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Although the sequence of primes is very well distributed in the
reduced residue classes ðmod  qÞ, the distribution of pairs of consec-
utive primes among the permissible ϕ(q)2 pairs of reduced residue
classes ðmod  qÞ is surprisingly erratic. This paper proposes a conjec-
tural explanation for this phenomenon, based on the Hardy−Little-
wood conjectures. The conjectures are then compared with numerical
data, and the observed fit is very good.
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1. Introduction
The prime number theorem in arithmetic progressions shows
that the sequence of primes is equidistributed among the re-
duced residue classes ðmod  qÞ. If the Generalized Riemann
Hypothesis is true, then this holds in the more precise form

πðx; q; aÞ= liðxÞ
ϕðqÞ+O

�
x1=2+e

�
; where  liðxÞd

Z x

2

dt
log t

;

and πðx; q; aÞ denotes the number of primes up to x lying in the
reduced residue class a  ðmod  qÞ. Nevertheless, it was noticed by
Chebyshev that certain residue classes seem to be slightly preferred;
for example, among the first million primes, we find that

πðx0; 3; 1Þ= 499; 829 and πðx0; 3; 2Þ= 500; 170; πðx0Þ= 106:

Chebyshev’s bias is beautifully explained by the work of Rubin-
stein and Sarnak (1) (see ref. 2 for a survey of related work), who
showed (in a certain sense and under some natural conjectures)
that πðx; 3; 2Þ> πðx; 3; 1Þ for 99:9% of all positive x.
What happens if we consider the patterns of residues ðmod  qÞ

among strings of consecutive primes? Let pn denote the sequence
of primes in ascending order. Let r≥ 1 be an integer, and let
a= ða1; a2; . . . ; arÞ denote an r-tuple of reduced residue classes
ðmod  qÞ. Define

πðx; q; aÞd#
�
pn ≤ x : pn+i−1 ≡ ai  ðmod  qÞ  for  each  1≤ i≤ r

�
;

which counts the number of occurrences of the pattern a  ðmod  qÞ
among r consecutive primes the least of which is below x. When
r≥ 2, little is known about the distribution of such patterns among
the primes. When r= 2 and ϕðqÞ= 2 (thus q= 3, 4, or 6), Knapowski
and Turán (3) observed that all of the four possible patterns of
length 2 appear infinitely many times. The main significant result
in this direction is due to Shiu (4), who established that, for any
q≥ 3, a reduced residue class a  ðmod  qÞ, and any r≥ 2, the pattern
ða; a; . . . ; aÞ occurs infinitely often. Recent progress in sieve theory
has led to a new proof of Shiu’s result (see ref. 5), and, moreover,
Maynard (6) has shown that πðx; q; ða; . . . ; aÞÞ � πðxÞ.
Despite the lack of understanding of πðx; q; aÞ, any model

based on the randomness of the primes would suggest strongly
that every permissible pattern of r consecutive primes appears
roughly equally often; that is, if a is an r-tuple of reduced residue
classes ðmod  qÞ, then πðx; q; aÞ∼ πðxÞ=ϕðqÞr. However, a look at the
data might shake that belief! For example, among the first million
primes (for convenience, restricting to those greater than 3), we find

πðx0; 3; ð1; 1ÞÞ= 215; 873;
πðx0; 3; ð1; 2ÞÞ= 283; 957;
πðx0; 3; ð2; 1ÞÞ= 283; 957; and
πðx0; 3; ð2; 2ÞÞ= 216; 213:

These numbers show substantial deviations from the expecta-
tion that all four quantities should be roughly 250;000. Further,
Chebyshev’s bias ðmod  3Þ might have suggested a slight prefer-
ence for the pattern ð2; 2Þ over the other possibilities, and this is
clearly not the case.
The discrepancy observed above persists for larger x, and also exists

for other moduli q. For example, among the first hundred million
primes modulo 10, there is substantial deviation from the prediction
that each of the 16 pairs ða; bÞ should have about 6.25 million
occurrences. Specifically, with πðx0Þ= 108, we find the following.
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Apart from the fact that the entries vary dramatically (much
more than in Chebyshev’s bias), the key feature to be observed in
these data is that the diagonal classes ða; aÞ occur significantly less
often than the nondiagonal classes. Chebyshev’s bias ðmod  10Þ
states that the residue classes 3 and 7  ðmod  10Þ very often contain
slightly more primes than the residue classes 1 and 9  ðmod  10Þ, but
curiously in our data the patterns ð3; 3Þ and ð7; 7Þ appear less fre-
quently than ð1; 1Þ and ð9; 9Þ; this suggests again that a different
phenomenon is at play here.
The purpose of this paper is to develop a heuristic, based on

the Hardy−Littlewood prime k-tuples conjecture, which explains
the biases seen above. We are led to conjecture that although the
primes counted by πðx; q; aÞ do have density 1=ϕðqÞr in the limit,
there are large secondary terms in the asymptotic formula which
create biases toward and against certain patterns. The dominant
factor in this bias is determined by the number of i for which
ai+1 ≡ ai   ðmod  qÞ, but there are also lower-order terms that do
not have an easy description.

Main Conjecture. With notation as above, we have

πðx; q; aÞ= liðxÞ
ϕðqÞr

 
1+ c1ðq; aÞ

log  log  x
log  x

+ c2ðq; aÞ
1

log  x
+O

 
1

ðlog  xÞ7=4

!!
;

where

c1ðq; aÞ=
ϕðqÞ
2

�
r− 1
ϕðqÞ−#f1≤ i< r : ai ≡ ai+1   ðmod  qÞg

�
:

When r= 2 , the constant c2ðq; aÞ is given in [2.23]. If r≥ 3, it is
given by

c2ðq; aÞ=
Xr−1
i=1

c2ðq; ðai; ai+1ÞÞ+
ϕðqÞ
2

Xr−2
j=1

1
j

�
r− 1− j
ϕðqÞ

−#
�
i : ai ≡ ai+j+1   ðmod  qÞ

��
:

In general, the quantity c2ðq; aÞ seems complicated, but there
are some situations where it simplifies. For example, if a= ða; aÞ
for a reduced residue class a  ðmod  qÞ, then, regardless of the
choice of a, we have

c2ðq; ða; aÞÞ=
ϕðqÞlogðq=2πÞ+ log 2π

2
−
ϕðqÞ
2

X
pjq

log p
p− 1

: [1.1]

We can also show that c2ðq; ða; bÞÞ= c2ðq; ð−b;−aÞÞ for any
two reduced residue classes a and b  ðmod  qÞ. Moreover, although
c2ðq; ða; bÞÞ seems involved, the symmetric quantity c2ðq; ða; bÞÞ+
c2ðq; ðb; aÞÞ simplifies nicely: For distinct reduced residue clas-
ses a, b  ðmod  qÞ, we have

c2ðq; ða; bÞÞ+ c2ðq; ðb; aÞÞ= logð2πÞ−ϕðqÞΛðq=ðq; b− aÞÞ
ϕðq=ðq; b− aÞÞ; [1.2]

where Λ denotes the von Mangoldt function. In particular, this
expression depends only on the difference b− a.
Conjecture 1.1. If a and b are distinct reduced residue classes

ðmod  qÞ, then πðx; q; ða; bÞÞ+ πðx; q; ðb; aÞÞ equals

2
liðxÞ
ϕðqÞ2

 
1+

log log  x
2 log  x

+
�
logð2πÞ−ϕðqÞΛðq=ðq; b− aÞÞ

ϕðq=ðq; b− aÞÞ

�

3
1

2 log  x
+O

 
1

ðlog  xÞ7=4

!!
;

whereas πðx; q; ða; aÞÞ equals

liðxÞ
ϕðqÞ2

0
@1−

ϕðqÞ− 1
2

log log  x
log  x

+

0
@ϕðqÞlog q

2π
+ log 2π

−ϕðqÞ
X
pjq

log p
p− 1

1
A 1

2 log  x
+O

 
1

ðlog  xÞ7=4

!1A:

We give a few amusing consequences of the Main Conjecture.
The famous biases πðxÞ< liðxÞ, or πðx; 3; 1Þ< πðx; 3; 2Þ, or πðx; 4; 1Þ<
πðx; 4;−1Þ are known to be false infinitely often. However, we
conjecture that the robust biases in pairs of consecutive primes
ðmod 3Þ or ðmod 4Þ may hold always and from the very start!
Conjecture 1.2. Let q= 3 or 4, and let a be either 1  ðmod  qÞ or

−1  ðmod  qÞ. Then, for all x≥ 5, we have

πðx; q; ða;−aÞÞ> πðx; q; ða; aÞÞ:

Indeed, for large x, we have

πðx; q; ða;−aÞÞ− πðx; q; ða; aÞÞ= x

4ðlog  xÞ2
log
�
2π
q
log  x

�

+O

 
x

ðlog  xÞ11=4

!
:

Given a prime q, the product of two consecutive primes pre-
fers to be a quadratic nonresidue rather than a quadratic residue.
Conjecture 1.3. Let q be a fixed odd prime. For large x, we have

X
pn≤x

�
pn
q

��
pn+1
q

�
=−

x

2ðlog  xÞ2
log
�
2π log  x

q

�
+O

 
x

ðlog  xÞ11=4

!
:

The constants in the Main Conjecture also simplify dramatically if
one only cares about patterns exhibited by pn and pn+k for k≥ 2.
Conjecture 1.4. If k≥ 2 and a and b are distinct reduced residues

ðmod  qÞ, then

#
�
pn ≤ x : pn≡ a  ðmod  qÞ; pn+k ≡ b  ðmod  qÞ

�
=

liðxÞ
ϕðqÞ2

 
1+

1
2ðk− 1Þ

1
log  x

+O

 
1

ðlog  xÞ7=4

!!
;

while

#
�
pn ≤ x :pn ≡ pn+k ≡ a  ðmod qÞ

�
=

liðxÞ
ϕðqÞ2

 
1−

ϕðqÞ− 1
2ðk− 1Þ

1
log  x

+O

 
1

ðlog  xÞ7=4

!!
:

Form a ϕðqÞ×ϕðqÞ transition matrix (with rows and columns
indexed by reduced residue classes) and the ða; bÞ th entry being
the probability that a prime pn ≡ a  ðmod  qÞ is followed by pn+1 ≡
b  ðmod  qÞ. Then Conjecture 1.4 shows that the corresponding
transition matrix going from pn to pn+2 is not the square of the
transition matrix going from pn to pn+1. Thus, the primes ðmod  qÞ
are not Markovian, and this may also be seen directly from the
Main Conjecture by the formula given for c2ðq; aÞ when r≥ 3
(which is used to derive Conjecture 1.4).
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The ideas that lead to the Main Conjecture imply that there
will be symmetries between the number of occurrences of dif-
ferent patterns.
Conjecture 1.5. Given a and q as above, define aopp =

ð−ar;−ar−1; . . . ;−a1Þ. For large x, we have

πðx; q; aÞ= πðx; q; aoppÞ+O
�
x1=2+e

	
:

Example. We find

π
�
1011; 7; ð1; 6; 3Þ

�
= 24; 344; 117

and

π
�
1011; 7; ð4; 1; 6Þ

�
= 24; 349; 025;

while the nearest number of occurrences of another pattern is

π
�
1011; 7; ð6; 2; 1Þ

�
= 24; 570; 765:

If the modulus is a prime power, there are additional symmetries.
Conjecture 1.6. Let q be a prime and let v≥ 2. If a= ða1; . . . ; arÞ

and b= ðb1; . . . ; brÞ are such that a1 ≡ b1   ðmod  qÞ and ai+1 − ai ≡
bi+1 − bi   ðmod  qvÞ for each 1≤ i< r, then

πðx; qv; aÞ= πðx; qv; bÞ+O
�
x1=2+e

	
:

In particular, if a is odd, then, up to an error Oðx1=2+eÞ, πðx; 2v; ða; bÞÞ
depends only on b− a  ðmod  2vÞ.
Example. We find

π
�
1011; 8; ð1; 3Þ

�
= 278; 676; 326;

π
�
1011; 8; ð3; 5Þ

�
= 278; 696; 997;

π
�
1011; 8; ð5; 7Þ

�
= 278; 692; 843; and

π
�
1011; 8; ð7; 1Þ

�
= 278; 681; 776:

In the direction of these conjectures, the earliest work we found is
the paper of Knapowski and Turán (3), who “guess” that the events
pn ≡ a  ðmod  4Þ and pn+1 ≡ b  ðmod  4Þ for the four possibilities of
a and b are “not equally probable.”However, Knapowski and Turán
go on to suggest that πðx; 4; ð1; 1ÞÞ= oðπðxÞÞ, which is now de-
finitively false by Maynard’s work (6). The paper (3) was published
after the death of both authors, and perhaps they had something else
in mind, maybe along the lines of our Conjecture 1.2 above? More
recently, in Ko (7), numerical results observing the biases in the
distribution of consecutive primes for small moduli are given. The
paper by Ash, Beltis, Gross, and Sinnott (8) again observes these
biases in pairs of consecutive primes and initiates an attempt toward
understanding them based on the Hardy−Littlewood conjectures.
The heuristic expression in ref. 8 is a large sum of singular series,
and, as the authors note, it is unclear from that expression whether
πðx; q; ða; bÞÞ tends to πðxÞ=ϕðqÞ2 for large x. They also note sym-
metries akin to Conjectures 1.5 and 1.6 for pairs of consecutive primes.
In the Main Conjecture, we expect that the remainder term

Oððlog  xÞ−7=4Þ is given by a sum involving the zeros of Dirichlet
L-functions ðmod  qÞ. The main terms given in the Main Conjecture
are the same for all repeating patterns ða; a; . . . ; aÞ; nevertheless,
numerically, one observes some deviations in the counts of such
patterns, and we expect the lower-order fluctuations to account for
these deviations. In addition to the contributions from zeros, which
we expect to be oscillating, there also appear to be nonoscillating
lower-order terms of size ðlog  log  x=log  xÞ2, which may play a bigger
role for the computable ranges of x. We hope to understand these
lower-order terms in future work.

An initial guess for why there is a bias against the repeating
patterns might be that, after a prime occurs that is a  ðmod  qÞ, all
other classes have a chance to represent a prime before a occurs
again. However, a straightforward application of the Selberg
sieve shows that the number of primes for which pn+1 − pn < q is
Oðx=log2xÞ, which is of a smaller order of magnitude than the
bias predicted by the Main Conjecture.
Although we do not pursue this here, it should be possible to

prove unconditional analogs of the Main Conjecture in other
settings, for example, to numbers free of small prime factors or for
squarefree integers (in the latter case, the biases will be man-
ifested already at the level of the constant in the main term). More
generally, analogous biases seem to arise for many other sifted
sets, for example, in the sums of two squares. We also mention two
other settings in which large biases are seen: the distribution of
prime geodesics for compact hyperbolic surfaces into various ho-
mology classes (see the discussion at the end of ref. 1) and the
recent work of Dummit, Granville, and Kisilevsky (9) concerning
the distribution of numbers that are products of two primes.

2. The Heuristic for r= 2
In this section, we develop a heuristic explanation of the Main
Conjecture in the case r= 2. The heuristic (like several other
conjectures about the primes; see, for example, refs. 10–14) is
based upon the Hardy−Littlewood prime k-tuples conjecture.
We begin by reviewing quickly the Hardy−Littlewood con-
jectures and some related results, before proceeding to develop
an analog suitable for understanding πðx; q; aÞ.

2.1. The Hardy−Littlewood Conjectures. Let H be a finite subset of
Z, and let 1P denote the characteristic function of the primes. In
a strong form, the Hardy−Littlewood conjecture asserts that

X
n≤x

Y
h∈H

1Pðn+ hÞ=SðHÞ
Z x

2

dy

ðlog  yÞjHj +O
�
x1=2+e

�
;

where the singular series SðHÞ is given by

SðHÞ=
Y
p

�
1−

#ðH mod  pÞ
p

��
1−

1
p

�−jHj
:

In our calculations, it will be important to understand the
behavior of the singular series “on average.” Here, Gallagher
(10) established that, for any k≥ 1 and as h→∞,

X
H⊆½1;h�
jHj=k

SðHÞ∼
�
h
k

�
∼
hk

k!
; [2.1]

so that the singular series is 1 on average. A refined version of
this asymptotic was established by Montgomery and Soundarar-
ajan (13), who introduced the modified singular series

S0ðHÞ=
X
T ⊂H

ð−1ÞjH∖T jSðT Þ; so  that SðHÞ=
X
T ⊂H

S0ðT Þ;

with Sð0=Þ=S0ð0=Þ= 1. The modified singular series S0 arises nat-
urally in the following version of the Hardy−Littlewood conjecture
(thinking of the elements ofH as being small in comparison with x):X

n≤x

Y
h∈H

�
1Pðn+ hÞ− 1

log n

�
=S0ðHÞ

Z x

2

dy

ðlog  yÞjHj +O
�
x1=2+e

�
;

and the term 1=log n that is subtracted above arises naturally as
the probability that the “random number” n+ h is prime. Mont-
gomery and Soundararajan showed that
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X
H⊆½1;h�
jHj=k

S0ðHÞ= μk
k!
ð−h log h+AhÞk=2 +Ok

�
hk=2−1=ð7kÞ+e

	
; [2.2]

where μk is the kth moment of the standard Gaussian (in partic-
ular, μk = 0 if k is odd) and A is a constant independent of k. This
refines Gallagher’s asymptotic [2.1], and shows that S0ðHÞ
exhibits roughly square-root cancellation in each variable.

2.2. Modified Hardy−Littlewood Conjectures. We need a slight
modification of the Hardy−Littlewood conjecture, taking into
account congruence conditions ðmod  qÞ. For any integer q≥ 1
and a finite subsetH of the integers, we define the singular series
at the primes away from q by

SqðHÞd
Y
p∤q

�
1−

#ðH mod  pÞ
p

��
1−

1
p

�−jHj
:

If a  ðmod  qÞ is such that ðh+ a; qÞ= 1 for all h∈H, then we
expect that

X
n< x

n≡ a ðmod  qÞ

Y
h∈H

1Pðn+ hÞ∼SqðHÞ
�

q
ϕðqÞ

�jHj1
q

Z x

2

dy

ðlog  yÞjHj; [2.3]

where the factor ðq=ϕðqÞÞjHj arises because h+ a is conditioned
to be coprime to q for all h∈H, and the factor 1=q arises because
we are restricting n to one residue class ðmod  qÞ. In analogy with
S0, it is also useful to defineSq;0ðHÞd

P
T ⊆Hð−1Þ

jH∖T jSqðT Þ, so
that SqðHÞ=

P
T ⊆HSq;0ðT Þ. Once again, the quantity Sq;0 arises

naturally in the asymptotic [conditioning ðh+ a; qÞ= 1 for all
h∈H]

X
n≤ x

n≡ a  ðmod  qÞ

Y
h∈H

�
1Pðn+ hÞ− q

ϕðqÞlog n

�

∼Sq;0ðHÞ
�

q
ϕðqÞ

�jHj 1
q

Z x

2

dy

ðlog  yÞjHj; [2.4]

where the term q=ðϕðqÞlog nÞ being subtracted arises naturally as
the probability that n+ h is prime, conditioned on the fact that
n+ h is coprime to q.

2.3. First Steps Toward the Conjecture. Let a and b be two reduced
residue classes ðmod  qÞ, and let h be a positive integer with
h≡ b− a  ðmod  qÞ. We now formulate a conjecture for the num-
ber of primes n≤ x with n≡ a  ðmod  qÞ and such that the next
prime after n is n+ h. The gaps between consecutive primes are
conjectured to be distributed like a Poisson process with mean
∼ log  x (and Gallagher showed that this follows from the Hardy−
Littlewood conjectures), and so h should be thought of as a pa-
rameter on the scale of log  x. With this in mind, we are interested inX

n≤ x
n≡ a ðmod qÞ

1PðnÞ1Pðn+ hÞ
Y

0< t< h
ðt+ a;qÞ=1

ð1− 1Pðn+ tÞÞ

=
X
n≤ x

n≡ a  ðmod  qÞ

1PðnÞ1Pðn+ hÞ
Y

0< t< h
ðt+ a;qÞ=1

�
1−

q
ϕðqÞlogðn+ tÞ−

~1Pðn+ tÞ
�
;

[2.5]

where, for a variable n conditioned to be coprime to q, we set
~1PðnÞ= 1PðnÞ− q=ðϕðqÞlog nÞ. Write also 1PðnÞ= q=ðϕðqÞlog nÞ+

~1PðnÞ and similarly for 1Pðn+ hÞ, and then expand out the product
in [2.5]; thus we arrive at [ignoring the small differences between
log n, logðn+ hÞ or logðn+ tÞ]

X
A⊂f0;hg

X
T ⊂½1;h−1�

ðt+a;qÞ= 1∀t∈T

ð−1ÞjT j X
n≤x

n≡ a   ðmod  qÞ

�
q

ϕðqÞlog n

�2−jAj

3
Y

t∈½1;h− 1�
ðt+ a;qÞ= 1

t∈T

�
1−

q
ϕðqÞlog n

� Y
t∈A∪T

~1Pðn+ tÞ: [2.6]

Given reduced residue classes a and b, and a positive h≡
b− a  ðmod  qÞ, we may write

#f0< t< h :ðt+ a; qÞ= 1g=ϕðqÞ
q

h+ eqða; bÞ; [2.7]

where eqða; bÞ is independent of h. We also write, for conve-
nience,

αðyÞ= 1−
q

ϕðqÞlog  y: [2.8]

Appealing now to the conjectured relation [2.4], we are led to
hypothesize that the quantity in [2.5] (and [2.6]) is

∼
X

A⊂f0;hg

X
T ⊂ ½1;h− 1�

ðt+ a;qÞ= 1∀t∈ T

ð−1ÞjT jSq;0ðA∪ T Þ

3

 
1
q

Z x

2

�
q

ϕðqÞlog  y

�2+jT j
αðyÞhϕðqÞ=q+eqða;bÞ−jT jdy

!
: [2.9]

Before proceeding further, a few points are in order. Note that
αðxÞhϕðqÞ=q is about e−h=log  x, and this exponential decay in h is in
keeping with the conjecture that gaps between consecutive
primes are distributed like a Poisson process. Secondly, by
replacing A and T above with h−A and h− T , and noting also
that eqða; bÞ= eqð−b;−aÞ, we may see that the quantity [2.9]
above does not change if we replace ða; bÞ by ð−b;−aÞ; this is an
example of the symmetry between πðx; q; aÞ and πðx; q; aoppÞ
noted in Conjecture 1.5. Similarly, under the hypotheses of
Conjecture 1.6, the conditions satisfied by h and T are exactly the
same for πðx; q; aÞ and πðx; q; bÞ. Lastly, in arriving at [2.9], we
have paid no attention to error terms, and, moreover, have used
a uniform version of the Hardy−Littlewood conjecture both in
terms of the size of the parameters in the set A∪ T (this is rel-
atively minor) and in terms of the size of the set A∪ T . To
mitigate the last point, we note that, in expanding out the in-
clusion−exclusion product in [2.5], we may obtain upper and
lower bounds by stopping after an odd or an even number of
steps (as in Brun’s sieve, for example); in this manner, only
a mildly uniform version of the Hardy−Littlewood conjectures
seems needed. For the present, we ignore these details, but it would
be desirable to place the conjecture [2.9] on a firmer footing.
With conjecture [2.9] in hand, we have a conjecture for

πðx; q; ða; bÞÞ: Namely, we sum the quantity in [2.9] over all
positive integers h≡ b− a  ðmod  qÞ. Thus, we expect that

πðx; q; ða; bÞÞ∼ 1
q

Z x

2
αðyÞeqða;bÞ

�
q

ϕðqÞlog  y

�2

Dða; b; yÞdy; [2.10]

say, where
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Dða; b; yÞ=
X
h> 0

h≡ b−a  ðmod  qÞ

X
A⊂f0;hg

X
T ⊂ ½1;h− 1�

ðt+ a;qÞ= 1∀t∈ T

ð−1ÞjT jSq;0ðA∪ T Þ

3

�
q

ϕðqÞαðyÞlog  y

�jT j
αðyÞhϕðqÞ=q: [2:11]

2.4. Discarding Singular Series Involving Sets with Three or More
Elements. We now conjecture that only terms with A= T = 0=
[which gives rise to the main term of liðxÞ=ϕðqÞ2 for πðx; q; ða; bÞÞ]
and jAj+ jT j= 2 give significant contributions leading to the
Main Conjecture, and that all other terms contribute to
πðx; q; ða; bÞÞ an amount Oðxðlog  log  xÞ2=ðlog  xÞ3Þ. To argue this,
we will use as a guide the work of Montgomery and Soundar-
arajan (13), in particular [2.2] above, which shows that sums over
singular series exhibit square-root cancellation in each variable.
Suppose, for example, that A= 0= and jT j= ℓ≥ 4 in [2.11].

After summing over the variable h, these terms may be thought
of as ðlog  yÞ1−ℓ times an average of Sq;0ðT Þ over ℓ element sets T
whose elements are all of size about log y. The estimate [2.2]
now suggests that this contribution is � ðlog  log  yÞℓ=2ðlog  yÞ1−ℓ=2,
and, because ℓ≥ 4, the final contribution to πðx; q; ða; bÞÞ is
Oðxðlog  log  xÞ2=ðlog  xÞ3Þ. If ℓ= 3, then the same argument—
drawing on [2.2] with k= 3 there, so that the main term there
vanishes and the bound is Oðh3=2−1=21+eÞ—indicates that such
terms contribute to πðx; q; ða; bÞÞ an amount Oðxðlog  xÞ−5=2−1=21+eÞ
that is already smaller than the secondary main terms claimed in
the Main Conjecture. We believe that, when k is odd, the work of
Montgomery and Soundararajan (13) can be refined, and the
actual size of the sum in [2.2] is hðk−1Þ=2ðlog hÞðk+1Þ=2. This ex-
pectation suggests that the terms with A= 0= and jT j= 3 also make
a contribution of Oðxðlog  log  xÞ2=ðlog  xÞ3Þ.
When A= f0g or fhg, then a similar heuristic to the above

shows that terms with jT j≥ 2 make a contribution to πðx; q; ða; bÞÞ
of Oðxðlog  log  xÞ2=ðlog  xÞ3Þ. Finally, if A= f0; hg and jT j= ℓ≥ 1,
then the contribution to [2.11] may be roughly thought of as
ðlog  yÞ−ℓ times an average of singular seriesSq;0ðf0g∪ T +Þwhere
T + (standing for T ∪ fhg) runs over ℓ+ 1 element sets with ele-
ments of size log  y. Because the singular seriesSq;0 is translation-
invariant, one can think of this last sum as being 1=ðlog  yÞ times
the average over ℓ+ 2 element sets with all elements of size log  y.
After making this observation, we can draw on [2.2] (with its
proposed refinement for odd k) as earlier, and this leads to the
prediction that the contribution to πðx; q; ða; bÞÞ of terms with
A= f0; hg and any nonempty T is Oðxðlog  log  xÞ2=ðlog  xÞ3Þ.
Thus, discarding all terms with jAj+ jT j≥ 3, we now replace

the density Dða; b; yÞ in [2.11] with

Dða; b; yÞ=D0ða; b; yÞ+D1ða; b; yÞ+D2ða; b; yÞ; [2.12]

where (keeping in mind that Sq;0 is 1 for the empty set and 0 for
a singleton)

D0ða; b; yÞ=
X
h>0

h≡ b−a  ðmod  qÞ

�
1+Sq;0ðf0; hgÞ

�
αðyÞhϕðqÞ=q; [2.13]

D1ða; b; yÞ=−
q

ϕðqÞαðyÞlog  y
X
h>0

h≡ b−a  ðmod  qÞ

X
t∈ ½1;h− 1�
ðt+ a;qÞ= 1

�
Sq;0ðf0; tgÞ

+Sq;0ðft; hgÞαðyÞhϕðqÞ=q
	
; [2:14]

and

D2ða; b; yÞ=
�

q
ϕðqÞαðyÞlog  y

�2

X
h>0

h≡ b− a  ðmod  qÞ

X
1≤ t1< t2< h

ðt1 + a;qÞ= ðt2 + a;qÞ= 1

Sq;0ðft1; t2gÞαðyÞhϕðqÞ=q:

[2.15]

Inserting this in [2.10], we thus conjecture that, up toOðxðlog  log  xÞ2=
ðlog  xÞ3Þ, there holds

πðx; q; ða; bÞÞ= q

ϕðqÞ2
Z x

2

αðyÞeqða;bÞ

ðlog  yÞ2
ðD0 +D1 +D2Þða; b; yÞdy:

[2.16]

2.5. The Main Proposition. To evaluate the sums over two-term
singular series above, we invoke the following proposition whose
proof we defer to Section 3, Proof of the Proposition.
Proposition 2.1. Let q≥ 2, and let v  ðmod  qÞ be any residue

class. For any positive real number H, define

S0ðq; v;HÞ=
X
h>0

h≡ v  ðmod  qÞ

Sq;0ðf0; hgÞe−h=H :

Then we may write

S0ðq; 0;HÞ=−
ϕðqÞ
2q

logH + Sc0ðq; 0Þ+Zq;0ðHÞ+O
�
H−1+e�;

where

Sc0ðq; 0Þ=
ϕðqÞ
2q

log
q
2π

−
ϕðqÞ
2q

X
pjq

log p
p− 1

+
1
2
;

and, for any v  ðmod  qÞ, the quantity Zq;vðHÞ is described in [3.2]
below, satisfies the bound Zq;vðHÞ=OðH−1=2+eÞ, and which we
conjecture to be OðH−3=4Þ. Further, if ðv; qÞ= d with d< q, then

S0ðq; v;HÞ= Sc0ðq; vÞ+Zq;vðHÞ+O
�
H−1+e�;

where

Sc0ðq; vÞ=−
ϕðqÞ
2q

·
Λðq=dÞ
ϕðq=dÞ−BqðvÞ

+
1

ϕðq=dÞ
X

χ≠χ0   ðmod  q=dÞ
χðv=dÞLð0; χÞLð1; χÞAq; χ ;

with BqðvÞ= 1=2− v=q for 1≤ v≤ q and extended periodically for
all v, and

Aq;χ =
Y
pjq

�
1−

χðpÞ
p

�Y
p∤q

 
1−

ð1− χðpÞÞ2

ðp− 1Þ2

!
:

2.6. Completing the Heuristic. Returning to our heuristic calcula-
tion, we will apply Proposition 2.1 with

H =HðyÞd−
q

ϕðqÞ ·
1

log αðyÞ= log  y−
q

2ϕðqÞ+O
�

1
log  y

�
: [2.17]

We begin by simplifying a bit the expressions for D0, D1, and D2,
discarding terms of size Oðlog  log  y=log  yÞ, which are negligible
for the Main Conjecture. Thus, after summing the geometric
series and using [2.17],
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D0 = S0ðq; b− a;HÞ+
X

h≡b−a  ðmod  qÞ
e−h=H

= S0ðq; b− a;HÞ+H
q
+Bqðb− aÞ+O

�
1
H

�

=
log  y
q

+ S0ðq; b− a;HÞ+Bqðb− aÞ− 1
2ϕðqÞ+O

�
1

log  y

�
:

[2.18]

The definition of D1 involves two singular series, Sq;0ðf0; tgÞ
and Sq;0ðft; hgÞ. Consider the terms arising from the second
case. Replace Sq;0ðft; hgÞ by Sq;0ðf0; rgÞ where r= h− t also lies
in ½1; h− 1� and note that the condition ðt+ a; qÞ= 1 becomes
ðr− b; qÞ= 1. Thus, ignoring terms of size Oðlog  log  y=log  yÞ, the
second case in D1 contributes

−
q

ϕðqÞαðyÞlog  y
X
r>0

ðr− b;  qÞ= 1

Sq;0ðf0; rgÞ
X
h>r

h≡ b− a  ðmod  qÞ

e−h=H

=−
1

ϕðqÞ
X

v  ðmod  qÞ
ðv− b;  qÞ= 1

S0ðq; v;HÞ:

Arguing similarly with the first case, we conclude that

D1 =−
1

ϕðqÞ
X

v  ðmod  qÞ
ðv+ a;  qÞ= 1

S0ðq; v;HÞ− 1
ϕðqÞ

X
v  ðmod  qÞ

ðv− b;  qÞ= 1

S0ðq; v;HÞ

+O
�
log log  y
log  y

�
: [2.19]

Finally, note that

X
h≡b−a  ðmod  qÞ

e−h=H
X

1≤ t1< t2< h
ðt1 + a;  qÞ= 1
ðt2 + a;  qÞ= 1

Sq;0ðft1; t2gÞ

=
X

1≤ t1< t2< h
ðt1 + a;  qÞ= 1
ðt2 + a;  qÞ= 1

Sq;0ðf0; t2 − t1gÞ
X

h≡ b−a  ðmod  qÞ
h> t2

e−h=H

=
H2

q2
X

v1;v2   ðmod  qÞ
ðv1;  qÞ= 1
ðv2;  qÞ= 1

S0ðq; v2 − v1;HÞ+OðH   log HÞ;

so that

D2 =
1

ϕðqÞ2
X

v1;v2   ðmod  qÞ
ðv1;  qÞ= 1
ðv2;  qÞ= 1

S0ðq; v2 − v1;HÞ+O
�
log  log  y
log  y

�
: [2.20]

Using Proposition 2.1 to evaluate [2.18], [2.19], and [2.20] and
then inserting that in [2.10] leads to the Main Conjecture. The term
involving c1ðq; ða; bÞÞ arises from terms involving S0ðq; 0;HÞ, which
has a leading term of size logH whereas all other S0ðq; v;HÞ are only
of constant size. Thus, isolating the −½ϕðqÞ=2q�logH leading contri-
bution to S0ðq; 0;HÞ and tracking its appearance in our expressions
for D0, D1 and D2 gives

−
ϕðqÞ
2q

ðlog HÞδða= bÞ− 2
ϕðqÞ

�
−
ϕðqÞ
2q

log H
�
+

1
ϕðqÞ

�
−
ϕðqÞ
2q

log H
�

=
ϕðqÞ
2q

ðlog  log  yÞ
�

1
ϕðqÞ− δða= bÞ

�
+O

�
log  log  y
log  y

�
:

The term involving c2ðq; ða; bÞÞ is complicated, but follows
straightforwardly from our work above. Having already treated
the −½ϕðqÞ=2q�logH term arising in S0ðq; 0Þ, the contributions
leading to c2ðq; ða; bÞÞ come from the Sc0ðq; vÞ terms in Proposi-
tion 2.1. We thus have

c2ðq; aÞ
q

=−
«qða; bÞ
ϕðqÞ + Sc0ðq; b− aÞ+Bqðb− aÞ− 1

2ϕðqÞ

−
1

ϕðqÞ
X

v  ðmod  qÞ
ðv+ a;  qÞ= 1

Sc0ðq; vÞ−
1

ϕðqÞ
X

v  ðmod  qÞ
ðv− b;  qÞ= 1

Sc0ðq; vÞ

+
1

ϕðqÞ2
X

v1;v2   ðmod  qÞ
ðv1;  qÞ= 1
ðv2;  qÞ= 1

Sc0ðq; v2 − v1Þ: [2:21]

With Cq;χ =Lð0; χÞLð1; χÞAq;χ (which is zero unless χ is an odd
character), we may also derive the following alternative expression:

c2ðq; aÞ
q

=
log 2π
2q

+ Sc0ðq; b− aÞ+Bqðb− aÞ

−
1

ϕðqÞ
X
djq
d> 1

1
ϕðdÞ

X
χ   ðmod  dÞ
χð−1Þ=−1

Cq;χ

0
BB@

X
u  ðmod  dÞ

ðuq=d+a;  qÞ=1

+
X

u  ðmod  dÞ
ðuq=d−b;  qÞ=1

1
CCAχðuÞ:

[2.22]

If χ is induced by the primitive character χp, then, writing
χ = χ0;mχ* for some m coprime to the conductor of χp, we have

Cq;χ =Cq;χp
Y
pjm

ð1− χpðpÞÞ:

Further, it is helpful to write q= q02r with q0 odd. If now χ is
a character to an odd modulus and q is even, then

Cq;χ =
χð2Þ
2

Cq0 ;χ :

Using these facts, it is possible to simplify the formula in [2.22]
further, and obtain

c2ðq; ða; bÞÞ=
log 2π
2

+ qSc0ðq; b− aÞ+ qBqðb− aÞ

−
q0

ϕðq0Þ
X
djq0

μðdÞ
ϕðdÞ

X
χ   ðmod  dÞ

Cq0;χðχðbÞ− χðaÞÞ:

[2.23]

For example, if q is prime and a≠ b, then

c2ðq; ða; bÞÞ=
1
2
log

2π
q
+

q
ϕðqÞ

X
χ≠χ0

Cq;χ

�
χðb− aÞ+ 1

ϕðqÞ ðχðbÞ− χðaÞÞ
�
:

This completes our discussion of the Main Conjecture in
the case r= 2, and the other conjectures follow as simple
consequences.
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3. Proof of the Proposition
The proof follows along standard lines, and the closely related case
of evaluating asymptotically

P
h≤HS0ðf0; hgÞðH − hÞ is mentioned

in ref. 15 and treated in detail in ref. 16. We will therefore be brief.
Let χ be a Dirichlet character modulo mjq; possibly, χ could be
imprimitive, or the principal character. Define, for ReðsÞ> 1,

Fq;χðsÞd
X
h≥1

χðhÞ
hs

Sqðf0; hgÞ

=
Y
pjq

�
1−

χðpÞ
ps

�−1Y
p∤q

 
1−

1

ðp− 1Þ2
+
χðpÞ
ps

�
1−

1
p

�−1�
1−

χðpÞ
ps

�−1
!
;

so that

X
h≥1

χðhÞSqðf0; hgÞe−h=H =
1
2πi

Z
ð2Þ
Fq;χðsÞHsΓðsÞ  ds: [3.1]

We now note that

Fq;χðsÞ=Lðs; χÞ
Y
p∤q

 
1−

1

ðp− 1Þ2
+

χðpÞ
ps−1ðp− 1Þ2

!

=Lðs; χÞLðs+ 1; χÞ
Y
pjq

�
1−

χðpÞ
ps+1

�Y
p∤q

 
1−

ð1− χðpÞ=psÞ2

ðp− 1Þ2

!
;

which furnishes a meromorphic continuation of Fq;χðsÞ to ReðsÞ>
− 1=2 with possible poles at s= 0 or s= 1 in case χ is principal.
We may also express the above as

Fq;χðsÞ=
Lðs; χÞLðs+ 1; χÞ
Lð2s+ 2; χ2Þ

Y
pjq

�
1+

χðpÞ
ps+ 1

�−1

3
Y
p∤q

 
1−

1

ðp− 1Þ2
+

2pχðpÞ
ðp− 1Þ2ðps+1 + χðpÞÞ

!
;

and now the final product above is analytic in ReðsÞ> − 1, but
for which the line ReðsÞ=−1 forms a natural boundary.
If χ is nonprincipal, then, by shifting the line of integration

to ReðsÞ=−1=2+ e, we find that the quantity in [3.1] is
Lð0; χÞLð1; χÞAq;χ +O

�
H−1

2+e
�
, with the main term coming from

the pole of ΓðsÞ at s= 0. Moreover, we may even shift the line of
integration to ReðsÞ=−1+ « at the cost of picking up residues from
the zeros of Lð2s+ 2; χ2Þ. The contribution from these zeros is

Zq;χðHÞd
X

ρ;ReðρÞ>0
Lðρ;χ2Þ= 0

Res
s=ρ=2−1

�
Fq;χðsÞHsΓðsÞ

�
:

If we suppose that GRH holds for Lðs; χ2Þ, that its zeros are
simple, and that jL′ðρ; χ2Þj is not too small so that [in view of
the exponential decay of ΓðsÞ] the sum over residues is absolutely
convergent, then we would expect that Zq;χðHÞ is an oscillating
term of size H−3=4.
If χ is principal, but m> 1, then Fq;χðsÞ has a pole at s= 1 with

residue ϕðmÞ=m, but there is no pole of Fq;χ at s= 0 because Lðs; χ0Þ
= sΛðmÞ+Oðs2Þ for s near 0. Therefore, in this situation, we find

X
h≥1

χ0ðhÞe−h=HSqðf0; hgÞ=
ϕðmÞ
m

H −
ϕðqÞ
2q

ΛðmÞ

+Zq;χ0ðHÞ+O
�
H−1+e�:

Finally, if m= 1 (and χ is naturally principal), the corre-
sponding Fq;χðsÞ has a simple pole at s= 0 in addition to the pole
at s= 1. Thus, there is a double pole of the integrand in [3.1],
and, computing residues, we obtain that

X
h≥1

e−h=HSqðf0; hgÞ=H −
ϕðqÞ
2q

2
4log  2πH +

X
pjq

log  p
p− 1

3
5

+Zq;ζðHÞ+O
�
H−1+e�:

Because

X
h≡v  ðmod  qÞ

e−h=HSqðf0; hgÞ= S0ðq; v;HÞ+H
q
+BqðvÞ+O

�
1
H

�
;

our proposition follows, with

Zq;vðHÞ= 1
ϕðq=dÞ

X
χ   ðmod  q=dÞ

χðv=dÞZq;χðH=dÞ: [3.2]

4. Modifications to the Heuristic When r≥ 3
The ideas leading to the general case of the Main Conjecture are
similar to those for r= 2, and so we just give a brief sketch. For
r≥ 3 and a= ða1; . . . ; arÞ, we start by writing πðx; q; aÞ as

X
n≤ x

n≡ a1ðmod  qÞ

X
h1 ;...;hr− 1>0

hi ≡ ai+ 1− ai   ðmod  qÞ

1PðnÞ
Yr−1
i=1

½1Pðn+ h1 + . . . + hiÞ

×
Y

0< t< hi
ðt+ ai ;  qÞ= 1

ð1− 1Pðn+ h1 + . . . + hi−1 + tÞÞ�:

As before, we expand this out, invoke the Hardy−Littlewood
conjectures, and then discard all singular series terms except
for the empty set and sets with two elements. This leads to

πðx; q; aÞ=
Z x

2

qr−1

ϕðqÞr
�
1−

q
ϕðqÞlog  y

�«qðaÞ

3ðD0 +D1 +D2Þða; yÞ
dy

ðlog  yÞr +O

 
xðlog  log  xÞ2

ðlog  xÞ3

!
;

where «qðaÞ= «qða1; a2Þ+ . . . + «qðar−1; arÞ and D0, D1, and D2
are certain smooth sums of singular series. For D0, we have [with
H =HðyÞ as before]

D0 =
X

h1;...;hr− 1>0
hi ≡ ai+ 1 − ai  ðmod  qÞ

e−ðh1+...+hr− 1Þ=H

3

 
1+

X
0≤i<j≤r−1

Sq;0
��

0; hi+1 + . . . + hj
��!

:

Notice that, if j= i+ 1 in the inner summation, the resulting
expression is ðH=qÞr−2 times the analogous D0 term in our cal-
culation for πðx; q; ðaj; aj+1ÞÞ. If j− i> 1, we will need to consider
sums of the form

Sk0ðq; v;HÞd
X

h≡v  ðmod  qÞ
hke−h=HSq;0ðf0; hgÞ;
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where k= j− i− 1. This can be understood via contour integra-
tion as in Proposition 2.1; a key difference is that, for k≥ 1,
we have Sk0ðq; v;HÞ=OðHk−1=2Þ unless v= 0, in which case
Sk0ðq; 0;HÞ=−½ϕðqÞ=2q�ΓðkÞHk +OðHk−1=2Þ. Using this to evalu-
ate D0, we find that it is [up to OðHr−3Þ]

Hr−1

qr−1
+
Hr−2

qr−2
Xr−1
i=1

"
S0ðq; ai+1 − ai;HÞ+Bqðai+1 − aiÞ

+
Xr−i−1
k=1

Sk0ðq; ai+k+1 − ai;HÞ
k!Hk

#

∼
Hr−1

qr−1
+
Hr−2

qr−2
Xr−1
i=1

"
S0ðq; ai+1 − ai;HÞ+Bqðai+1 − aiÞ

−
ϕðqÞ
2q

Xr−i−1
k=1

δðai = ai+k+1Þ
k

#
;

and it is this last term that creates the additional bias [in c2ðq; aÞ]
against patterns with a nonimmediate repetition.
For D1, up to OðHr−2Þ, we obtain a contribution of ðH=qÞr−1

ð1− ½φðqÞ=q�log  yÞ−1 times

Xr−1
j=1

2
64
0
B@ X

ðv+aj ;  qÞ=1
+

X
ðv−aj+ 1;  qÞ=1

1
CAS0ðq; v;HÞ

+
Xj−1
k=1

X
ðv;  qÞ=1

Sk0
�
q; v− aj−k;H

�
k!Hk

  +
Xr−1−j
k=1

X
ðv;  qÞ=1

Sk0
�
q; v+ aj+1+k;H

�
k!Hk

3
5

∼
Xr−1
j=1

0
B@ X

ðv+aj ;  qÞ=1
+

X
ðv−aj+ 1 ;  qÞ=1

1
CAS0ðq; v;HÞ−ϕðqÞ

q

Xr−2
k=1

r− 1− k
k

:

Finally, from D2, we obtain ðH=qÞrð1− ½ϕðqÞ=q�log  yÞ−2 times

Xr−1
j=1

0
BB@ X

ðv1 ;  qÞ= 1
ðv2 ;  qÞ= 1

S0ðq; v2 − v1;HÞ+
Xr−1−j
k=1

X
ðv1;  qÞ= 1
ðv2;  qÞ= 1

Sk0ðq; v1 + v2;HÞ
k!Hk

1
CCA

∼ ðr− 1Þ
X

ðv1;  qÞ= 1
ðv2;  qÞ= 1

S0ðq; v2 − v1;HÞ−ϕðqÞ2

2q

Xr−2
k=1

r− 1− k
k

:

Assembling these contributions yields the Main Conjecture.

5. Comparison of the Conjecture with Numerical Data
We begin by comparing the Main Conjecture with the data for
r= 2 and q= 3 or 4. In each of these cases, our conjecture is that

πðx; q; aÞ= liðxÞ
4

�
1±

1
2 log  x

log
�
2π log  x

q

��
+O

 
x

ðlog  xÞ11=4

!
;

[5.1]

with the sign being negative if a1 ≡ a2ðmod  qÞ and positive if not.
However, to obtain [5.1] in such a clean form, a number of

asymptotic approximations were used throughout Section 2,
The Heuristic for r = 2, and it is reasonable to expect that the
unsimplified integral expression [2.16] for πðx; q; aÞ would pro-
vide a better fit to the data. Indeed, we find the following.

Going forward, we will present only the comparison of
πðx; q; aÞ against [2.16], so we explain briefly how we compute
this approximation. In [2.18], [2.19], and [2.20], we de-
termined D0, D1, and D2 in terms of S0ðq; v;HÞ and, in the
process, replaced geometric progressions in h with suitable
approximations. Of course, the geometric progressions could
just be computed exactly. We keep the exact but messy
expressions so obtained and, for S0ðq; v;HÞ, use the main terms
described in Proposition 2.1. This yields an expression for
πðx; q; aÞ as an explicit integral, which we computed numerically
in Sage. The actual values of πðx; q; aÞ were computed in C++
using the primesieve library. Code for both computations can
be found on the first author’s website.
Next we consider q= 8. Here too the constants simplify, with

c2ð8; ða; bÞÞ depending only on the difference b− a  ðmod  8Þ (a fact
reflected in the data, as predicted by Conjecture 1.6). Explic-
itly, we have c2ð8; ða; aÞÞ= ð5 log 2− 3 log πÞ=2, c2ð8; ða; a+ 2ÞÞ=
c2ð8; ða; a+ 6ÞÞ= ðlog π − log 2Þ=2; and c2ð8; ða; a+ 4ÞÞ= ð log π −
3 log 2Þ=2. Thus, we should expect that, among the nondiagonal
patterns, those with b− a= 4 should be the least frequent, and those
with b− a= 2 and 6 should be rather close. Indeed, we find the
following.

We now turn to the patterns (mod  12). Here, the quadratic
character χ   ðmod  3Þ plays a role for those patterns ða; bÞ with
a≠ b  ðmod  3Þ. In particular, it does not play a role in the diagonal
patterns, for which c2ð12; aÞ is given by [1.1]. For nondiagonal pat-
terns, we have the following.
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[The other values of c2ð12; aÞ are determined by c2ð12; aoppÞ.]
Here, A12;χ ≈ 1:036, so that c2ð12; ð5; 7ÞÞ and c2ð12; ð11; 1ÞÞ are

the largest of these. Moreover, as in the ðmod  8Þ case, there are
symmetries between patterns with the same difference b− a. We
find the following.

We close by considering q= 5 (which amounts to considering
the last decimal digit of primes). Essentially, no simplifications
can be made for the constants c2ðq; aÞ. For any nondiagonal
pattern ða; bÞ, we find

c2ð5; ða; bÞÞ=
logð2π=5Þ

2

+
5
2
Re
�
Lð0; χÞLð1; χÞA5;χ



χðb− aÞ+ χðbÞ− χðaÞ

4

��
;

where χ is either of the complex characters ðmod  5Þ. Apart from
the understood symmetry c2ð5; ða; bÞÞ= c2ð5; ð−b;−aÞÞ, the value
of c2 determines the pattern. Thus, we might expect significant
variation between the various patterns and, in particular, no

additional symmetries like we saw ðmod  8Þ and ðmod  12Þ. We
find the following, presenting only the first of ða; bÞ and ð−b;−aÞ,

An interesting feature to be observed here is that, initially,
πðx; 5; ð1; 2ÞÞ is larger than πðx; 5; ð1; 3ÞÞ, despite our conjecture
predicting the opposite ordering. In fact, this is true for all x
between 41;231 and 5:076 · 1011. However, at about 5:082 · 1011,
πðx; 5; ð1; 3ÞÞ becomes consistently larger, seemingly forever, ex-
actly as our conjecture would predict. We take this as reasonable
evidence for our speculation that there are even more lower-
order terms [e.g., on the order of xðlog  log  xÞ2=ðlog  xÞ3], which, in
this case, apparently conspire to point in the opposite direction
than the bias in the Main Conjecture.
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