,1 / 8),(-1,2),(-1,-1),(2,-1)$.
