Worksheet II: Absolute Max/Min

Produce the complete list of points where the absolute max or min of \(f(x,y) = x^2 + 3xy - 2y^2 \) on the triangle \(T \) with vertices \((-1,2), (-1,-1) \) and \((2,-1)\) could occur; do not evaluate the function at these points.

NEW:

Office Hours:

The 5-6

Thurs 4:15-5:45

Next test: March 10

Will be extra office hours March 9. Will email.

Last time: critical points

- how to recognize them on the graph:

local min

saddle point:

(local max in one direction)
(local min in another)

How to recognize them on a contour plot:

local max/min

need to know which way is up to distinguish them

Saddle:

down

may or may not be on the plot

Same level curve!

can get very deformed:

(see homework 7)
Next: Absolute max/min on a closed bounded domain.

$f(x,y)$ (or $f(x,y,z)$ or $f(x_1, -x_{100})$)

What is its absolute max/min value?

(on the whole plane (or a the whole domain) might not exist)

If you bound the domain:

- closed (includes its boundary)

- boundary will be simple (intuitive) for us.

- bounded - fits into a large box around the origin.

Example of a closed bounded domain.
Theorem A continuous function on a closed bounded domain attains its max and min values. (call them absolute max and absolute min)

How to find them?

- Recall for \(f(x) \) - function of 1 variable
 - "closed bounded domain" : \[a \leq x \leq b \]
 - interval \([a, b] \) (ends included)

 - to find max/min:
 - Step 1: \(f'(x) \), solve \(f'(x) = 0 \) inside \((a, b) \)
 [finding critical points inside]
 - Step 2 evaluate \(f(a) \), \(f(b) \) \(\Delta \) end points are on the boundary
 evaluate \(f \) at critical points and at points where \(f'(x) \) does not exist.

Find the max/min of all these values.

\[
\begin{array}{c}
\text{y}
g(x) = f(x) \\
\text{max}
\end{array}
\]

- min, critical pt inside
For functions of 2 variables:

Strategy: 1) Look for critical points inside the domain

2) Analyze the boundary — the more difficult part.

- List of "suspicious points" (where max/min could occur)
- Critical points inside the domain
- Vertices of the triangle (where boundary is not smooth)

- Need to analyze the sides of the triangle.

The picture illustrates this: The highest point could be over one of the edges.
Worksheet II: Absolute max/min

Produce the complete list of points where the absolute max or min of $f(x,y) = x^2 + 3xy - 2y^2$ on the triangle T with vertices $(-1,2), (-1,-1)$ and $(2,-1)$ could occur; do not evaluate the function at these points.

Step 1: critical points.

$f(x,y) = x^2 + 3xy - 2y^2$

$f_x = 2x + 3y$

$f_y = 3x - 4y$

Solve: $f_x = f_y = 0$:

\[
\begin{align*}
2x + 3y &= 0 \\
3x - 4y &= 0
\end{align*}
\]

$\Rightarrow (x,y) = (0,0)$

Check if it is inside T.

So it goes on the list.

Step 2: Just plug in the equations for the boundary pieces.

This gives a problem in one variable.
1: \(x = -1, \ -1 \leq y \leq 2 \)

Plug it into \(f \):

\[
f(-1, y) = (-1)^2 + 3 \cdot (-1) \cdot y - 2y^2
= 1 - 3y - 2y^2 \quad \text{call it } g_1(y)
\]

Now look for critical points of \(g_1(y) \).

\[
g_1'(y) = -3 - 4y
\]

\[
g_1'(y) = 0: \ -3 - 4y = 0 \quad y = -\frac{3}{4} \quad \text{and satisfies } -1 \leq y \leq 2
\]

Get the point: \((-1, -\frac{3}{4})\) - goes on the list.

2: (blue): \(y = -1, \ -1 \leq x \leq 2 \)

Plug it in:

\[
f(x, -1) = x^2 + 3x \cdot (-1) - 2 \cdot (-1)^2 = x^2 - 3x - 2
\]

Look for critical points: \(g_2'(x) = 2x - 3 \quad x = \frac{3}{2} \)

Get: \(\left(\frac{3}{2}, -1 \right) \) - goes on the list.
Plug in its equation: \[y = -x + 1. \]

Get:

\[g_3(x) = f(x, -x+1) = x^2 + 3 \cdot (-x+1) - 2(-x+1)^2 \]
\[= -4x^2 + 7x - 2 \]

\[g_3'(x) = -8x + 7 \]

\[x = \frac{7}{8} \]

Our point: \(\left(\frac{7}{8}, \frac{1}{8} \right) \).

Answer:

\[(0,0) \leftarrow \text{critical pt of } f \text{ inside } T \]
\[\left(\frac{7}{8}, \frac{1}{8} \right), (-1, -\frac{3}{4}), \left(\frac{3}{2}, -1 \right) \leftarrow \text{edges of } T \]
\[(-1, -1), (-1, 2), (2, -1) \leftarrow \text{vertices} \]
What if we had more variables?

\[f(x, y, z) = x^2 \cos(z) + e^{xy-z} \]

Find max/min on the unit cube.

Steps: 1) Look for critical points

\[f_x = f_y = f_z = 0 \] inside the cube

2) Have to analyze every face:

 e.g. the face \(z = 0 \)

\[h_1(x, y) = x^2 + e^{xy} - 1 \]

Plug in \(z = 0 \)

get:

\[h_1(x, y) = x^2 + e^{xy} - 1 \]

Look for critical points of \(h_1 \).

3) Consider every edge: plug in \(x = 0 \), \(y = 0 \)

get a function of \(z \),

etc.

4) Put vertices on the list.