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1. Introduction and History

In 1837, Dirichlet proved that for l, k 2 N such that (l, k) = 1, there are infinitely many primes,
p, of the form p = kn+l, i.e., p ⌘ l (mod k). Chebyshev [Ch] took this idea in a new direction when
he compared the primes in two di↵erent arithmetic progressions. In 1853, he noted that there were
“more” primes congruent to 3 (mod 4) than 1 (mod 4). Since Dirichlet proved that were infinitely
many primes of both forms, here we mean that he looked at numbers of form 4n + 1 and 4n + 3
that were less than some quantity x and determined that the 4n + 3 category had more primes for
the x values that he tried.

Let A
k

be the set of residue classes l modulo k, such that (a, l) = 1. Define

⇡(x, k, l) =
X

px

p ⌘ l (mod k)

1.

The prime number theorem for arithmetic progressions states that

⇡(x, k, l) ⇠ x

'(k) log(x)
, (1)

where ' is Euler’s function and l 2 A
k

[Da]. Note that for any l 2 A
k

, we have the same asymptotic
formula for ⇡(x, k, l). Let

�(x, k, l
1

, l
2

) = ⇡(x, k, l
1

)� ⇡(x, k, l
2

),

and we assume that l
1

6⌘ l
2

. The simplest prime number races involve looking at two arithmetic
progressions with the same modulus and considering which residue class, l

1

, l
2

2 A
k

, has more
primes up to x (in other words, has the lead in the race). More complicated race problems have
also been formulated involving multiple arithmetic progressions and arithmetic progressions with
di↵erent moduli.

Even with the simple two arithmetic progression race, there are many interesting problems that
can be considered such as: What is the x value corresponding to the first lead change in the race
(the first sign change of �(x, k, l

1

, l
2

))? Are there infinitely many lead changes as x tends to infinity
(infinitely many sign changes for �(x, k, l

1

, l
2

))? What proportion of the time is one in the lead?
Some of these questions have already been answered. For Chebyshev’s case, �(x, 4, 3, 1) is

negative for the first time at x = 26, 861 (Leech [Le]). �(x, 3, 2, 1) is negative for the first time at
x = 608, 981, 813, 029 (Bays and Hudson [BH]). The phenomenon that a race almost always has one
particular leader or is skewed towards one arithmetic progression is now known as ”Chebyshev’s
Bias”. The origin of the bias is explained thoroughly in [RS], [FK], and [GM].
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Here we focus on the question: Does the sign of �(x, k, l
1

, l
2

) change infinitely many times as
x tends to infinity? In 1914, Littlewood [Li] showed that �(x, 4, 3, 1) and �(x, 3, 2, 1) each change
sign infinitely many times as x tends to infinity, answering the question for the modulo 3 and 4
cases. The goal of this paper will be to describe techniques and tools to answer this question given
any modulus k and any two residue classes, l

1

, l
2

2 A
k

.
There are a few general results in this area that allow us to conclude immediately that the sign

of �(x, k, l
1

, l
2

) changes infinitely often for certain races. Let L(s,�) denote a Dirichlet L-function
with � a Dirichlet character.

Definition 1. (Haselgrove’s condition for modulus k) L(s,�) 6= 0 for 0 < s < 1 for all � mod k.

Haselgrove’s condition has been shown for k  72 [Ru] as well as some larger moduli. It is
not di�cult to verify Haselgrove’s condition for a particular k using Michael Rubinstein’s ”lcalc”
program (which we make use of in section 3). In fact, a slightly weaker statement is required for
the results mentioned in this section and our results later (see section 2). We set N

k

(l) to be the
number of incongruent solutions, u, to the congruence u2 ⌘ l (mod k), and note that this will be
zero for a non-residue and will be positive (depending only on k) for any quadratic residue.

Theorem A. (Kátai [Ka]) Assuming Haselgrove’s condition for k and N
k

(l
1

) = N
k

(l
2

), then
�(x, k, l

1

, l
2

) changes sign infinitely often.

As a result, we need only study races involving a quadratic residue and a non-residue.

Theorem B. (Knapowski and Turán [KT]) If Haselgrove’s condition is true for k, then for any
l 6⌘ 1, �(x, k, 1, l) changes sign infinitely often.

Note that for moduli 3, 4, 8, 12, and 24, the only quadratic residue is 1, and the two theorems
together allow us to conclude that all races for these moduli have infinitely many sign changes.

A recent result of Vorhauer [Vo] shows that there are infinitely many values of x for which �1
will lead any race assuming that k is large enough.

Theorem C. Suppose that (l, k) = 1, that l 6⌘ �1 (mod k), and that k > k
0

where k
0

is a suitable
absolute constant. If Haselgrove’s condition is true for k, then

lim sup
x!1

�(x, k,�1, l)
p

x

log x

> c
1

where c
1

is a suitably small positive constant that does not depend on k.

One point to note is that if �(x, k, l
1

, l
2

) has infinitely many sign changes for all races modulo
k, where k is an odd integer, then the same will hold for the races modulo 2k because the prime
counting functions are identical.

Many cases involving very small moduli have already been settled. As was mentioned earlier,
Littlewood proved that �(x, 3, 2, 1) and �(x, 4, 3, 1) changed sign infinitely often [Li]. Knapowski
and Turán [KT] showed the races modulo 8 had infinitely many sign changes and also by Theorem 2
those modulo 12 and 24. Stark was able to show that �(x, 5, 4, 2) has infinitely many sign changes
[St].

In 1971, Diamond [Di] defined the concept of N-independence for zeros of L-functions that could
be checked to show infinitely many sign changes for a given race. With small values of k and N ,
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the N-independence condition was reasonable to check, and Grosswald [G2] did this to show that
all of the races for moduli 5, 7, 11, 13, 17, and 19 changed sign infinitely often. Earlier Grosswald
[G1] had proven that the races for the moduli 43, 67, and 163 had infinitely many sign changes
using the fact that for each of these prime moduli there existed a zero ⇢ with |⇢| < 1 for L-functions
with real nonprincipal character. These are all of the moduli for which this type of result has been
proven that we are aware of at this time. For a more detailed overview of results in this area, the
reader is referred to [FK], [GM], and [RS].

The main result of this paper will be the following theorem.

Theorem 1. All races for moduli k  100 have infinitely many lead changes.

Another result of this work is that Haselgrove’s condition has been confirmed for 0  k  100.
We would like to thank Kevin Ford for our conversations about prime number races and for

suggestions that helped improve this project. We also thank Harold Diamond for his feedback on
this work.

2. Analytic Tools

Definition 2. Define
 (x;�) =

X

nx

⇤(n)�(n).

 (x, k, l) =
X

nx

n ⌘ l (mod k)

⇤(n)

and the di↵erence D(x, k, l
1

, l
2

) =  (x, k, l
1

)� (x, k, l
2

). Here ⇤(n) is the von Mangoldt function.

We begin with the following sum:

X

nx

n ⌘ l (mod k)

⇤(n)
log n

=
X

px

p ⌘ l (mod k)

⇤(p)
log p

+
1X

⌫=2

X

p

⌫x

p

⌫ ⌘ l (mod k)

⇤(p⌫)
log p⌫

.

= ⇡(x, k, l) +
X

p

2x

p

2 ⌘ l (mod k)

⇤(p2)
log p2

+ O(x1/3)

= ⇡(x, k, l) +
X

1uk

u

2 ⌘ l (mod k)

⇡(x1/2, k, u)
2

+ O(x1/3).

By applying (1) to the equality above we obtain

⇡(x, k, l) =
X

nx

n ⌘ l (mod k)

⇤(n)
log n

� N
k

(l)
'(k)

x1/2

log x
+ o

 
x1/2

log x

!
. (2)
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Let D
k

be the set of all the distinct Dirichlet characters modulo k and C
k

= D
k

� {�
0

} where
�

0

is the principal character. Using partial summation and orthogonality,

'(k)
X

nx

n ⌘ l (mod k)

⇤(n)
log n

= '(k)
✓
 (x, k, l)

log x
+
Z

x

2

 (t, k, l)
t log2 t

dt

◆
(3)

=
X

�2Dk

�(l)
✓
 (x;�)
log x

+
Z

x

2

 (t;�)
t log2 t

dt

◆
.

By (2) and (3),

'(k)�(x, k, l
1

, l
2

) =

=
X

�2Ck

(�(l
1

)� �(l
2

))
✓
 (x;�)
log x

+
Z

x

2

 (t;�)
t log2 t

dt

◆
� (N

k

(l
1

)�N
k

(l
2

))
x1/2

log x
+ o

 
x1/2

log x

!
.

(4)

Results from [RS] indicate that the first term in the last line of (4) should have a logarithmic
mean of zero and oscillations roughly of order

p
x/ log x. In (4), the term, �(N

k

(l
1

)�N
k

(l
2

)) x

1/2

log x

,
will account for a shift in the mean of �(x, k, l

1

, l
2

) away from 0 if N
k

(l
1

) 6= N
k

(l
2

), which occurs
when l

1

or l
2

is a quadratic residue while the other is not. In this case, the non-residue’s counting
function will be ahead most of the time. If N

k

(l
1

) = N
k

(l
2

), one can expect frequent lead changes
with each function having the lead about equally often.

Assuming the Generalized Riemann Hypothesis (GRH) and the Grand Simplicity Hypothesis
(GSH), Rubinstein and Sarnak [RS] proved that the bias disintegrates as the modulus increases to
infinity. Thus, we expect it to be easier to show that there are infinitely many sign changes for a
race with large modulus k.

We note that if GRH is false in certain ways, then it follows from Landau’s Oscillation Theorem
[La] that �(x, k, l

1

, l
2

) has infinitely many sign changes.
We take

g(s) = g(s, k, l
1

, l
2

) = '(k)
Z 1

1

D(x, k, l
1

, l
2

)x�s�1dx

= '(k)
Z 1

1

[ (x, k, l
1

)�  (x, k, l
2

)]x�s�1dx

(5)

By orthogonality of characters,

g(s) =
X

�2Ck

⇣
�(l

1

)� �(l
2

)
⌘Z 1

1

 (x;�)x�s�1dx = �1
s

X

�2Ck

⇣
�(l

1

)� �(l
2

)
⌘ L0(s,�)

L(s,�)
. (6)

Thus, g(s) is analytic for <s > 1, and the right side of (6) gives a meromorphic continuation of
g(s) to the entire complex plane, where the poles (excluding s = 0) of g(s) are a subset of the zeros
of the Dirichlet L-functions, L(s,�). Thus, if we assume that g(s) does not have any real poles for
s > 1

2

but g(s) does have a complex pole, say s
0

, such that Rs
0

> 1

2

, and we take a � satisfying
1

2

< � < <s
0

, then it is easy to prove by contradiction that

lim sup
x!1

D(x, k, l
1

, l
2

)
x�

=1, lim inf
x!1

D(x, k, l
1

, l
2

)
x�

= �1.
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See [FK] for a more detailed explanation.
The following lemma relates the oscillations of D(x, k, l

1

, l
2

) with those of �(x, k, l
1

, l
2

).

Lemma 1. Let
h(x) = '(k)x�1/2D(x, k, l

1

, l
2

)�N
k

(l
1

) + N
k

(l
2

).

If
lim inf
x!1

h(x) < 0 < lim sup
x!1

h(x),

then �(x, k, l
1

, l
2

) has infinitely many sign changes.

Proof. Straightforward using (4) (see [FK]).

Since � > 1

2

, it follows from the lemma that �(x, k, l
1

, l
2

) has infinitely many sign changes if
GRH is false in such a way that g(s) has a pole at s

0

with <s
0

> 1

2

. Note that it is possible for
GRH to be false, and g(s) to have no poles with <s > 1

2

. This is the case when L(s,�) has a zero
with <s > 1

2

, but (�(l
1

)� �(l
2

)) = 0.
Now assume that g(s) has no poles with <s > 1

2

. Define G = {�
1

, �
2

, �
3

, . . .} to be the set of
strictly positive real numbers such that 1

2

+ i�
j

is a pole of g(s) and the corresponding residues

a
j

=
�1

1

2

+ i�
j

X

�

m(
1
2

+ i�
j

,�)[�(l
1

)� �(l
2

)], (7)

where � 2 C
k

and m(1

2

+ i�,�) is the order of the pole. Let ��j

= ��
j

and a�j

= a
j

for j < 0.
Using the functional equation for L(s,�), we note that g(s) will also have a pole at 1

2

� �
j

i with
residue a

j

. We define new functions, A(u) and A⇤
T

(u), where the first is related to the h(x) in
Lemma 1 with x replaced by eu.

Definition 3. Define

A(u) = '(k)e�u/2D(eu, k, l
1

, l
2

) = h(eu) + N
k

(l
1

)�N
k

(l
2

)

and for T > 0,

A⇤
T

(u) =
X

|�j |T

�w(�
j

/T )
1

2

+ i�
j

X

�

m(
1
2

+ i�
j

,�)[�(l
1

)� �(l
2

)]ei�ju,

where w(�j

T

) is a weight function supported on [�T, T ] with w(0) = 1.

We set w(x) = (1 � |x|) cos(⇡x) + ⇡�1 sin(⇡|x|). This weight function comes from a paper by
Jurkat and Peyerimho↵ [JP], and we explain the reason for this choice in section 4.

Ingham [I] used a variant of A⇤
T

(u) with the weight, w(x) = 1� |x|, arising from the Fejer kernel.
More generally, we define what will be called an Admissible Weight Function.

Definition 4. Let w(x) be called an Admissible Weight Function if it has the following properties:

1. w(x) is continuous

2. 0  w(x)  1 with w(0) = 1 and w(x) = 0 for |x| � 1
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Figure 1: 4 vs. 12 mod 29

3. W (x) =
R1
�1w(t)e�2⇡itxdt is real and positive.

Note that together these conditions imply that w(�x) = w(x), and w(x) is a convolution square
(w(x) = f ⇤ f(x) for some function f).

The following lemma is a generalization of Ingham’s Theorem [I].

Lemma 2. Let
F (s) =

Z 1

�1
A(u)e�2⇡sudu =

1
2⇡

Z 1

�1
A(

log x

2⇡
)x�s�1dx,

such that A(u) is absolutely integrable on any finite interval, 0  u  U , and the integral is
convergent in some half plane � > �

1

� 0. Now, define

A⇤(u) =
NX

n=�N

a
n

e2⇡i�nu,

where ��n

= ��
n

, �
n

is real, and a�n

= a
n

with a
n

as defined in (7). Let

F ⇤(s) =
Z 1

0

A⇤(u)e�2⇡sudu =
NX

n=�N

a
n

2⇡(s� i�
n

)

for � > 0. Suppose that D(s) = F (s)�F ⇤(s) is analytic in the region � � 0, �T  t  T for some
0 < T  �

N

. Then for the Admissible Weight Function w(�), we have that

lim A(u)  lim A⇤
T

(u)  lim A⇤
T

(u)  lim A(u),

where
A⇤

T

(u) =
X

|�n|T

w(
�

n

T
)a

n

ei�nu.

Proof. Replace 1� |x| with w(x) in Ingham’s proof.

A⇤
T

(u) is a trigonometric polynomial so it is a uniformly almost periodic function [Be]. Thus, if
there exists a u such that

A⇤
T

(u) > N
k

(l
1

)�N
k

(l
2

),

then
lim sup

u!1
A⇤

T

(u) > N
k

(l
1

)�N
k

(l
2

)

and consequently
lim sup

u!1
A(u) � lim sup

u!1
A⇤

T

(u) > N
k

(l
1

)�N
k

(l
2

).

Therefore, lim sup
u!1 h(eu) > 0 since A(u) = h(eu) + N

k

(l
1

) � N
k

(l
2

). Since A⇤
T

(u) is uniform
almost periodic and ���

Z
y

0

A⇤
T

(u)du
���⌧ 1
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Figure 2: 49 vs. 7 mod 60

for all y, then A⇤
T

(u) must be less than N
k

(l
1

)�N
k

(l
2

) infinitely often. Thus, lim inf
u!1 h(eu) < 0,

and by Lemma 2, �(x, k, l
1

, l
2

) has infinitely many sign changes.
Summarizing the previous discussions, we have the following.

Theorem 2. Assume Haselgrove’s condition for modulus k. If there exist u and T such that
A⇤

T

(u) > N
k

(l
1

)�N
k

(l
2

), then �(x, k, l
1

, l
2

) changes signs infinitely often.

3. The Sage Program and Results

To check that all of the races for a given modulus have values of u and T such that A⇤
T

(u) >
N

k

(l
1

), a program was written in Sage. Sage is a Python-based programming language that was cre-
ated by William Stein (and available on his website: http://modular.math.washington.edu/sage/),
and Sage was chosen because it has Michael Rubinstein’s ”lcalc” program built in. This program
computes the imaginary parts of zeros of L-functions. Sage also has other convenient features like
the ability to compute tables of Dirichlet character values.

The inputs for the program are the modulus, k, an upper bound for the absolute values of the
imaginary parts of the zeros that we’re using, T , a range of u values specified by entering: ustart
and uend, and finally a stepsize to move through the range of u values called step. A⇤

T

(u) will be
evaluated at the u values : ustart, ustart+ step, ustart+2step, . . . , uend. The program then does
the following:

1. Arranges relevant residue classes into groups of quadratic residues and non-residues.
2. Obtains imaginary parts of all zeros for all L(s,�) with � 2 C

k

and arranges them appro-
priately.

3. Obtains character values.
4. Runs through all races l

1

vs. l
2

not covered by the theorems of Kátai and Knapowski and
Turán. For each case, it checks to see if A⇤

T

(u) > N
k

(l
1

) + 0.05 within a range of u-values. Some
versions of the program also record the maximum value of A⇤

T

(u) and save the values of u and
A⇤

T

(u) to a file that can be used to make a plot.
The program has been used to evaluate races for each modulus up to 100 that has not been

previously explored. The results are listed in the table below. Recall that all moduli of the form
2k where k is odd and 3, 4, 5, 7, 8, 11, 12, 13, 17, 19, 24, 43, and 67 will be skipped. Figures 1
and 2 show plots of the A⇤

T

(u) function for the race of 4 vs. 12 modulo 29 and 49 vs 7 modulo
60, respectively. Calculations of A⇤

T

(u) were first done using the zeros of L-functions computed by
”lcalc”. The calculations were then redone using Rumely’s files of zeros for L-functions involving
characters with modulus up to 72 as well as composite moduli up to 100. Rumely’s files did not
include the primes 73, 79, 83, 89, and 97 so these cases have only been checked using the Rubinstein
zeros. The results were the same regardless of which set of zeros were used, and the computation
times using the Rubinstein zeros are listed as well as those for when the Rumely zeros were used.
The version of the program that used the Rumely zeros was written in a way that required slightly
more time to read in and organize these zeros so the computation times are generally slightly longer.
The computation times listed in table tell how long it took to run the calculations on a Sun Ultra
20 machine with a Fedora Core 3 operating system and AMD Opteron 1.0 GHz processor.
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Both sets of zeros were calculated using series representations for the L-functions. The series
is then truncated and twisted so that the critical line is the real axis. Rumely and Rubinstein did
this in di↵erent ways, and the reader is referred to [R] and [Ru] for further explanation. Their
programs then looked for sign changes of the truncated series and applied the intermediate value
theorem to find the location of the zeros. Rumely checked rigorously that no zeros were missed
and no ”false” zeros were computed. Rumely also computed a lower bound for each zero but no
upper bound. Thus, the accuracy is not guarenteed for these zeros or those calculated by ”lcalc”.
However, another Sage program was written to compare the Rubinstein and Rumely zeros used for
all races considered in this paper (except for moduli 73, 79, 83, 89, and 97 where only the Rubinstein
zeros were available). All zeros agreed to at least 10�9. This agreement gives us confidence that
all zeros used are accurate to 10�9.

Appendix A contains a ”fast-running” version of the program that reads in imaginary parts of
zeros from a file. There are also other versions of the program that will look at an individual race,
one that prints the u and A⇤

T

(u) values to a file that can be used to create a plot as mentioned
earlier, one that uses the zeros computed by ”lcalc”, and one that uses the original weights from
Ingham’s Theorem. The program listed in Appendix A can be used to quickly extend these results
well beyond k = 100 or to check any specific modulus k for infinitely many sign changes in all races,
but we have stopped at 100 here.

One thing to note is that the di�cult cases will be when N
k

(l
1

) is large because more zeros will
generally be required to push A⇤

T

(u) over the barrier. It is also time consuming when the modulus
has many di↵erent races to consider, for example when k is a large prime.
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modulus number T u� range step N time using time using
(k) of races Rubinstein zeros Rumely zeros

(in seconds) (in seconds)
9 6 50 0-20 0.1 2 0.92 1.30
15 6 150 0-20 0.01 4 84.14 102.28
16 6 60 0-50 0.1 4 3.89 3.31
20 6 60 0-50 0.1 4 7.02 8.57
21 18 150 0-20 0.1 4 27.27 34.27
23 110 60 0-20 0.1 2 48.44 60.52
25 90 60 0-20 0.1 2 33.77 47.10
27 72 50 0-20 0.1 2 20.69 35.28
28 18 60 0-20 0.1 4 8.58 11.46
29 182 50 0-20 0.1 2 108.48 132.65
31 210 40 0-20 0.1 2 119.48 147.68
32 36 120 0-20 0.1 4 34.03 53.49
33 60 50 0-20 0.1 4 28.07 35.32
35 90 50 0-20 0.1 4 44.09 56.30
36 18 50 0-20 0.1 4 4.34 5.76
37 306 30 0-20 0.1 2 164.42 202.34
39 90 30 0-20 0.1 4 24.47 31.11
40 14 300 7-40 0.05 8 154.47 192.71
41 380 30 0-20 0.1 2 213.93 262.35
44 60 150 0-40 0.1 4 129.83 158.19
45 90 80 0-20 0.1 4 81.10 100.10
47 506 30 0-20 0.1 2 351.72 452.07
48 14 80 0-40 0.1 8 24.5 30.78
49 420 30 0-20 0.1 2 228.59 204.11
51 168 150 0-20 0.1 4 399.39 498.07
52 90 150 0-20 0.1 4 197.1 245.74
53 650 30 0-40 0.1 2 631.55 801.01
55 270 100 0-20 0.1 4 548.79 678.17
56 42 100 0-100 0.1 8 71.85 88.56
57 216 120 0-20 0.1 4 494.83 627.32
59 812 30 0-40 0.1 2 818.58 1023.50

In light of Theorem 2, we expect large oscillations from A⇤
T

(u) for large k. For a fixed value
of N

k

(l
1

), we see from the table that in general the T value required for A⇤
T

(u) > N
k

(l
1

) and the
CPU time per race decrease as k gets larger.
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modulus number T u� range step N time using time using
(k) of races Rubinstein zeros Rumely zeros

(in seconds) (in seconds)
60 14 100 0-100 0.1 8 69.85 84.36
61 870 20 0-100 0.1 2 622.15 771.04
63 216 60 0-50 0.1 2 161.53 215.36
64 168 140 0-20 0.1 4 329.3 400.15
65 396 40 0-100 0.1 4 246.61 322.86
68 168 120 0-20 0.1 4 322.39 402.54
69 330 30 0-100 0.1 4 175.11 216.93
71 1190 15 0-50 0.1 2 623.70 790.25
72 42 80 0-100 0.1 8 43.07 53.80
73 1260 15 0-50 0.1 2 706.52
75 270 120 0-20 0.1 4 620.53 607.21
76 216 120 0-20 0.1 4 571.59 705.07
77 630 30 0-50 0.1 4 507.64 628.35
79 1482 12 0-100 0.1 2 783.97
80 82 300 0-20 0.1 8 621.71 773.12
81 702 60 0-20 0.1 2 937.67 1149.60
83 1640 10 0-100 0.1 2 765.99
84 42 300 0-100 0.1 8 551.55 674.52
85 720 25 0-100 0.1 4 451.08 550.83
87 546 20 0-100 0.1 4 324.93 398.52
88 140 200 0-20 0.1 8 695.44 849.34
89 1892 10 0-100 0.1 2 942.10
91 918 20 0-100 0.1 4 669.51 807.09
92 330 50 0-20 0.1 4 275.61 338.52
93 630 20 0-100 0.2 4 204.05 246.87
95 918 20 0-100 0.3 4 213.37 266.44
96 84 150 0-20 0.1 8 198.56 244.55
97 2256 10 0-100 0.5 2 315.31
99 630 20 0-20 0.1 4 448.04 474.00
100 270 40 0-20 0.1 4 155.86 189.56

In cases which we examined, m(1

2

+ i�,�) = 1 in A⇤
T

(u). Thus,

A⇤
T

(u) =
X

|�|T

�w( �

T

)
1

2

+ i�

X

�

[�(l
1

)� �(l
2

)]ei�u =
X

�

[�(l
1

)� �(l
2

)]
X

|��|T

�w(��

T

)
1

2

+ i�
�

ei��u

Let A0
T

(u) be similar to A⇤
T

(u), with the actual � values replaced by the calculated values, �0, from
the lcalc function or Rumely’s file. We bound the di↵erence as

|A⇤
T

(u)�A0
T

(u)| =
���
X

�

[�(l
1

)� �(l
2

)]
h X

|��|T

�w(��

T

)
1

2

+ i�
�

ei��u �
X

|�0
�|T

�w(�

0
�

T

)
1

2

+ i�0
�

ei�

0
�u

i���
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 2
���
X

�

h X

|��|T

�w(��

T

)
1

2

+ i�
�

ei��u �
X

|�0
�|T

�w(�

0
�

T

)
1

2

+ i�0
�

ei�

0
�u

i���.

Suppose that all |�0
�

� �
�

|  10�9. The zeros of L(s,�) with � a real character come in conjugate
pairs, and we pair the corresponding terms together. For complex characters, if � is the imaginary
part of a zero for L(s,�), then �� is the imaginary part of a zero for L(s,�). We pair these
corresponding terms together as well and have

|A⇤
T

(u)�A0
T

(u)|  2
���
X

�

X

0��T

h�w(��

T

)
1

4

+ �
�

2

(cos(�
�

u)+2�
�

sin(�
�

u))+
w(�

0
�

T

)
1

4

+ �0
�

2

(cos[�0
�

u]+2�0
�

sin[�0
�

u])
i���

 2�(k) max
�2Ck

X

0�T

���
h�w( �

T

)
1

4

+ �2

(cos(�u) + 2� sin(�u)) +
w(�

0

T

)
1

4

+ �02
(cos[�0u] + 2�0 sin[�0u])

i���

 2�(k) max
�2Ck

X

0�<10

���
h�w( �

T

)
1

4

+ �2

(cos(�u) + 2� sin(�u)) +
w(�

0

T

)
1

4

+ �02
(cos[�0u] + 2�0 sin[�0u])

i���

+2�(k) max
�2Ck

X

10�T

���
h�w( �

T

)
1

4

+ �2

(cos(�u) + 2� sin(�u)) +
w(�

0

T

)
1

4

+ �02
(cos[�0u] + 2�0 sin[�0u])

i���.

Let f(t, u) = �w(

t
T )

1
4+t

2 (cos(tu) + 2t sin(tu)). By the Mean Value Theorem,

|f(�, u)� f(�0, u)|  |� � �0|max
t

����
@

@t
f(t, u)

����.

All of the computations of A⇤
T

(u) performed for the results presented here used zeros with
imaginary part, |�|  300, and the range of u was always a subinterval of [0, 100]. Let f(t, u) =
w( t

T

)g(t)h(t, u) where |w( t

T

)|  1 and |w0( t

T

)|  6

T

, g(t) = 1

1
4+t

2 with |g(t)|  min(4, 1

t

2 ) and

|g0(t)|  min(5.2, 2

|t|3 ), and h(t, u) = (cos[tu] + 2t sin[tu]) with |h(t, u)|  1 + 2t and
��� @

@t

h(t, u)
��� 

|2� u| + 2tu  98 + 200t. For 0  u  100,

@

@t
f(t, u)  6

T
min(4,

1
t2

)(1 + 2t) + min(5.2,
2
|t|3 )(1 + 2t) + min(4,

1
t2

)(98 + 200t).

We compute

max
0t<10

@

@t
f(t, u) < 951.39,

max
10t300

@

@t
f(t, u) < 21.148.

The number of terms in each sum corresponds to the number of zeros of L(s,�) in the critical strip
with imaginary part no larger than T , denoted N(T,�). For T � 2, 1

2

N(T,�)  T

2⇡

log( kT

2⇡e

) +
0.4593 log(kT ) + 2.756 (restricting to zeros with positive imaginary part) [Mc]. Thus,

|A⇤
T

(u)�A0
T

(u)|  2�(k)
✓

10
2⇡

log(
10k

2⇡e
) + 0.4593 log(10k) + 2.756

◆
⇥ 10�9 ⇥ 951.39
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+2�(k)
✓

T

2⇡
log(

kT

2⇡e
) + 0.4593 log(kT ) + 2.756

◆
⇥ 10�9 ⇥ 21.148.

Considering the values that were used in the table above, 2�(k)( 10

2⇡

log( 10k

2⇡e

)+0.4593 log(10k)+2.756)
is largest when k = 97, and 2�(k)( T

2⇡

log( kT

2⇡e

) + 0.4593 log(kT ) + 2.756) is largest when k = 80 and
T = 300. Thus,

|A⇤
T

(u)�A0
T

(u)|  1240.27⇥ 10�9 ⇥ 951.39 + 21.148⇥ 10�9 ⇥ 22155.44 = 0.00165

Recall that the program actually checked to see if A⇤
T

(u) > N
k

(l
1

) + 0.05. The extra 0.05 was
to be safe, and with most races we found u and T so that A⇤

T

(u) beats this barrier by a substantial
amount. In light of the error analysis given above, we conclude that A⇤

T

(u) does truly beat N
k

(l
1

)
in all cases.

Figure 3: A comparison of the Ingham and Jurkat-Peyerimho↵ weight functions

4. Comparison of Weight Functions

We turn back to the question of why we chose the Jurkat-Peyerimho↵ weight function over the
Ingham weight function. Recall that

A⇤
T

(u) =
X

|�j |T

�w(�j

T

)
1

2

+ i�

X

�

m(
1
2

+ i�,�)[�(l
1

)� �(l
2

)]ei�ju,

where w(�j

T

) stands for our weight function. A⇤
T

(u) is mainly determined by terms that have small
�

j

. Running the program for a particular race, there is generally little di↵erence in the value of
A⇤

T

(u) if 1000 is used instead of 200 for T . Thus, the ideal weight function will be one that is very
close to 1 for zeros with the smallest imaginary parts in absolute value. We see in Figure 3 that
the Jurkat-Peyerimho↵ weight function is much closer to 1 for small values of

�� �
T

��. We do, however,
sacrifice some of the contribution of the terms with large zeros.

Jurkat and Peyerimho↵ were looking for a weight function that satisfied the following require-
ments: w(t) =

R1
�1 f(x)f(t � x)dx, w(0) = 1, w(0) = 0, and |w00(0)| is minimal, where f is even,

f(t) = 0 for |t| � 1

2

, and f 0 2 L
2

[�1

2

, 1

2

]. These conditions will result in a weight function that
concentrates the most weight near 0. Their weight function was the solution to this problem, and
a brief proof is included in [JP]. Figures 4 and 5 show a comparison of some races using the two
di↵erent weight functions. Many, but not all, of the peaks are higher for the Jurkat-Peyerimho↵
weight function.
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Appendix A

The program is listed below and should be saved as a .sage file. There is also a second program
that runs in Sage using Pyrex. It should be saved as a .spyx file. Pyrex is a compiler language
that is used to speed up some of the calculations in the loops of the main ”race1” function. If the
these calculations were done in Sage, the program would run about eight times slower on average.
To run it, load both files in sage and then enter race1(k,T,ustart,uend,step) into the console with
the k, T , ustart, uend, and step replaced with the desired values.

"""
Use zeros of Dirichlet L-functions to prove that
pi(x,q,a)-pi(x,q,b) has infinitely many sign changes

by Jason Sneed (2007)

"""
##########

def quad(k):
"""
Return list of quadratic residues and non-residues

INPUT:
k -- positive integer

EXAMPLES:
sage: quad(24)
([1], [5, 7, 11, 13, 17, 19, 23])
sage: quad(11)
([1, 3, 4, 5, 9], [2, 6, 7, 8, 10])

"""
res=[]
for i in range(k):
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if gcd(i,k) == 1:
res.append(i)
qr=quadratic_residues(k)
qr1=[]
for i in qr:

if gcd(i,k)==1:
if i>1:

qr1.append(i)
nqr=[]
for i in res:

count=0
for j in qr:

if i==j:
count=count+1

if count == 0:
nqr.append(i)

return qr1,nqr

##########

def Dir_Lfunc_zeros(k,T):
"""
Obtain list of zeros for Dirichlet L-functions to
modulus k, up to height T. Groups conjugate L-functions together.

INPUT:
k -- positive integer
T -- positive real number

EXAMPLES:
sage: get_zeros(5,10)

([[-4.1329037052100004,
6.18357819545,
8.4572291744200001,
-9.4429311297300007],

[6.64845334473, 9.8314444328900006]],
2)

"""
H=floor(T*log(k*T/(2*pi*e))/pi+.9185*log(k*T)+5.512)

# upper bound for number of zeros to height T, by K. McCurley (1984)

S=’’.join([’-z ’,‘H‘,’ -a -s ’,‘k‘,’ -f ’,‘k‘])
L = lcalc(S)
L = L.split()
oval = [] ## Creates multi-dimensional list of the zeros < T
count = 0 ## called oval to using Rubinstein’l lcalc program
ind=[]
lengL=int(len(L)/3-1)
for i in range(lengL):

flag=0
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t=int(L[3*i+1])
if t > 1:

if len(ind)==0:
ind.append(t)
oval.append([])
oval[count].append(float(L[3*i+2]))
flag=1

if flag == 0:
if t == int(ind[count]):

if abs(float(L[3*i+2])) <= T:
oval[count].append(float(L[3*i+2]))

else:
count=count+1
oval.append([])
oval[count].append(float(L[3*i+2]))
ind.append(t)

F=divisors(k)
ovalRu={} ## ovalRu is a list of zeros created by reading
j=0 ## in files of Rumely zeros names ZERO35.txt (here
counter = 0 ## k=35). The Rumely include only the zeros from
for j in F: ## primitive characters mod k so multiple files

if j > 2: ## be read in usually
if is_odd(j):

counter=len(ovalRu)
zerofilename = ’’.join([’ZERO’,‘j‘, ’.txt’])
zfl=open(zerofilename,"r")
mess=zfl.read()
mess=mess.split()
leng=int(len(mess)/3-1)
for i in range(leng):

t=int(mess[3*i+1])-1+counter
if ovalRu.has_key(t):

if abs(float(mess[3*i+2])) <= T:
ovalRu[t].append(float(mess[3*i+2]))

else:
ovalRu[t]=[float(mess[3*i+2])]

if j/4 - floor(j/4) < .000001:
counter=len(ovalRu)
zerofilename = ’’.join([’ZERO’,‘j‘, ’.txt’])
zfl=open(zerofilename,"r")
mess=zfl.read()
mess=mess.split()
leng=int(len(mess)/3-1)
for i in range(leng):

t=int(mess[3*i+1])-1+counter
if ovalRu.has_key(t):

if abs(float(mess[3*i+2])) <= T:
ovalRu[t].append(float(mess[3*i+2]))

else:
ovalRu[t]=[float(mess[3*i+2])]
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oval1=[] ## oval1 will be a list that contains the
lengo=len(oval) ## the zeros in ovalRu but organized in the
lengR=len(ovalRu) ## same way as the Rubinstein zeros in oval.
for i in range(lengo): ## A matching scheme between oval and

flag = 0 ## ovalRu is used to properly rearrange
flag1 = 0 ## zeros into oval1.
count = 0
count1 = 0
oval1.append([])
for j in oval[i]:

if flag == 0:
if j > 0:

for r in range(lengR):
for w in ovalRu[r]:

if abs(j-w)<.00001:
for y in ovalRu[r]:

oval1[i].append(y)
flag = 1
count = count + 1

if count > 1:
print "Too many matches"
print i, j

if count == 0:
print "No Match"
print i, j

if flag1 == 0:
if j < 0:

for r in range(lengR):
for w in ovalRu[r]:

if abs(j+w)<.00001:
for y in ovalRu[r]:

oval1[i].append(-y)
flag1 = 1
count1 = count1 + 1

if count1 > 1:
print "Too many matches"
print i

if count1 == 0:
print "No Match"
print i,j

return oval1

#############

def char_values_zeros(k,T,zlist):
"""
Obtain list of Dirichlet character values for modulus k,
and list of zeros for each character.
Separate list for real characters and complex characters.
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INPUT:
k -- positive integer
zlist -- list of zeros, output from char_zeros() above

EXAMPLES:
sage:

"""
import math
pi=math.pi
cos=math.cos
sin=math.sin
dir=[]
import re
R=’’.join([’-a -s ’,‘k‘,’ -f ’,‘k‘,’ -C 1’])
L = lcalc(R) ## Uses lcalc to calculate char values
L = L.split(’\n’)
r = re.compile(’[0-9]+ [0-9]+ [0-9]+ [0-9]+ +’)
count=0
temp=2
l = 0
while l < len(L):

if r.match(L[l]) <> None:
t = L[l].split(’ ’)
ch = int(t[1])
if ch > temp:

count = count+1
temp=ch

if ch <> 1:
if count>len(dir)-1:

dir.append([])
for j in range(k):

dir[count].append([0,0])
mod=int(t[3])
dir[count][mod][0]=float(t[4])
dir[count][mod][1]=float(t[5])

l=l+1

rechar=[]
imchar=[]
reval=[]
imval=[]
counti=0 # number of complex characters
countr=0 # number of real characters
recalc=[]
imcalc=[]
for g in range(len(dir)):

count=0
for j in range(k):

if abs(dir[g][j][1]) < .000000001:
count=count+1
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if count==k:
rechar.append([])
recalc.append([])
for j in range(k):

t=dir[g][j][0]
rechar[countr].append(t)

reval.append(zlist[g])
for y in zlist[g]:

q=((1-abs(y)/T)*cos((pi)*y/T)+sin((pi)*abs(y)/T)/pi)*(1/4+y**2)**(-1)
recalc[countr].append(q) ## performing calculations

countr=countr+1 ## to be used in main func later.
else:

imchar.append([])
imcalc.append([])
for j in range(k):

t=dir[g][j]
imchar[counti].append(t)
s=zlist[g]

imval.append(s)
for y in zlist[g]:

q=((1-abs(y)/T)*cos((pi)*y/T)+sin((pi)*abs(y)/T)/pi)*(1/4+y**2)**(-1)
imcalc[counti].append(q) ## performing calculations

counti=counti+1 ## to be read into main func.
return rechar,reval,countr,imchar,imval,counti,recalc,imcalc

####################################################
#
# Check all races modulo k
# quadratic residue (including 1) vs. quadratic non-residue
#
####################################################

def race1(k,T,ustart,uend,step):
"""
Run the prime races modulo k using zeros of L-functions to height T.
Evaluate AT* function at points u between ustart and uend, step is

the increment.

INPUT:
k -- positive integer.
T -- positive real number.
ustart, uend, step - real numbers

"""
import math
pi=math.pi
cos=math.cos
sin=math.sin
oval1=Dir_Lfunc_zeros(k,T) ## reading in zeros and char values
rechar,reval,countr,imchar,imval,counti,recalc,imcalc=char_values_zeros(k,T,oval1)
qr1,nqr=quad(k)
count=0
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w=len(qr1)+1
v=len(nqr)
N=(w+v)/w
print "modulus=",k," T=",T," N=",N
y=(w-1)*v
print "y=",y
for p in qr1:

l1=p
for q in nqr:

l2=q
print "Racing ",l1," vs. ",l2
s=[]
good=0
bestsum=-1000.0;
for x in range(floor((uend-ustart)/step)+1):

u=ustart+x*step
sum=0 ## sum = A*T(u) function.
sum=imsum(countr,rechar,reval,recalc,counti,imchar,l1,l2,imval,u,imcalc,sum)
s.append([u,sum])
if (sum>bestsum):

bestsum=sum ## prints new high sum until success
print "u=",u," sum=",sum

if (sum > N + .05) and (good==0):
print "Success" ## Alerts of successful race
print "***************"
count=count+1
good=1
break

if good==0:
print "Test failed. Try changing T, ustart, uend and/or steps."
break

if count == y:
print "All races for this modulus have infinitely many sign changes!"

###########

The Pyrex Code

def imsum(countr,rechar,reval,recalc,counti,imchar,l1,l2,imval,u,imcalc,sum):
import math
sin = math.sin
cos = math.cos
for n in range(counti):

a = imchar[n][l1][0]-imchar[n][l2][0]
b = imchar[n][l1][1]-imchar[n][l2][1]
for i in range(len(imval[n])):

sum = sum-imcalc[n][i]*((a-2*b*imval[n][i])*cos(imval[n][i]*u)+
\(2*a*imval[n][i]+b)*sin(imval[n][i]*u))

for n in range(countr):
a = rechar[n][l1]-rechar[n][l2]
for i in range(len(reval[n])):
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sum = sum-recalc[n][i]*(a*cos(reval[n][i]*u)+(2*reval[n][i]*a)*
\sin(reval[n][i]*u))

return sum
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