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LARGE BIAS FOR INTEGERS WITH PRIME FACTORS IN
ARITHMETIC PROGRESSIONS

XIANCHANG MENG

Abstract. We prove asymptotic formulas for the number of integers at most x
that can be written as the product of k (> 2) distinct primes p1 · · · pk with each prime
factor in an arithmetic progression p j ≡ a j mod q, (a j , q) = 1 (q > 3, 1 6 j 6 k).
For any A > 0, our result is uniform for 2 6 k 6 A log log x . Moreover, we show
that there are large biases toward certain arithmetic progressions (a1 mod q, . . . ,
ak mod q), and such biases have connections with Mertens’ theorem and the least
prime in arithmetic progressions.

§1. Introduction and statement of results. For any k > 2, q > 3, and integers
(a j , q) = 1 (1 6 j 6 k), we consider the number of integers 6 x which can
be written as product of k distinct primes p1 p2 · · · pk with p j ≡ a j mod q (1 6
j 6 k). Here when we count the number of such integers, we allow any ordering
of the prime factors.

Ford and Sneed [5] investigated subtle biases in the distribution of the product
of two primes in different arithmetic progressions subject to the generalized
Riemann hypothesis (GRH) and the linear independence (LI) conjecture on the
imaginary parts of the zeros of Dirichlet L-functions. Recently, the author [12]
generalized their results to study the bias of numbers composed of k (> 2) prime
factors (either counted with or without multiplicity) in two different arithmetic
progressions. For each fixed k and q , different arithmetic progressions contain
virtually the same number of such integers below x , indeed, under the GRH, the
number equals (1/φ(q))(x/log x)((log log x)k−1/(k − 1)!)+ O(x1/2+o(1)).

It is reasonable to expect that these integers break up very evenly, with errors
of size O(x1/2+o(1)), when one specifies further which arithmetic progression
modulo q each prime factor lies in. However, this is not the case. Dummit,
Granville and Kisilevsky [3] showed that there is a very large bias for the odd
integers p1 p2 6 x with two prime factors satisfying p1 ≡ p2 ≡ 3 (mod 4).
More precisely, they showed that

#{p1 p2 6 x : p1 ≡ p2 ≡ 3 mod 4}
(1/4)#{p1 p2 6 x} = 1+ c + o(1)

log log x
,

for some positive constant c. The authors exhibit a similar bias for products of 2
primes, where χq(p1) = χq(p2) = η, χq is a quadratic Dirichlet character with
fixed conductor q , and η ∈ {−1, 1}. If q is allowed to grow with x , they further
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238 X. MENG

conjecture that the bias may be a bit larger. Recently, Hough [7] confirmed their
conjecture and showed that, for η ∈ {−1, 1}, there exist many q 6 x for which

#{p1 p2 6 x : χq(p1) = χq(p2) = η}
(1/4)#{p1 p2 6 x : (p1 p2, q) = 1}

is at least as large as

1+ log log log x + O(1)
log log x

.

On the other hand, Moree [15] considered all the integers with every prime factor
from the same arithmetic progression a mod q , and proved that there is a large
bias towards certain residue classes a mod q.

In this paper, we generalize the large bias results found in [3] to products of
any k > 2 primes and any fixed modulus q > 3, and prove uniform estimates
in a large range of k. For any fixed A > 0 and fixed q > 3, we prove an
asymptotic formula uniformly for 2 6 k 6 A log log x for the number of integers
p1 · · · pk 6 x with p j ≡ a j mod q (1 6 j 6 k). We show that, there are large
biases for some arithmetic progressions (a1 mod q, . . . , ak mod q), and such
a phenomenon has connections with Mertens’ theorem and the least prime in
arithmetic progressions.

Let a := (a1, a2, . . . , ak) ∈ (Z/qZ)k with (a j , q) = 1 for all 1 6 j 6 k. One
may regard the vector a as an unordered k-tuple, or as a multiset. Denote

Mk(x; a) := # {n 6 x : n = p1 p2 · · · pk, p j distinct primes,
p j ≡ a j mod q, (a j , q) = 1, 1 6 j 6 k},

where the prime factors p j can be in any order, and

Sk(x) := # {n 6 x : n = p1 p2 · · · pk, (p1 p2 · · · pk, q) = 1,
p j distinct primes, 1 6 j 6 k} .

Let χ be a Dirichlet character modulo q , and χ0 be the principal character
modulo q . Denote

C(q, a) := lim
x→∞

(
φ(q)

∑
p6x

p≡a mod q

1
p
−

∑
p6x

(p,q)=1

1
p

)
=
∑
χ 6=χ0

χ̄(a)
∑

p

χ(p)
p
.

We will see in our theorems that this constant C(q, a) reflects the bias in our
problem.

Our first result is for the special case when a1 = a2 = · · · = ak = a. In other
words, all the k prime factors are from the same residue class a mod q .

THEOREM 1. Let q > 3 be fixed, and a = (a, a, . . . , a), (a, q) = 1. We have
the following results.
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INTEGERS WITH PRIME FACTORS IN ARITHMETIC PROGRESSIONS 239

(i) For fixed k > 2,

Mk(x; a)
(1/φk(q))Sk(x)

= 1+ (k − 1)C(q, a)
log log x

+ Oq,k

(
1

(log log x)2

)
.

(ii) If k = o(log log x), as x →∞,

Mk(x; a)
(1/φk(q))Sk(x)

= 1+ (k − 1)(C(q, a)+ o(1))
log log x

.

(iii) For fixed A > 0 and k ∼ A log log x, we have, as x →∞,

Mk(x; a)
(1/φk(q))Sk(x)

∼
∏

p

1+ (Aφ(q)1p≡a mod q(p)/p)
1+ (Aχ0(p)/p)

.

Remark 1. If k is fixed, by Lemmas 9 and 10, Mk(x; a) and (1/φk(q))Sk(x)
have main terms of the same order which is (1/φk(q))(x/log x)((log log x)k−1/

(k − 1)!) with different secondary terms and hence the bias is determined by the
constant C(q, a). Thus, we see that, as k increases, the bias will become larger
and larger.

For k ∼ A log log x , the main terms of Mk(x; a) and (1/φk(q))Sk(x) have
the same order of magnitude but with different coefficients. One may compare
this with the result of Moree [15] who showed that the counting function
N (x; q, a) := #{n 6 x : p|n ⇒ p ≡ a mod q} satisfies N (x; q, a) ∼
Bq,a x/(log x)1−1/φ(q) for some positive constant Bq,a depending on q and a,
and in particular, N (x; 4, 3) > N (x; 4, 1) holds for all x .

For the general case, assume there are l distinct values b1, . . . , bl in the
coordinates of a. Fix l, for each 1 6 j 6 l, let k j be the number of prime factors
congruent to b j mod q . Then

∑l
j=1 k j = k.

THEOREM 2. Let q > 3 be fixed. Then, for fixed k > 2,

Mk(x; a)
(1/φk(q))(k!/k1!k2! · · · kl !)Sk(x)

= 1+ k − 1
log log x

1
k

k∑
j=1

C(q, a j )

+ Oq,k,l

(
1

(log log x)2

)
.

Moreover, for fixed l and fixed A > 0, assume k = ∑l
j=1 k j ∼ A log log x and

e j := limx→∞ (k j/log log x) exists for every 1 6 j 6 l. Then as x →∞,

Mk(x; a)
(1/φk(q))(k!/k1!k2! · · · kl !)Sk(x)

∼
∏

p

∏l
j=1(1+ φ(q)e j 1p≡b j mod q(p)/p)

1+ Aχ0(p)/p
, (1.1)

where
∑l

j=1 e j = A.
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240 X. MENG

Remark 2. In the general case a = (a1, . . . , ak), there are k!/k1!k2! · · · kl !
orderings of the numbers a1, . . . , ak .

Remark 3. For k ∼ A log log x , if the coordinates of a cover all the reduced
residue classes modulo q and all values of e j are the same, then the right-hand
side of (1.1) is exactly 1.

1.1. Mertens’ theorem and the least prime in arithmetic progressions. The
constant C(q, a), which affects the biases in our theorems, is related to the
classical Mertens’ theorem [6, §22.8] and the Mertens’ theorem [13] for
arithmetic progressions, that∑

p6x

1
p
= log log x + γ + B + O

(
1

log x

)
, (1.2)

and if (a, q) = 1,∑
p6x

p≡a mod q

1
p
= log log x

φ(q)
+ M(q, a)+ O

(
1

log x

)
, (1.3)

where γ is Euler’s constant, B :=∑p(log(1−1/p)+1/p) is Mertens’ constant,
and M(q, a) is a number depending on q and a. Languasco and Zaccagnini [10]
investigated the value of M(q, a) and other related constants. By (1.2), (1.3), and
the orthogonality of Dirichlet characters, letting x →∞, we obtain

C(q, a) = φ(q)M(q, a)− γ − B +
∑
p|q

1
p
, (1.4)

∑
a mod q
(a,q)=1

M(q, a) = γ + B −
∑
p|q

1
p
. (1.5)

Hence, the value of M(q, a) determines how the bias behaves.
In particular, with the values of M(q, a) calculated by Languasco and

Zaccagnini [11], by (1.4), we have

C(3, 2) ≈ 0.641945, C(3, 1) ≈ −0.641945;
C(4, 3) ≈ 0.334981, C(4, 1) ≈ −0.334981;

C(7, 2) ≈ 1.83747, C(7, 5) ≈ 0.159006, C(7, 6) ≈ −0.946269;
C(13, 3) ≈ 2.68478, C(13, 6) ≈ −0.846522, C(13, 8) ≈ −1.31962.

Here the interesting phenomenon is that 2 is a quadratic residue modulo 7, while
5 and 6 are quadratic non-residues modulo 7; 3 is a quadratic residue modulo
13, while 6 and 8 are quadratic non-residues modulo 13. There is no consistent
preference for either quadratic non-residue classes or quadratic residue classes
modulo q .
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INTEGERS WITH PRIME FACTORS IN ARITHMETIC PROGRESSIONS 241

The above phenomenon is different from the biases among products of k
primes studied in [5] and [12]. Using a method similar to that in [12], one can
show that, under the GRH and LI, the integers n = p1 · · · pk , which are products
of exactly k distinct primes, have preference for either quadratic non-residues or
quadratic residues, depending on the parity of k.

The biases in Theorems 1 and 2 ultimately stem from the fact that M(q, a)
is heavily dependent on the least prime p(q, a) in the arithmetic progression
a mod q . Pomerance [19] and Norton [18] independently showed that∑

p6x
p≡a mod q

1
p
− log log x

φ(q)
= 1

p(q, a)
+ O

(
log 2q
φ(q)

)
, (1.6)

where the implied constant is uniform for all q , a, and x > q .
In Theorem 2, we allow any ordering of the primes p j (1 6 j 6 k), and hence

the constant (1/k)
∑k

j=1 C(q, a j ) represents the bias. One may ask, for which
a = (a1, . . . , ak), this constant is zero? Trivially, by (1.4) and (1.5), if a covers
every element of the reduced residue class modulo q the same number of times,
(1/k)

∑k
j=1 C(q, a j ) = 0. However, we do not know if the converse is true.

Alternatively, by (1.4) and (1.5), we may consider the distribution of the values of
M(q, a j ) (1 6 j 6 k). By (1.6), it is reasonable to conjecture that all M(q, a j )

are distinct and that, except in the trivial case, they are linearly independent over
Q. Hence, we propose the following open problem.

Open problem. Is the trivial case the only case for which (1/k)
∑k

j=1
C(q, a j ) = 0?

The answer is yes if the numbers
∑

p (χ(p)/p) are linearly independent over
algebraic numbers or the numbers χ̄(a)

∑
p (χ(p)/p) are linearly independent

over Q for all χ 6= χ0 mod q . These values are close to log L(1, χ) or
χ̄(a) log L(1, χ). Baker, Birch, and Wirsing [1] showed that if (q, φ(q)) = 1
then the numbers L(1, χ) are linearly independent over Q for all non-principal
characters mod q . Moreover, they proved that the numbers L(1, χ) are linearly
independent over algebraic numbers for non-trivial even characters mod q (see
also [16, Corollary 2] or [17, Corollary 25.6]). For any odd Dirichlet character χ ,
it is known [17, Lemma 25.7] that the number L(1, χ) is an algebraic multiple
of π .

§2. Lemmas and preparations.

LEMMA 1 ([8, Ch. IX, §2, Theorem 2] and [2, p. 96, (12)]). The Dirichlet
L-function L(s, χ) has no zeros in the domain

<(s) = σ > 1− c1

log q(|t | + 2)
,

for some constant c1 > 0, except a possible simple real zero close to 1 when χ is
real, which is called a Siegel zero. If χ is real, there exists an effective constant
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242 X. MENG

c2 > 0 such that L(σ, χ) 6= 0 in the range

σ > 1− c2√
q log2 q

.

We need the following terminologies [20, Part II, Ch. 5.2].

Defintion 2. Let z ∈ C, c0 > 0, 0 < δ 6 1, M > 0. We say that a Dirichlet
series F(s) has the property P(z; c0, δ,M) if the Dirichlet series G(s; z) :=
F(s)ζ(s)−z can be analytically continued to the region σ > 1−c0/(log(|t |+2)),
and in this region, |G(s; z)| 6 M(1+ |t |)1−δ .

Defintion 3. We say F(s) has type T (z, w; c0, δ,M), if F(s) =∑n>1 an/ns

has property P(z; c0, δ,M), and there exists a sequence of non-negative real
numbers {bn}∞n=1 such that |an| 6 bn , and the series

∑
n>1 bn/ns satisfies

P(w; c0, δ,M) for some complex number w,

LEMMA 4 [20, Part II, Theorem 5.2]. Let F(s) :=∑n>1 an/ns be a Dirichlet
series of type T (z, w; c0, δ,M). For x > 3, N > 0, A > 0, |z|6 A, and |w|6 A,
we have ∑

n6x

an = x(log x)z−1
{ ∑

06n6N

un(z)
(log x)n

+ O(M Rn(x))
}
,

where

un(z) := 1
0(z − n)

∑
l+ j=n

1
l! j !G

(l)(1; z)γ j (z),

Gl(s; z) := ∂ l

∂sl G(s, z), γ j (z) := d j

ds j

( {(s − 1)ζ(s)}z
s

)
,

and

RN (x) = e−c1
√

log x +
(

c2 N + 1
log x

)N+1

, (2.1)

for some constants c1 and c2 depending at most on c0, δ, and A.

LEMMA 5. Let az(n) be an arithmetic function depending on a complex
parameter z and az(n) =

∑∞
k=0 ck(n)zk in the disk |z| 6 A. Suppose there exists

a function h(z) holomorphic for |z| 6 A, and a quantity R(x), independent of z,
such that, for x > 3 and |z| 6 A, we have∑

n6x

az(n) = x(log x)z−1{zh(z)+ OA(R(x))}.

If |h′′(z)| 6 B1 for |z| 6 A, then uniformly for x > 3, 1 6 k 6 A log log x, we
have

Ck(x) = x
log x

(log log x)k−1

(k − 1)!
×
{

h
(

k − 1
log x

)
+ OA

(
B1(k − 1)
(log log x)2

+ log log x
k

R(x)
)}
. (2.2)
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INTEGERS WITH PRIME FACTORS IN ARITHMETIC PROGRESSIONS 243

If we suppose |h(4)(z)| 6 B2 for |z| 6 A, then uniformly for x > 3, 3 6 k 6
A log log x, we have

Ck(x) = x
log x

(log log x)k−1

(k − 1)!
×
{

h(0)+ k − 1
log log x

h′(0)+ (k − 1)(k − 2)
(log log x)2

g
(

k − 3
log log x

)
+ OA

(
B2(k − 1)(k − 2)(k − 3)

(log log x)4
+ log log x

k
R(x)

)}
, (2.3)

where

g(z) =
∫ 1

0
h′′(t z)(1− t) dt.

Proof. Formula (2.2) is a special case of [20, Part II, Theorem 6.3].
For all r 6 A, the main term in (2.3) is from

I := x
log x

1
2π i

∮
|z|=r

h(z)
ez log log x

zk dz

= x
log x

1
2π i

∮
|z|=r

(h(0)+ zh′(0)+ z2g(z))
ez log log x

zk dz,

where g(z) = ∫ 1
0 h′′(t z)(1 − t) dt . When k 6 A log log x , choose r j =

((k − j)/log log x) (1 6 j 6 3), we see that

I = x
log x

1
2π i

∮
|z|=r1

h(0)
ez log log x

zk dz + x
log x

1
2π i

∮
|z|=r2

h′(0)
ez log log x

zk−1 dz

+ x
log x

1
2π i

∮
|z|=r3

g(z)
ez log log x

zk−2 dz

= x
log x

(log log x)k−1

(k − 1)!
{

h(0)+ k − 1
log log x

h′(0)
}

+ x
log x

1
2π i

∮
|z|=r3

g(z)
ez log log x

zk−2 dz. (2.4)

Next, we examine the last integral in (2.4). Since we assume |h(4)(z)| 6 B2 for
|z| 6 A, we have

g(z) = g(r3)+ (z − r3)g′(r3)+ (z − r3)
2
∫ 1

0
(1− t)g′′(r3 + t (z − r3)) dt

= g(r3)+ (z − r3)g′(r3)+ O(B2|z − r3|2).
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244 X. MENG

Thus, the last integral in (2.4) equals

x
log x

{
g(r3)

2π i

∮
|z|=r3

ez log log x

zk−2 dz + 1
2π i

∮
|z|=r3

(z − r3)
ez log log x

zk−2 dz

+ O
(

B2

∫ 2π

0
|eiα − 1|2er3 log log x cosαr5−k

3 dα
)}

= x
log x

{
g(r3)

(log log x)k−3

(k − 3)! + (log log x)k−4

(k − 4)!
− r3

(log log x)k−3

(k − 3)! + O
(

B2
(log log x)k−5

(k − 4)!
)}

= x
log x

(log log x)k−3

(k − 3)!
{

g
(

k − 3
log log x

)
+ O

(
B2(k − 3)
(log log x)2

)}
. (2.5)

The error term O(R(x) log log x/k) is the same as that in the proof of (2.2).
Combing (2.4) and (2.5), we obtain the desired result. �

We need some results for holomorphic functions of several variables [4].

Defintion 6. Let Rl
>0 := {y = (y1, . . . , yl) ∈ Rl | y j > 0 for all j}, r =

(r1, . . . , rl) ∈ Rl
>0, a ∈ Cl . Then, 1r(a) := {z ∈ Cl | |z j − r j | < r j , 1 6 j 6 l}

is called the polycylinder around a with (poly-)radius r. The boundary of the
closure of1r(a) contains an n-dimensional torus Tr(a) := {z ∈ Cl | |z j − a j | =
r j , 1 6 j 6 l}.

In order to simplify the expressions in our proof, we introduce multi-indices.
Let v j , 1 6 j 6 l, be non-negative integers, z = (z1, . . . , zl) ∈ Cl . Denote
v := (v1, . . . , vl), |v| = v1 + · · · + vl , v! := v1! · · · vl !, zv := zv1

1 · · · zvl
l , and

Dv f = ∂ |v|

∂zv1
1 · · · ∂zvl

l
.

We have the following result.

LEMMA 7 [4, Ch. 2, Propositions 2.7 and 2.11]. Let U ⊂ Cl be open and
f : U → C holomorphic. Furthermore, let w ∈ U and 1 := 1r(w) be a
polycylinder around w with 1̄ ⊂ U, T = Tr(w). Then f can be expanded as
a power series

f (z) =
∞∑

v=0

av(z− w)v =
∑

v1>0,...,vl>0

av(z1 − w1)
v1 · · · (zl − wl)

vl

in a neighborhood of w, with coefficients

av = Dv f (w)
v! = 1

v!
∂v1+···+vl f
∂zv1

1 · · · ∂zvl
l
(w)

=
(

1
2π i

)l ∫
T

f (ζ )
(ζ1 − w1)v1+1 · · · (ζl − wl)vl+1 dζ .
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§3. Proof of theorems.

3.1. Associated Dirichlet series. Let (a, q) = 1. We define a function λa(n)
in the following way,

λa(n) =
{

1 if n square-free, p|n ⇒ p ≡ a mod q,
0 otherwise.

(3.1)

We consider the Dirichlet series

F(s; a, z) :=
∞∑

n=1

(zλa(n))ω(n)

ns =
∏

p

(
1+ zλa(p)

ps

)
(<(s) > 1), (3.2)

where ω(n) is the number of distinct prime factors of n. Let χ0 be the principal
character modulo q , denote

F(s; z) :=
∞∑

n=1

µ2(n)(zχ0(n))ω(n)

ns =
∏

p

(
1+ zχ0(p)

ps

)
=
∏
p-q

(
1+ z

ps

)
(<(s) > 1),

where µ(n) is the Möbius function.
Then we have the following lemma.

LEMMA 8. For any A > 0, |z| 6 A, and <(s) > 1,

F(s; a, z) = (L(s, χ0))
z/φ(q)

∏
χ 6=χ0

(L(s, χ))χ̄(a)z/φ(q)G1(s; a, z),

and
F(s; z) = (L(s, χ0))

zG2(s; z),
where χ is a Dirichlet character modulo q, and G1(s; a, z) and G2(s; z) are
absolutely convergent for <(s) > 1

2 .

Given a = (a1, a2, . . . , ak), assume there are l distinct values b1, . . . , bl in
the coordinates of a. We assume bi (1 6 i 6 l) appears ki (> 0) times in a with
k1 + k2 + · · · + kl = k. Let k(a) := (k1, k2, . . . , kl), b(a) := (b1, . . . , bl), and
z = (z1, z2, . . . , zl). Denote

F(s; a, z) :=
l∏

j=1

F(s; b j , z j ) =
l∏

j=1

∏
p

(
1+ z jλb j (p)

ps

)
. (3.3)

Let n = (n1, . . . , nl) ∈ Zl (n j > 0, 1 6 j 6 l). We write the Dirichlet series
F(s; a, z) =∑n>0 (a(n; z)/Ps(n)) with P(n) =∏16 j6l n j . Then,

a(n; z) =
∑

k=(k1,...,kl )
k j>0

c(k,n)zk1
1 · · · zkl

l ,
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for some c(k,n) ∈ Z+. Thus, for given a, by Lemma 7,

Mk(x; a) =
∑

P(n)6x

c(k(a),n)

=
(

1
2π i

)l ∮
|zl |=rl

· · ·
∮
|z1|=r1

( ∑
P(n)6x

a(n; z)
)

dz1

zk1+1
1

· · · dzl

zkl+1
l

.

(3.4)

3.2. A uniform result. First, we prove the following result.

THEOREM 3. For any A > 0, fixed q > 3 and fixed l > 1, uniformly for
2 6 k 6 A log log x, we have

Mk(x; a) = x
log x

{
1

φ(q)
Qk

(
log log x
φ(q)

)
+ OA,q,l

(
1

φk(q)
(log log x)k

k1! · · · kl ! log x

)}
,

where Qk(X) is a polynomial of degree at most k − 1 (k = k1 + · · · + kl ).
In particular, the coefficient of the term (x/log x)(log log x)k−1 is (1/φk(q))
(k/k1!k2! · · · kl !), and the coefficient of (x/log x)(log log x)k−2 is

1
φk(q)

k(k − 1)
k1!k2! · · · kl !

(
γ + B + 1

k

k∑
j=1

C(q, a j )−
∑
p|q

1
p

)
,

where γ is Euler’s constant, and B := ∑
p(log(1 − 1/p) + 1/p) is Mertens’

constant.

Proof of Theorem 3. By Lemma 8 and (3.3), we have

F(s; a, z) = (L(s, χ0))
(z1+···+zl )/φ(q)

×
∏
χ 6=χ0

(L(s, χ))(χ̄(b1)z1+···+χ̄(bl )zl )/φ(q)
l∏

j=1

G1(s; b j , z j )

= (ζ(s))(z1+···+zl )/φ(q)H(s; a, z), (3.5)

where

H(s; a, z) =
∏
p|q

(
1− 1

ps

)(z1+···+zl )/φ(q)

×
∏
χ 6=χ0

(L(s, χ))(χ̄(b1)z1+···+χ̄(bl )zl )/φ(q)
l∏

j=1

G1(s; b j , z j )

=
∏

p

(
1− 1

ps

)(z1+···+zl )/φ(q) l∏
j=1

(
1+ z jλb j (p)

ps

)
.
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Let σ = <(s). Kolesnik [9] showed that, for 1
2 6 σ 6 1,

|L(s, χ)| � (|t | + 2)(35/108)(1−σ)q1−σ log3(q(|t | + 2)). (3.6)

Let q be fixed. By Lemma 1 and (3.6), for any A > 0, |z j | 6 A (1 6 j 6 l),
and 0 < δ < 1, we can choose c0 = c0(A, δ) such that, L(s, χ) has no zeros in
the region σ > 1− c0/(log(|t | + 2)), and by [14, Theorem 11.4], in this region,
|H(s; a, z)| �q,A,δ (|t | + 2)1−δ. Thus, by Definitions 2 and 3, F(s; a, z) is in
T ((z1 + · · · + zl)/φ(q), w; c0, δ,M). By (3.5) and following the same method
given in the proof of Lemma 4 ([20, Part II, Theorem 5.2], the only difference in
the proof is the expansion of H(s; a, z)), we deduce that∑

n1···nl6x

a(n; z) = x(log x)(z1+···+zl )/φ(q)−1
{

u0(a; z)+ OA

(
1

log x

)}
, (3.7)

where

u0(a; z) = z1 + · · · + zl

φ(q)
u(a; z),

with

u(a; z) := H(1; a, z)
0((z1 + · · · + zl)/φ(q)+ 1)

. (3.8)

By (3.4), (3.7), and Lemma 7, we have

Mk(x; a) = x
log x

{
1

φ(q)
Qk

(
log log x
φ(q)

)
+ R̃(x)

}
,

where Qk(X) is a polynomial of degree at most k − 1 (k = k1 + · · · + kl ),

Qk(X) :=
{ ∑

m1+ j1=k1−1

∑
m2+ j2=k2

· · ·
∑

ml+ jl=kl

+
∑

m1+ j1=k1

∑
m2+ j2=k2−1

· · ·
∑

ml+ jl=kl

+ · · · +
∑

m1+ j1=k1

· · ·
∑

ml−1+ jl−1=kl−1

∑
ml+ jl=kl−1

}

× 1
m1! j1! · · ·ml ! jl !

∂m1+···+ml

∂zm1
1 · · · ∂zml

l
u(a; (0, . . . , 0))X j1+···+ jl , (3.9)

and

R̃(x)�A
1

(2π)l log x

l∏
j=1

∮
|z j |=r j

(log x)<(z j )/φ(q) |dz j |
|z j |k j+1 . (3.10)

Taking r j = φ(q)k j/log log x , we have∮
|z j |=r j

(log x)<(z j )/φ(q) |dz j |
|z j |k j+1 =

(
log log x
φ(q)k j

)k j ∫ 2π

0
ek j cos θdθ
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6

(
log log x
φ(q)k j

)k j
(

2
∫ π/2

0
ek j cos θdθ + π

)
=
(

log log x
φ(q)k j

)k j
(

2
∫ 1

0
ek j t dt√

1− t2
+ π

)
6

(
log log x
φ(q)k j

)k j
(

2ek j

∫ 1

0
e−k j (1−t) dt√

1− t
+ π

)
6

(
log log x
φ(q)k j

)k j
(

20
(

1
2

)
ek j k−1/2

j + π
)
. (3.11)

Substituting (3.11) into (3.10), we obtain

R̃N (x)�A,l
1

φk(q)
(log log x)k

k1! · · · kl ! log x
.

Theorem 3 follows. �

Remark 4. Similar to the proof of Lemma 5, we write

u(a, z) = u(a, r)+
∑
|v|=1

Dvu(a, r)+
∑
|β|=2

(z− r)β Rβ(z),

where

Rβ(z) = |β|
β!
∫ 1

0
(1− t)Dβu(a, r+ t (z− r)) dt.

Then, by (3.4) and (3.7), using a similar proof to that of Lemma 5, we have

Mk(x; a) = 1
φk(q)

k
k1!k2! · · · kl !

x(log log x)k−1

log x

×
{

g
(

φ(q)
log log x

;k
)
+ OA,q,l

(
k

(log log x)2

)}
, (3.12)

where g(z;k) :=∑l
j=1 (k j/k)u(a; (k1z, . . . , k j−1z, k′j z, k j+1z, . . . , kl z)) with

k′j = k j − 1. Moreover, if |kz| 6 A, then |g(z,k)| = OA,q,l(1).

3.3. Proof of Theorems 1 and 2. For a = (a, . . . , a), (a, q) = 1, this is a
special case of Theorem 3. Denote

H(s; a, z) := F(s; a, z)(ζ(s))−z/φ(q) =
∏

p

(
1− 1

ps

)z/φ(q)(
1+ zλa(p)

ps

)
,

and
h(a; z) := H(1; a, z)

0(z/φ(q)+ 1)
. (3.13)

Hence, for this special case, by (3.7) and Lemma 5, we obtain the following
result.
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LEMMA 9. For a = (a, . . . , a) and any A > 0, uniformly for 2 6 k 6
A log log x, we have

Mk(x; a) = 1
φk(q)

x
log x

(log log x)k−1

(k − 1)!
{

1+ k − 1
log log x

Ca,q

+ (k − 1)(k − 2)φ2(q)
(log log x)2

h̃
(

a; (k − 3)φ(q)
log log x

)
+ OA,q

(
k3

(log log x)4

)}
,

where

Ca,q := φ(q)h′(a, 0) = γ +
∑

p

(
log
(

1− 1
p

)
+ φ(q)λa(p)

p

)
,

γ ≈ 0.57722 is Euler’s constant, and

h̃(a, z) =
∫ 1

0
h′′(a, t z)(1− t) dt.

Remark 5. Note that, for |z| 6 A, the function |h′′(a, z)| = Oq,A(1) and
|h(4)(a, z)| = Oq,A(1).

We also require a formula for Sk(x). By Lemma 8, and Definitions 2 and 3,
F(s; z) is in T (z, w; c0, δ,M). We use the notation

G(s; z) := F(s; z)(ζ(s))−z =
∏

p

(
1− 1

ps

)z(
1+ zχ0(p)

ps

)
,

and
g(z) := G(1; z)

0(z + 1)
. (3.14)

Then, applying Lemmas 4 and 5 successively, we obtain the following lemma.

LEMMA 10. For any A > 0, uniformly for 2 6 k 6 A log log x, we have

Sk(x) = x
log x

(log log x)k

(k − 1)!
{

1+ k − 1
log log x

g′(0)+ (k − 1)(k − 2)
(log log x)2

g̃
(

k − 3
log log x

)
+ OA,q

(
k3

(log log x)4

)}
,

where g′(0) = γ + B −∑p|q (1/p), γ is Euler’s constant, B = ∑p(log(1 −
1/p)+ 1/p) is Mertens’ constant in (1.2), and

g̃(z) =
∫ 1

0
g′′(t z)(1− t) dt.
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Remark 6. Here for |z| 6 A, the function |g′′(z)| = Oq,A(1) and |g(4)(z)| =
Oq,A(1).

Proof of Theorem 1. By Lemmas 9 and 10, we obtain

Mk(x, a)− 1
φk(q)

Sk(x) = 1
φk(q)

x
log x

(log log x)k−2

(k − 2)!
×
{

C(q, a)+ k − 2
log log x

φ2(q )̃h
(

a; (k − 3)φ(q)
log log x

)
− k − 2

log log x
g̃
(

k − 3
log log x

)
+ OA,q

(
k

(log log x)2

)}
.

For the cases of fixed k and k = o(log log x), by Remarks 5 and 6, and Lemma
10, we immediately obtain the conclusions in Theorem 1 using the equality

Mk(x, a)
(1/φk(q))Sk(x)

= 1+ Mk(x, a)− (1/φk(q))Sk(x)
(1/φk(q))Sk(x)

.

For any fixed A > 0, if k ∼ A log log x , by Lemmas 9 and 10, and (3.12), as
x →∞, the above quotient will approach

h(a, Aφ(q))
g(A)

=
∏

p

1+ Aφ(q)1p≡a mod q(p)/p
1+ Aχ0(p)/p

,

where h(a, z) and g(z) are defined in (3.13) and (3.14), respectively. �

Proof of Theorem 2. For fixed k, by Theorem 3 and Lemma 10, we have

Mk(x; a)− 1
φk(q)

k!
k1!k2! · · · kl ! Sk(x)

= 1
φk(q)

k(k − 1)
k1!k2! · · · kl !

x
log x

(log log x)k−2

×
{

1
k

k∑
j=1

C(q, a j )+ Ok,q,l

(
1

log log x

)}
.

Thus,

Mk(x; a)
(1/φk(q))(k!/k1!k2! · · · kl !)Sk(x)

= 1+ Mk(x; a)− (1/φk(q))(k!/k1!k2! · · · kl !)Sk(x)
(1/φk(q))(k!/k1!k2! · · · kl !)Sk(x)

= 1+ k − 1
log log x

1
k

k∑
j=1

C(q, a j )+ Oq,k,l

(
1

(log log x)2

)
.
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For any fixed A > 0, if k ∼ A log log x and e j := limx→∞ (k j/log log x)
exists, by (3.12) and Lemma 10, as x →∞, the above quotient will approach

u(a; (φ(q)e1, . . . , φ(q)el))

g(A)
=
∏

p

∏l
j=1(1+ φ(q)e j 1p≡b j mod q(p)/p)

1+ Aχ0(p)/p
,

where u(a; z) and g(z) are defined in (3.8) and (3.14) respectively. �
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