
Avi Kulkarni Étale Seminar Week 2

1 A brief summary of sheaf cohomology

1.1 How does one make a (sheaf) cohomology

• We like functors applied to exact sequences.

• Functors not always exact, cohomology tries to fix this.

One defines cohomology groups as

• Derived functors in a category with enough injectives.

• Cocycles modulo coboundaries in cochain complexes.

In Sheaf cohomology:

• The functor of interest is Γ, the global section functor.

• There are enough injectives.

• The cochain complex given by the Cech complex computes
the cohomology groups for smooth schemes.

1.2 What can a sheaf cohomology (not) do?

It can:

– compute Euler characteristics

– Study vector bundles of X(C).

But it cannot:

– compute Betti numbers as dimQH
k(X,Q).

– Study fibre bundles

Example 1.1. The (Z/5)-bundle defined by

0 // Z
5

// E // F // 0

2 Étale morphisms

2.1 Étale morphisms of varieties

Moral: maps of schemes satisfying the inverse mapping property.

Example 2.1.

f# : A1
C→ A1

C

λ 7→ λ2

for any λ 6= 0.

Definition 2.2 (Tangent cone). Let X := Spec k[x1, . . . , xn]/I
be an affine variety over an algebraically closed field. The tangent
cone at p ∈ X(k) is defined as

Spec k[x1, . . . , xn]/I∗, I∗ = 〈f∗ : f ∈ I〉

where f∗ denotes the homogeneous part of f (with respect to mp)
of lowest degree.

Example 2.3. Let f(x, y) = xy + x3 + y3 and let

E : Z(f) ⊆ A2
k.

The tangent cone of E at P := (0, 0) is

CP (E) : Z(xy) ⊆ A2
k

Proposition 2.4. Let X be a variety over an algebraically closed
field. Then the tangent cone to p ∈ X(k) is given by

CP (X) = Spec gr(OX,p) := Spec
⊕
n

mn
p/m

n+1
p

with mp the maximal ideal of OX,p.
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Example 2.5. Let f(x, y) = xy + x3 + y3 and let p and E be as
before. Then

mp = 〈x, y〉
m2
p = 〈x2, xy, y2〉

m3
p = 〈x3, x2y, xy2, y3〉 = 〈x3, x2y, xy2, y3, xy〉

m4
p = 〈x4, . . . , y4, xy · x, xy · y〉

We see that
grOE,p = k[x, y]/〈xy〉.

Corollary 2.6. Let f : Y → X be a morphism. Then there is an
induced covariant morphism of tangent cones.

Definition 2.7 (étale). A morphism of k-varieties f : Y → X is
étale if the induced morphism of tangent cones at every point is an
isomorphism.

Example 2.8.
f : k[x]

x 7→t2−→ k[t]

f(mλ2) =

{
mλ if λ 6= 0

m2
λ otherwise

It turns out f is étale everywhere except 0.

2.2 A review of some commutative algebra

Definition 2.9 (unramified). A morphism of local rings f : A →
B is unramified if

(a) f(mA)B = mB and

(b) the field B/mB is a finite and separable extension of A/mA.

A morphism of schemes f : Y → X is unramified if it is of finite
type and if each morphism of local rings f∗ : OX,f(y) → OY,y is
unramified.

Definition 2.10 (flat). A morphism of rings f : A → B is flat if
the functor

M 7→M ⊗A B

is (left) exact.
If this functor is also faithful (injective on morphisms) we say that
f is faithfully flat.
A morphism of schemes f : Y → X is flat if each morphism of lo-
cal rings f∗ : OX,f(y) → OY,y is flat. The morphism f is faithfully
flat if it is surjective.

Remark 2.11. For modules, faithfully flat is equivalent to saying

0 // L //M // N // 0

is exact if and only if

0 // L⊗A B //M ⊗A B // N ⊗A B // 0

is exact.

2.3 Étale morphisms of schemes

Definition 2.12 (étale). A morphism of schemes f : Y → X is
étale if it is flat and unramified.

Example 2.13. Let k be a number field and L/k a finite extension.
Then

f : SpecL→ Spec k

is étale, even if L/k is ramified as a field extension. However,

f : SpecOL → SpecOk

is not necessarily étale, but still fppf.
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Proposition 2.14 (Hartshorne, ex III.10.3). Let f : Y → X be a
morphism of non-singular schemes. Then the following are equiv-
alent:

(a) f is étale.

(b) f is smooth of relative dimension 0.

(c) f is flat and ΩY/X = 0.

Proof. (b) ⇔ (c) is immediate from definitions and the fact that
ΩY/X is locally free of rank 0 on Y if it is zero. For (b/c)⇒ (a),
note that

f∗ΩX
// ΩY

// ΩY/X
// 0

By the hypothesis on ΩY/X , We have mp/m
2
p
∼= mf(p)/m

2
f(p). In

particular, f∗(mf(p)) contains the generators for mp. That f is
finite follows from the hypothesis of (b).
For (a) ⇒ (b/c), we have an isomorphism of tangent spaces at
each point, so looking at

f∗ΩX
// ΩY

// ΩY/X
// 0

we see that the cokernel must be trivial. Furthermore, flatness of f
is automatic so we have verified (c).

Example 2.15 (A non-etale cover of curves). Let

E : y2 = x(x− 1)(x− λ)

and define
π : E → P1

(x, y) 7→ x.

We see that

π∗ΩP1 // ΩE
// ΩE/P1 // 0

OE(−div y) // OE // O(0,0) ⊕ . . .⊕O
⊗(−3)
∞ // 0

Note that the points where π is not étale are recorded by ΩE/P1 .

Corollary 2.16. Let f : Y → X be an étale morphism of varieties.
Then it is also an étale morphism of schemes.

2.4 Properties of an étale morphism

Proposition 2.17. (a) Every open immersion is étale.

(b) The composition of two étale morphisms is étale.

(c) Every base change of an étale morphism is étale.

(d) If ϕ ◦ ψ and ϕ are étale, then so is ψ.

Proposition 2.18. Let ϕ : Y → X be étale. Then

(a) For all y ∈ Y, x = ϕ(y), we have OY,y,OX,x have the same
Krull dimension.

(b) ϕ is quasi-finite.

(c) ϕ is open.

(d) If X is reduced, so is Y .

(e) If X is normal, so is Y .

(f) If X is regular, so is Y .
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Example 2.19 (Standard étale morphism). Let A be a ring, let
f(T ) ∈ A[T ] be a monic polynomial, and let b ∈ A[T ]/f be an
element such that

f ′(T ) ∈ ((A[T ]/f)b)
× .

As f is monic, A[T ]/f is a free, and hence flat, A module. By the
choice of b, the morphism

Spec(A[T ]/f)b → SpecA

is unramified and thus étale. Any morphism of this type is a stan-
dard étale morphism. Locally, every étale morphism is a standard
étale morphism.

2.5 Things for next time

Proposition 2.20 (2.15). Let ϕ : Y → X be an étale morphism of
varieties. If X is connected, then every section to ϕ is an isomor-
phism of X onto a connected component of Y .

Definition 2.21 (étale neighbourhood). An étale neighbourhood
of x ∈ X is an étale morphism i : U → X together with a point
u ∈ U such that i(u) = x. A morphism of étale neighbourhoods
is a morphism of schemes over X respecting the marked point.

Corollary 2.22 (2.16). Let ϕ : (V, v) → (U, u) be a morphism of
étale neighbourhoods of x ∈ X . Then ϕ is unique.
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