Recall: Last time: linearization
(linear approximation) \(f(x,y) \)
- our main tool!

Today:
- "differentials" (error estimates)
 - Chain rule for functions of several variables.

Recall: \(f(x,y) \) - a function of \(x,y \) (continuously differentiable)
we write:
\[
L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)
\]
- linearization of \(f(x,y) \) at the point \((a,b)\).

The graph of \(L(x,y) \) is a plane (since \(L(x,y) \) is a linear function), and this plane is the tangent plane to the graph of \(f(x,y) \) at \((a,b)\).
Today, think of this as:

\[\Delta x \text{ - small change in } x \quad \text{ (} x \text{ is close to the value } a) \]

\[\Delta x = x - a \]

\[\Delta y \text{ - small change in } y \quad \text{ (} y \text{ is close to the value } b) \]

What is the corresponding change in the value of \(f \):

\[\Delta f \approx L(x,y) - L(a,b) = f_x(a,b) \Delta x + f_y(a,b) \Delta y \]

we use the linearization to approximate \(f \).
Definition: \[df = f_x(a,b) \cdot dx + f_y(a,b) \cdot dy \]

"the differential of \(f \) at \((a,b) \)"

Think of this a way to remember how to compute a small change of \(f(x,y) \).

\[\frac{df}{dx} \quad \frac{df}{dy} \]

Example: This works in any number of variables.

Take \(f = V(l, w, h) = l \cdot w \cdot h \) - function of 3 variables.

\[l, w, h \]

Suppose we measured:

\[l = 10 \text{ cm} \]
\[w = 15 \text{ cm} \]
\[h = 12 \text{ cm} \]

Error of each measurement \(\pm 1 \text{ mm} \).

(used a ruler), or measuring tape.

How big (approximately) is the resulting error of the volume?

(we get: \(V(10,15,12) = 10 \cdot 15 \cdot 12 \), but how precise is this?)
\[\Delta V \approx 0.10 \text{ cm}^3 \]
\[1 \text{ cm}^3 \]
\[10 \text{ cm}^3 \]
\[100 \text{ cm}^3 \]
\[0.01 \text{ cm}^3 \]

<table>
<thead>
<tr>
<th>Volume</th>
<th>Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\text{true answer: } 45 \text{ cm}^3. \]

\[1 \text{ mm} = 0.1 \text{ cm} \] — our error for \(l, w, h \).

\[\Delta V \approx \frac{\partial V}{\partial l} \bigg|_{(l=10, w=15, h=12)} \Delta l \approx 0.1 \text{ cm} \]

\[\Delta W \approx 0.1 \text{ cm} \]

\[\Delta l \approx 0.1 \text{ cm} \]

\[\Delta W \approx 0.1 \text{ cm} \]

\[\Delta h \approx 0.1 \text{ cm} \]

\[\Delta V \approx \frac{\partial V}{\partial w} \bigg|_{(l=10, w=15, h=12)} \Delta w \approx 0.1 \text{ cm} \]

\[\Delta V \approx \frac{\partial V}{\partial h} \bigg|_{(l=10, w=15, h=12)} \Delta h \approx 0.1 \text{ cm} \]

\[\Delta V \approx \frac{\partial V}{\partial l} \cdot \Delta l + \frac{\partial V}{\partial w} \cdot \Delta w + \frac{\partial V}{\partial h} \cdot \Delta h \]

\[\Delta V = \frac{\partial V}{\partial l} \cdot \Delta l + \frac{\partial V}{\partial w} \cdot \Delta w + \frac{\partial V}{\partial h} \cdot \Delta h \]
\[\frac{\partial V}{\partial l} = w \cdot h \]
\[\frac{\partial V}{\partial w} = l \cdot h \]
\[\frac{\partial V}{\partial h} = w \cdot l \]

Evaluate these derivatives at \((10, 15, 12)\):

\[\frac{\partial V}{\partial l} \bigg|_{(10, 15, 12)} = 15.12 \text{ cm}^2 \]
\[\frac{\partial V}{\partial w} \bigg|_{(10, 15, 12)} = 10.12 \text{ cm}^2 \]
\[\frac{\partial V}{\partial h} \bigg|_{(10, 15, 12)} = 10.15 \text{ cm}^2 \]

Get: \(\Delta V \propto 0.1 \left(15.12 + 10.12 + 10.15 \right) \text{ cm}^3 \)

\(\Delta V = 15.12 + 12 + 15 = 45 \text{ cm}^3 \)

\(\Delta A = l \cdot \Delta w + w \cdot \Delta l \)

Don't take this into account when using differentials.
Remark: For a function of 2 variables, $L(x,y)$ gives an equation of the tangent plane to the graph, but for 3 or more variables, we are not thinking about the graph!

For 3 variables, linearization itself is a function of 3 variables; both graph of $f(x,y,z)$ and graph of $L(x,y,z)$ live in \mathbb{R}^4; so the graph of $L(x,y,z)$ is "tangent 3-space" to the graph of f.

When we write $z = f(x,y)$, get a graph of $f(x,y)$ (for a function of 2 variables), but if we write $f(x,y,z)$, we are dealing with a function of 3 variables; here the role of z is the same as the role of x,y.

Favourite examples: ① $f(x,y) =$ altitude above sea level at a point with geographic coordinates x,y.

graph of $f(x,y) =$ mountain.

② Temperature (in this room) $T(x,y,z)$ — at every point there's some temperature!
Implicit differentiation

Recall from calc-1: implicit functions:

\[f(x,y) = c \] fixed constant

This makes \(y \) an 'implicit function' of \(x \).

Example: \(y \) is given as an implicit function of \(x \) by:

\[* \] \(xy^2 + y^3 - x^2 = 10 \)

Find \(\frac{dy}{dx} \), \(x^2 - 4 \) \(\uparrow \) relation on \(x,y \).

Which makes \(y \) a 'function' of \(x \) (maybe doesn't satisfy vertical line test)

"Implicit" because we don't have a formula for it, so it's not explicit.

Still, we can find \(\frac{dy}{dx} \).

Differentiate both sides, but every time we see \(y \), treat it as a function of \(x \):

Get:

\[1 \cdot y^2 + x \cdot 2y \cdot y' + 3y^2 \cdot y' - 2xy - x^2 \cdot y' = 0 \]

Solve for \(\frac{dy}{dx} \):

\[\frac{dy}{dx} = \frac{2xy - y^2}{3y^2 + 2xy - x^2} \]
If \((a, b)\) satisfies \((\phi)\), then \(\frac{dy}{dt}\) gives us the slope of the tangent line to this curve at this point.
Worksheet 6: implicit differentiation, chain rule

1. Let z be an implicit function of x, y defined by:
\[x^3 + 3y^2 + 5z^2 = 58 \]

Differentiate both sides.

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(1, 2, 3)$.

Note: Later we'll get a better way.

Do the partials as usual, but treat z as a function of x, y.

(i.e. when doing $\frac{\partial z}{\partial x}$, treat 2 as function of y as constant).

Then solve for $\frac{\partial z}{\partial x}$.

\[
\frac{\partial}{\partial x}: \quad 2x + 10z \cdot \frac{\partial z}{\partial x} = 0
\]

\[
\frac{\partial}{\partial y}: \quad 6y + 10z \cdot \frac{\partial z}{\partial y} = 0
\]

Evaluate at $(1, 2, 3)$:

\[
\frac{\partial z}{\partial x} \bigg|_{(1,2,3)} = -\frac{2}{10} = -\frac{1}{5}
\]

\[
\frac{\partial z}{\partial y} \bigg|_{(1,2,3)} = -\frac{6}{10} = -\frac{3}{5}
\]

2. Let $F(x, y, z) = \cos(x)e^{3y} + z^2$. Let $x(t) = 5t^2, y(t) = 2t, z(t) = \sin(t)$.

Find:

\[
\frac{d}{dt} F(x(t), y(t), z(t)).
\]

\[
F_x = -\sin x \cdot e^{3y}
\]
\[
F_y = 3e^{3y} \cos x
\]
\[
F_z = 2z
\]

\[
\frac{dx}{dt} = 10t
\]
\[
\frac{dy}{dt} = 2
\]
\[
\frac{dz}{dt} = \cos t
\]

\[
\frac{dF}{dt} = (-\sin x \cdot e^{3y}) \cdot 10t + 3e^{3y} \cos x \cdot 2 + 2z \cdot \cos t
\]

Note: In what I am doing.
Upshot & Question!

F(x, y, z) - function of 3 variables.

If we set \(F(x, y, z) = c \)

(\(F(x, y, z) = 58 \) in our example)

get a level surface \(F(x, y, z) \)

(\(F(x, y, z) = 58 \) in our example, it is an ellipsoid)

If you want to stay on this ellipsoid, you can choose \(x, y \) so that determines \(z \)

(or could choose \(x, z \) so determines \(y \))

Choose one variable so it is an implicit function of the other two

(in our example, could solve for \(z \)

and make it explicit: \(z = \pm \sqrt{58 - x^2 - 3y^2} \))

In more complicated examples, cannot solve!

When we finish chain rule, we'll get a better way to do implicit differentiation!
Chain rule:
(recall: \(f(x) \) — function of one variable \(x \);

suddenly we make \(x \) a function of \(t \):

\[X = x(t) \]

get \(f(x(t)) \)

\[
\frac{d}{dt} f(x(t)) = f'(x(t)) \cdot x'(t)
\]

Now: \(F(x, y, z) \) — a function of 3 (or any number)
of variables.

Let \(x = x(t) \)
\(y = y(t) \)
\(z = z(t) \)

become functions of a single variable \(t \).

Then \(F(x(t), y(t), z(t)) \) — function of \(t \)

How to find \(\frac{dF}{dt} \)?

(What does it mean?)

imagine that \(F \) is temperature at \((x, y, z)\).

Suppose there's a fly, at the time \(t \)
it is at \((x(t), y(t), z(t))\)

Then \(\frac{dF}{dt} \) = rate of change of the temperature that the fly
is experiencing.
\[
\frac{dF}{dt} = \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial t} \frac{dt}{dt}
\]

Chain rule (in the situation of 1 variable \(t \))

"Proof" and more general cases of chain rule - next class.

Please read CLP-\(\Delta \) !