
ar
X

iv
:1

50
2.

05
29

5v
2 

 [
m

at
h.

N
T

] 
 9

 M
ar

 2
01

5

PRIME NUMBER RACES FOR ELLIPTIC CURVES

OVER FUNCTION FIELDS

BYUNGCHUL CHA, DANIEL FIORILLI, AND FLORENT JOUVE

Abstract. We study the prime number race for elliptic curves over the function field of
a proper, smooth and geometrically connected curve over a finite field. This constitutes
a function field analogue of prior work by Mazur, Sarnak and the second author. In this
geometric setting we can prove unconditional results whose counterparts in the number field
case are conditional on a Riemann Hypothesis and a linear independence hypothesis on
the zeros of the implied L-functions. Notably we show that in certain natural families of
elliptic curves, the bias generically dissipates as the conductor grows. This is achieved by
proving a central limit theorem and combining it with generic linear independence results
that will appear in a separate paper. Also we study in detail a particular family of elliptic
curves that have been considered by Ulmer. In contrast to the generic case we show that
the race exhibits very diverse outcomes, some of which are believed to be impossible in the
number field setting. Such behaviors are possible in the function field case because the zeros
of Hasse-Weil L-functions for those elliptic curves can be proven to be highly dependent
among themselves, which is a very non generic situation.

1. Introduction and statement of the main results

1.1. Background. It was first noticed by Chebyshev that primes are biased in their dis-
tribution modulo 4, in that there seems to be more primes of the form 4n + 3 than of the
form 4n+1 in initial intervals of the integers. A number of papers have been written on this
phenomenon and its generalizations, and it is now known that such a bias appears in many
number theoretical contexts, such as primes in arithmetic progressions, Frobenius elements
in conjugacy classes of the Galois group of extensions of number fields, Fourier coefficients
of modular forms, prime polynomials in residue classes over Fq(t), and so on.

In their seminal paper [25], Rubinstein and Sarnak have given a framework to study
questions of this type. One of the features of their work is the quantification of the so-
called Chebyshev bias in terms of an associated measure which is expressed using an explicit
formula as a function of the nontrivial zeros of the involved L-functions.

In the case of Chebyshev’s original question, Rubinstein and Sarnak determined that the
logarithmic density1 of the set of x for which π(x; 4, 3) > π(x; 4, 1) exists and is given by
δ(4; 3, 1) ≈ 0.9959. (Here, π(x; q, a) is the count of primes ≤ x that are congruent to amodulo
q.) Their results are conditional on the Generalized Riemann Hypothesis (GRH), and on the
assumption (the Linear Independence hypothesis, or LI in short) that the multiset of (the
ordinates of) all nontrivial zeros of the involved L-functions is linearly independent over Q.
One might think that the modulus 4 is not exceptional here, and that there should exist
other moduli q and residue classes a and b modulo q such that δ(q; a, b), the logarithmic

1The logarithmic density of a set S ⊂ N is defined by δ(S) := lim
N→∞

1

logN

∑

n≤N
n∈S

1

n
, if this limit exists.
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density of the set of x ≥ 1 for which π(x; q, a) > π(x; q, b), is also very close to 1. It
turns out that as Rubinstein and Sarnak have shown, δ(q; a, b) approaches 1

2
as q → ∞,

hence races of large moduli are very moderately biased. One can also quantify the rate
of convergence here, showing for example as in [14] that whenever δ(q; a, b) 6= 1

2
, we have

|δ(q; a, b)− 1/2| = q−
1
2
+o(1).

In the recent paper [12], the second author considered the more general race between two
subsets A and B of the invertible reduced residues modulo q. It turns out that when studying
the inequality π(x; q, A) > π(x; q, B) with

π(x; q, A) :=
∑

a∈A

π(x; q, a),

things can become dramatically different from the previous case where only two residue
classes were involved. Indeed, one can show under GRH and a multiplicity assumption on
the zeros of L(s, χ) that there exist sequences of moduli {qk} and subsets {Ak} and {Bk}
such that the associated lower and upper densities δ(qk;Ak, Bk) get arbitrarily close to 1.
(Note also that it is known δ(q;A,B) < 1 for any q, A,B.) In other words, there exist ‘highly
biased prime number races’. Under the additional assumption that LI holds, it is also proven
that in order to obtain highly biased prime number races, the moduli qk need to have many
prime factors, and hence highly biased prime number races are very rare. Most races are
very moderately biased, in the sense that δ(q;A,B) is usually very close to 1

2
.

In the context of elliptic curves, Mazur [22] introduced the race between the primes for
which ap(E), the trace of the Frobenius at a prime p, is positive, against those for which
ap(E) is negative. Sarnak’s framework2 in [26] to study this question turned out to be very
effective, and explained this race very well in terms of the zeros (and potential poles) of
L(SymnE, s), the symmetric power L-functions attached to E, conditional on a Riemann
Hypothesis and LI. Sarnak also remarked that one can study a related race by focusing on
the sign of the summatory function of ap(E)/

√
p using the zeros of L(E, s) alone. For this

race, Sarnak uncovered the influence of the analytic rank of E on the bias.
Building on Sarnak’s work, the second author studied in [13] the following question: is it

possible to find highly biased prime number races in the context of elliptic curves over Q,
or are all races of this type only moderately biased? It turns out that conditionally on a
Riemann Hypothesis and the assumption that the multiplicity of nonreal zeros of L(E, s) is
uniformly bounded (which is referred to as a bounded multiplicity assumption), the key to
finding such races is to find curves E whose analytic rank is significantly larger than

√
logNE ,

where NE is the conductor of E. Interestingly, the two existing conjectures (stated in [11]
and [28]) on the growth of the rank of elliptic curves over Q both imply the existence of the
aforementioned curves. Note also that elliptic curves of large rank are extremely rare. It is
widely believed that 100% of the elliptic curves over Q have rank either 0 or 1, depending
on the root number of L(E, s). One can show, as is explained in [26], that the bias for such
curves dissipates as NE → ∞. Hence, highly biased elliptic curve prime number races over
Q are very rare.

Coming back to the original Chebychev bias, but in the function field setting, the first
author showed in [4] that the framework of Rubinstein and Sarnak can be replicated in the

2Granville independently worked out the link between these types of prime number races and the distri-
bution of the zeros of Hasse-Weil L-functions, and explained it to the second author.
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one-variable polynomial ring Fq[t] over a finite field Fq of q elements. One of the advantages
in this setting is that much more is known about the (inverse) zeros of L-functions. First
of all, the Riemann Hypothesis is known to be true in this context. Also, one can explicitly
calculate the zeros of relevant L-functions in some specific cases and prove the function field
version of LI (see the definition of Grand Simplicity Hypothesis in [4] and also Definition 4.1
below).

The goal of the current paper is to present an unconditional analysis of the Chebychev
bias for elliptic curves E over a function field K (in particular it can be seen as a partial
2-dimensional generalization of [4]). More precisely we study the sign of the summatory
function of the (normalized) trace av(E)/qdeg v/2 of the Frobenius at v, where v runs over the
places of the function field of a smooth proper geometrically connected curve over a finite field
Fq. In Section 2 we present the analogue of the work of Sarnak [26] in our geometric setting;
as in loc. cit., our analysis is more general than what is needed to study bias phenomena in
the distribution of the traces of Frobenius. Indeed it involves an arbitrary smooth function
of the angles θv of the local Frobenius traces, and as such zeros of higher symmetric power L-
functions come into play. Section 3 is devoted to the study of Chebychev’s bias for Ulmer’s
family of elliptic curves (defined by (4)). For this particular family, the Hasse–Weil L-
function is completely explicit and can be described in an elementary fashion (involving e.g.
multiplicative orders modulo the divisors of the parameter d). Finally in Section 4 we prove
a central limit theorem which, in conjunction with the generic linear independence results
proven in [6], allows us to deduce that most elliptic curve prime number races over function
fields are very moderately biased (see Theorem 1.3).

Notations. Throughout the paper p denotes a prime number and ℓ is a prime number
different from p. We fix a finite field Fq, where q is a power of p, and a proper, smooth and
geometrically connected curve C/Fq, with function field K = Fq(C). At each place v of K
we have the residue field kv which is the unique extension of Fq (in a fixed algebraic closure)
of degree deg(v). We fix a separable closure Ks of K and we let GK := Gal(Ks/K) be the
absolute Galois group of K. Finally, E/K is an elliptic curve with nonconstant j-invariant
and its analytic rank will be denoted by rank(E/K).

1.2. Main results. For a closed point v of C at which E/K has good reduction, we let av
be the trace of Frobenius at v. We study the average behavior of av/q

deg(v)/2 = 2 cos θv. Note
that the results of Section 2 apply to the more general context of any smooth function of θv,
but we will focus on 2 cos θv for now. We are interested in the limiting distribution arising
from

(1) TE(X) := − X

qX/2

∑

deg(v)≤X
v good

2 cos θv = − X

qX/2

∑

deg(v)≤X
v good

av
qdeg(v)/2

.

The quantity TE(X) oscillates, and usually takes both positive and negative values. To
measure how long TE(X) stays positive or negative, that is, to measure its bias, we define

δ(E) := limM→∞

1

M

∑

X≤M
TE(X)>0

1.
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Note that the equality between δ(E) and δ(E) is immediate when TE(X) is a periodic
function of X , or when it is periodic up to an error of oX→∞(1). Further, since E/K has
nonconstant j-invariant, we write its Hasse-Weil L-function as

L(E/K, T ) =

NE/K∏

j=1

(1− qeiθjT ).

Here, NE/K is given by the formula

NE/K = 4(gC − 1) + deg(nE/K),

where gC is the genus of C and nE/K is the conductor of E/K.
Our first theorem, which will be obtained by combining Corollary 2.8, Corollary 2.9, and

Theorem 4.5, provides a general description of the prime number race for elliptic curves in
function fields.

Definition 1.1. We say that a function S : [0, π] → R has a limiting distribution if there
exists a Borel measure µ on R such that for any bounded Lipcshitz continuous function
f : R −→ R we have

(2) lim
M→∞

1

M

M∑

X=1

f (S(X)) =

∫

R

f(t)dµV (t).

In case S is chosen to be the function TE of (1) we prove the following result.

Theorem 1.2. We keep the notation as above.

(i) The function TE(X) has a limiting distribution. Denoting by XE the associated ran-
dom variable, its mean and variance are given by

E[XE ] =

√
q

√
q − 1

(
rank(E/K)− 1

2

)
,

and

V[XE ] =
1

4

( √
q

√
q + 1

)2

+
∑∗

θj 6=0

m(θj)
2

|1− q−1/2e−iθj |2 .

Here, m(θj) is the multiplicity of θj, and the starred-summation (
∑∗) means that it

runs over all θj 6= 0 counted without multiplicity.
(ii) Let {E/K} be a family of elliptic curves of unbounded conductor satisfying LI (see

Definition 4.1) and such that rank(E/K) = o(
√
NE/K) as NE/K → ∞. Then, the

random variable √
q − 1

q
XE/

√
NE/K

converges in distribution to the standard Gaussian as NE/K → ∞, and as a conse-
quence we have that δ(E) → 1

2
.

This theorem says that the prime number race for elliptic curves can be generally described
by its rank and the multiplicities of the zeros of L(E/K, T ). Indeed, up to a constant the
variance is given by the square of the 2-norm of the vector of multiplicities of the θj 6= 0.
Further, if we assume LI, then the bias in the race dissipates as NE/K gets large, unless the

rank grows faster than
√

NE/K . These results are in line with corresponding number field
4



counterparts in [26] and [13]. However, our results are much more unconditional than in the
number field setting. This is mainly because the necessary analytic properties of L(E/K, T )
are established in the function field setting. We also note that the confirmation of LI is
completely conjectural in the number field case. However over function fields, it is possible
to prove LI in some cases. In fact, in a separate paper [6], we prove LI among certain
families of elliptic curves generically by establishing quantitive bounds for the number of
elliptic curves in the families satisfying LI. Let us briefly recall the construction of one of
the main families studied in loc. cit.

Fix an elliptic curve E/K. The family we consider is a family of quadratic twists of E/K.
For ease of exposition let us recall the necessary definitions only in the case where C = P1,
in which case K is simply the rational function field Fq(t). Suppose that E/K is given by
the Weierstrass equation y2 = x3 + ax+ b, where a, b ∈ Fq[t]. For each f ∈ K× we consider

Ef : y
2 = x3 + f 2ax+ f 3b

which is a Weierstrass equation for an elliptic curve over K. A quadratic twist of E/K is
an elliptic curve Ef/K such that f is not a square in K. Note that Ef is isomorphic to Eg

over K if and only if there exists c ∈ K× such that f = gc2.
Let E → P1 be the minimal Weierstrass model (i.e. the identity component of the Néron

model of E) corresponding to E/K. Let us assume that E → P1 has at least one fiber
of multiplicative reduction and fix a nonzero element m ∈ Fq[t] which vanishes at at least
one point of the locus M of multiplicative reduction of E → P1. The “twisting family” we
consider was first introduced by Katz. It is the (d + 1)-dimensional affine variety for which
the F-rational points are:

(3) Fd(F) = {f ∈ F[t] : f squarefree, deg f = d, gcd(f,m) = 1} ,
for any algebraic extension F ⊇ Fq, and where d ≥ 1 is an integer. A remarkable fact proven
by Katz is that if f ∈ Fd(Fqn) then the conductor of Ef only depends on d and q. In
particular we can let n → ∞ without affecting the value of the common conductor of the
twists Ef .

As was already mentioned, the above construction of quadratic twists can be done over
any function field K = Fq(C), where C/Fq is any smooth geometrically connected proper
curve. In particular (3) can be defined in this more general context; it will then consist of
elements of O, the integer ring of the compositum FK.

The conjunction of the results of [6] with Theorem 4.5, which is a stronger (quantitative)
version of Theorem 1.2, gives the following result which holds for any function field K =
Fq(C), with C as above.

Theorem 1.3. With notation as above, there exists an absolute constant c such that the
proportion of parameters f ∈ Fd(Fqn) for which the inequality

∣∣∣∣δ(Ef )−
1

2

∣∣∣∣ ≤
c√
d

fails to hold is ≪d,E/Fq(C) n log q/qncEd−2

, where the positive constant cE depends only on the
base curve E.

Since the statement of Theorem 1.3 involves many different parameters, let us make several
comments on the way we think one should interpret it. First one fixes the piece of data E/K
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(in particular the field of constants Fq ofK = Fq(C) has fixed cardinality q). One should then
pick d large so that the first inequality means that δ(Ef) is very close to 1/2. Then we use
the remark preceding the statement of Theorem 1.3 to choose n large so that the proportion
of curves excluded by the second inequality gets very close to 0. This way Theorem 1.3 can
be seen as a result asserting that “generically” prime number races for elliptic curves over
function fields are very moderately biased.

Remark 1.4. One may ask for the detailed description of a concrete example (i.e. an example
where one starts with a concrete base elliptic curve E/K) where the unspecified constants
appearing in Theorem 1.3 can be made more explicit. Let us consider the case where K is
the rational function field Fq(t) and E/K is the Legendre elliptic curve given by:

y2 = x(x− 1)(x− t) .

The curve E/K has multiplicative reduction precisely at t and t − 1 so that one may take
m(t) = t(t− 1) to define the twisting space Fd.

Fix d ≥ 2 and f̃ ∈ Fd−1(Fq). Let n ≥ 1 be an integer. We restrict to twists of E by the
Fqn-points of the open affine curve Uf̃ with geometric points:

Uf̃(Fq) = {c ∈ Fq : (c− t)f̃(t) ∈ Fd(Fq)} = {c ∈ Fq \ {0, 1} : f̃(c) 6= 0} .
If c ∈ Uf̃ (Fqn) we denote by Ec the quadratic twist of E by f where f(t) = (c − t)f̃(t).
For f ∈ Fd(Fqn) the conductor of Ef/K is 2d (resp. 2d − 1) if d is even (resp. if d is odd).
(See [6, Cor. 2.2] and the references therein.) Combining the arguments we develop in the
proof of Theorem 1.3 (see Section 4) with [6, Cor. 2.2] we deduce that there exists an absolute

constant c0 such that |δ(Ec)− 1/2| ≤ c0d
−1/2 except for a proportion ≪f̃ d2n log q/qn/(24d

2)

(where the implied constant depends only on f̃ and thus is independent of n) of exceptions
in Fqn. Thus for big enough d and q and for the choice n = d2 we get densities δ(Ec) very
close to 1/2 up to a proportion of exceptions c ∈ Fqn very close to 0.

One can say that Theorem 1.3 presents an orderly picture regarding the prime number
races for elliptic curves in general—their bias dissipates as the conductor gets large. In
contrast, our next finding shows that the races can exhibit very diverse outcomes when
we look into the behaviors of δ(E) as E varies in a specific family of elliptic curves. We
specialize to the family Ulmer considered in [28] and uncover many different and surprising
prime number races. Interestingly, many of the outcomes we discover are believed to be
impossible in the number field case. The reason why Ulmer’s family shows such diverse
results is that LI is proven to be strongly violated in this family.

Following [28], we let Ed be the elliptic curve over Fq[t] given by the Weierstrass equation

(4) y2 + xy = x3 − td ,

where d and p are chosen so that d | pn + 1 for some n ≥ 1. We will be interested in
the associated quantity defined by (1) which we will denote by Td(X). Our main tool for
studying Td(X) will be the explicit formula given in Proposition 3.2, from which we directly
deduce that δ(Ed) = δ(Ed) i.e. the density δ(Ed) exists.

Let us first state a result asserting that an extreme bias may occur (Td(X) either taking
mostly positive or negative values) for suitable choices of parameters.

Theorem 1.5. For the family {Ed/Fq(t)}, one has the following cases of extreme bias.
6



(i) Suppose that q ≥ 3, and assume that either
• d is divisible by 2 and q ≡ 1 mod 4, or
• d is divisible by 3.

Then, Td(X) > 0 for all large enough X, and thus δ(Ed) = 1.

(ii) If q = pk with p large enough and d = pn+1 for some 1 ≤ n ≤ eq
1
2 /2 with n ≡ 0 mod k,

then Td(X) > 0 for all large enough X, and thus δ(Ed) = 1.
(iii) Fix ǫ > 0. There exists primes d ≥ 3 and p such that p is a primitive root modulo d,

and such that if we pick q = p
d−1
2

+1, then the associated curve Ed has analytic rank
1 (resp. 2) if (d− 1)/2 is even (resp. odd) and

0 < δ(Ed) < ǫ .

Remark 1.6. One might wonder whether it is possible to plainly have δ(Ed) = 0. We will
show in Corollary 3.3 that for d ≥ 7 this is impossible, since we always have δ(Ed) > 1/2n,
where n is the least positive integer such that d | pn + 1.

The first phenomenon we uncover in Theorem 1.5(i) is the existence of elliptic curves Ed

for which δ(Ed) = 1. This is quite surprising since one can show for an elliptic curve E over
Q that under the Riemann Hypothesis for L(E, s), we always have δ(E) < 1. (This follows
from the analysis in [25, Th. 1.2].) In the second point of the statement (i), the integer d is
divisible by 3, which creates ‘extra rank’ for Ed (see Proposition 3.1). However (ii) shows
the existence of infinitely many d not necessarily divisible by 3 for which δ(Ed) = 1.

Part (iii) of the theorem highlights a remarkable feature of Ulmer’s family. Indeed there
are curves within the family Ed/Fq(t) of analytic rank ≥ 1 for which δ(Ed) < 1

2
. This

is surprising since in the case of elliptic curves over Q, Sarnak showed3 under a Riemann
Hypothesis and a Linear Independence hypothesis that whenever the analytic rank of E is
greater than or equal to 1, we have δ(E) > 1

2
. By (iii) we can find prime number races which

are arbitrarily biased towards negative values. Interestingly, the involved curves Ed have
rank at most 2, and a high bias is quite unexpected for such curves. Indeed as was remarked
by Sarnak [26], one can show under GRH and LI that for elliptic curves of rank at most 2,
the density δ(E) approaches 1

2
as E runs over a family satisfying NE → ∞ (see [13, Proof

of Th. 1.5] for a similar result with a weaker hypothesis).
Next we turn to subfamilies of Ed/Fq(t) with behavior very different to the above examples.

Precisely the following statement shows the existence of curves for which there is no bias at
all, in other words δ(Ed) =

1
2
. Note that this is believed to be impossible for an elliptic curve

E/Q, since Sarnak [26] has shown under GRH and LI that δ(E) 6= 1
2
.

Theorem 1.7. For the family {Ed/Fq(t)}, one has the following cases where Td(X) is com-
pletely unbiased. Fix p ≡ 3 mod 4 and let d ≥ 5 be a divisor of p2 + 1. Pick q = p4k+1 with
k ≥ 1. Then the analytic rank of Ed is either (d− 1)/4 or (d − 2)/4 depending on whether
d is congruent to 1 or 2 modulo 4, and we have

δ(Ed) =
1

2
.

3When comparing our results with those of Sarnak, one should keep in mind that we are considering
the race of opposite sign, that is we are considering the summatory function of −av/q

deg v/2, and Sarnak is
considering the summatory function of ap/

√
p.
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Another reason why Theorem 1.7 is surprising is that for elliptic curves over Q, the key
to producing highly biased races is to find elliptic curves E for which the analytic rank
is considerably larger than

√
logNE, where NE is the conductor of E (see [13, Th. 1.2]).

However, if we pick d = p2+1, then many of the curves in Theorem 1.7 have very high rank,
quite close to the Brumer–Mestre bound when k is not too large4. Indeed Proposition 3.1
states that the rank of Ed is the left-most member of the series of inequalities:

ǫd +
∑

e|d
e∤6

φ(e)

oe(q)
≥ ǫd +

∑

e|d
e∤6

φ(e)

4
≥ p2 − 1

4
.

(Here we use that q4 ≡ p4 ≡ 1 mod d; the integer ǫd ∈ {0, 1, 2, 3} is defined in Proposition

3.1.) This is considerably larger than
√

deg(nd) (which is the analog of
√
logNE), as this last

quantity is given by
√

p2 +O(1) (see [28, §10.2]). In such a situation one should expect δ(E)
to be very close to 1, in light of [13, Theorem 1.2]. However Hypothesis BM of [13], which
states that the multiplicities of the nonreal zeros of the L-functions associated to elliptic
curves over Q are uniformly bounded, is strongly violated5 for the elliptic curves Ed. This
explains why no such extreme bias occurs.

Our final result shows that for any fixed m ≥ 1, there are many curves for which δ(Ed)
is very close to (2m)−1. Those are races whose bias is moderate, but does not dissipate as
the conductor grows. This result is motivated by the second part of Theorem 1.1 of [12]
where the author shows under GRH and LI that, in the context of primes in arithmetic
progressions, the set of all densities δ(q;NR,R) is dense in [1

2
, 1].

Theorem 1.8. Define the set of all possible densities coming from Ulmer curves:

S := {δ(Ed) : d | pn + 1, p ≥ 3, n ≥ 1; q = pk, k ≥ 1}.

Then for every m ≥ 1 there exists elements of S that are arbitrarily close to 1/(2m), that is:

{1} ∪ {1/(2m) : m ≥ 1} ⊂ S.

The corresponding statement for elliptic curves over Q is plainly false, as the only curves
having δ(E) < 1

2
are curves of rank 0, and for these curves δ(E) approaches 1

2
as NE tends to

infinity. Moreover, it is unclear whether one should expect to have any limit points in (1
2
, 1),

given our limited knowledge on ranks. Indeed, to obtain a limit point η ∈ (1
2
, 1) for the set

of all δ(E) with E running over the curves over Q, one would need6 an infinite sequence of
curves of analytic rank equal to (κ + o(1))

√
logNE, where κ is the unique real solution to

the equation

η =
1√
2π

∫ ∞

−κ

e−x2/2 dx.

4For elliptic curves over the rational function field Fq(t), Brumer’s analogue of Mestre’s bound [3, Propo-
sition 6.9] states that rank(E/K) ≪ deg(nd)/ logq deg(nd).

5This fact can actually be checked directly using Proposition 3.1.
6Under the Riemann Hypothesis and LI for the functions L(E, s), this is an equivalence.
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2. Limiting distributions associated with elliptic curves

over function fields

2.1. Recollection on L-functions. We keep the notation as in §1.2. For a closed point v
of C, we let av(E) be the integer defined by

av(E) := qv + 1−#Ens
v (kv).

Here, #Ens
v (kv) is the number of kv-rational points on the nonsingular locus of the reduction

Ev of E at v. Also, if E has a good reduction at v, it is well-known that av(E) is the trace
of the kv-Frobenius map on the ℓ-adic Tate module of Ev/kv. Moreover, if we let αv and βv

be its eigenvalues, then
|ι(αv)| = |ι(βv)| = qv

1/2 = qdeg(v)/2,

for any embedding ι of Qℓ into the field of complex numbers (for simplicity we will omit
ι from now on; its use, where needed, will be implicit). Therefore, after we fix one such
embedding, there exists a unique θv in [0, π] for each v of good reduction such that

αv = βv = qdeg(v)/2eiθv .

Let us define precisely what are the L-functions that naturally come into play in our
study. We will follow the definition of [29, §3.1.7] to define the L-function L(ρ,K, T ) for any
continuous, absolutely irreducible ℓ-adic representation

ρ : GK −→ GL(V )

of the absolute Galois group GK in some finite dimensional Qℓ-vector space V . For each v,
we choose a decomposition group Dv ⊂ G(K) and we let Iv and Frobv be the corresponding
inertia group and the geometric Frobenius conjugacy class. Then, the L-function L(ρ,K, T )
is defined by the formal product

(5) L(ρ,K, T ) =
∏

v

det
(
1− ρ(Frobv)T

deg v
∣∣V ρ(Iv)

)−1
,

where V ρ(Iv) is the subspace of inertia invariants of V .
Of interest to us is the continuous ℓ-adic representation

ρℓ,E/K : GK −→ Aut(Vℓ(E)),

arising from the Galois action on Vℓ(E) := Tℓ(E)⊗Qℓ, where Tℓ(E) is the ℓ-adic Tate module
of E/K. Because of a well-known independence of ℓ property, (namely (ρℓ,E/K)ℓ forms a
compatible system of representations), the L-function L(ρℓ,E/K , K, T ) will be denoted simply
L(E/K, T ) in the sequel. Its local factors are given explicitly as follows (see e.g. [30, Lecture
1]):

(6) L(E/K, T ) =
∏

v good

(1− av(E)T deg(v) + qvT
2deg(v))−1 ·

∏

v bad

(1− av(E)T deg(v))−1.

Here, when v is a prime of bad reduction, we have av(E) = 1,−1 or 0, depending on
the reduction type of E at v being split multiplicative, nonsplit multiplicative or additive,
respectively. Also, for each m ≥ 1, we form

Symm(ρℓ,E/K) : GK −→ Aut(Symm(Vℓ(E))),

by taking the m-th symmetric power of ρℓ,E/K . Again, by independence of ℓ, we can and we
will write L((SymmE)/K, T ) for the L-function associated with Symm(ρℓ,E/K). The local
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factors of L((SymmE)/K, T ) can be described as follows. If E/K has good reduction at v,
then its local factor at v is

(7)
m∏

j=0

(1− αv
m−jβv

jT deg(v))−1,

whereas, for a ramified prime v, its local factor is

(8) (1− av(E)mT deg(v))−1,

with, again, av(E) = 1,−1, or 0, depending on the reduction type of E/K at v as before.
Recall thatE/K is assumed to have nonconstant j-invariant. As a result, L((SymmE)/K, T )

is a polynomial in T (see [29, §3.1.7], as well as the introduction of [18]). More precisely,
L((SymmE)/K, T ) ∈ 1 + TZ[T ]. We define νm to be the degree of L((SymmE)/K, T ) and
write

(9) L((SymmE)/K, T ) =
νm∏

j=1

(1− γm,jT ),

for some complex numbers γm,j. For m = 1, we also use the notation NE/K := ν1 =
deg(L(E/K, T )). Deligne’s purity result [9, §3.2.3] implies that γm,j is of absolute value

q(m+1)/2 under any complex embedding of Qℓ. Therefore, we can define the angles θm,j by
the equation

(10) γm,j = q(m+1)/2eiθm,j ,

for all j = 1, . . . , νm and for each m ≥ 1. Note that νm can be given explicitly by the formula
(see [29, §3.1.7])
(11) νm = (2gC − 2)(m+ 1) + deg(nm).

Here, gC is the genus of C/k and nm is the global Artin conductor of Symm(ρℓ,E/K). We will
need the following lemma, which says that νm grows at most linearly with m.

Lemma 2.1. There exists a positive constant CE/K which depends only on E/K such that

νm ≤ CE/K ·m
for all m ≥ 1.

Proof. Suppose that E/K has bad reduction at v and let G := Dv be the decomposition
group at v. Thanks to the Euler characteristic formula (11), it is enough to show that the
exponent fv(V ) of the local Artin conductor of V := Symm(ρℓ,E/K) at v is bounded by a
constant times deg(V ) = m+ 1. From Corollary 1 of Proposition 2 in [27, Chapter VI, §2],

fv(V ) =
∑

i≥0

gi
g0
codimV Gi ,

where Gi is the i-th ramification group of G and gi = #Gi. Let i∞ be the smallest integer
for which V Gi = V for all i ≥ i∞, so that the above sum is a finite sum of i∞ terms. Then,

fv(V ) ≤
i∞∑

i=0

codimV Gi ≤
i∞∑

i=0

dimV = (m+ 1)(i∞ + 1).

This completes the proof. �
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2.2. An explicit formula. Throughout this section we fix an elliptic curve E over K. For
readibility we do not indicate the dependency on E of the objects we introduce whenever it
is clear from context.

Following Sarnak [26], we will consider a function V : [0, π] −→ R and study the limiting
distribution arising from

TV (X) :=
X

qX/2

∑

deg(v)≤X
v good

V (θv)

as X → ∞. This is done by computing the Fourier expansion of V using the functions

Um(θ) :=
sin(m+ 1)θ

sin θ
,

for m ≥ 0. Indeed the family {Um}∞m=0 forms an orthonormal basis of L2([0, π]) with respect
to the inner product

〈V1, V2〉 :=
2

π

∫ π

0

V1(θ)V2(θ) sin
2 θ dθ.

Obviously computing quantities TUm(X) is crucial and suffices to understand more gen-
erally TV (X) for functions V that coincide with their Fourier expansion with respect to the
family {Um}m≥0. We now proceed to computing explicitly TUm(X) for m ≥ 1.

The following result can be seen as a so-called “explicit formula” that relates a summation
over primes to a summation over zeros of a certain L-function. It will be of crucial importance
in the proof of the theorems stated in §1.2.
Theorem 2.2. Let m ≥ 1 and N ≥ 1 be integers. Let E(N) := 1 if N is even, and E(N) := 0
if N is odd. Then one has:

N

qN/2

∑

deg(v)=N

Um(θv) = (−1)m+1E(N)−
νm∑

j=1

eiN θm,j +OE(m
2q−N/6) ,

To prove the theorem, we need some preliminary results.

Proposition 2.3. With notation as in Theorem 2.2, one has:

(12) −
νm∑

j=1

eiNθm,j = q−N/2
∑

d|N

d
∑

deg(v)=d
v good

Um(
N
d
θv) +OE(q

−(m+1)N/2) ,

Proof. We take the log derivative of L((SymmE)/K, T ) using the Euler factors (7) and (8)
and obtain

(13) T
L′

L
((SymmE)/K, T ) =

∞∑

d=1

∑

deg(v)=d
v good

m∑

j=0

d αv
m−jβv

jT d

1− αv
m−jβv

jT d
+

∞∑

d=1

∑

deg(v)=d
v bad

d av
mT d

1− avmT d
.

To simplify the summation over good primes v, we rewrite Um as

(14) Um(θ) =
m∑

j=0

ei(m−2j)θ .
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This gives, for any positive integer k ≥ 1,

Um(kθv) =

m∑

j=0

eik(m−2j)θv = qv
−km/2

m∑

j=0

(
qv

k(m−j)/2eik(m−j)θv
) (

qv
kj/2e−ikjθv

)

= (qm/2)−dk
m∑

j=0

αv
k(m−j)βv

kj .

Thus

(15) (qm/2)dkUm(kθv) =

m∑

j=0

αv
k(m−j)βv

kj .

The summation over good primes v in (13) becomes

∞∑

d=1

∑

deg(v)=d
v good

m∑

j=0

d αv
m−jβv

jT d

1− αv
m−jβv

jT d
=

∞∑

d,k=1

∑

deg(v)=d
v good

d
m∑

j=0

αv
k(m−j)βv

kjT dk

=
∞∑

N=1


(qm/2)N

∑

d|N

d
∑

deg(v)=d
v good

Um(
N
d
θv)


TN ,(16)

where the last equality follows from (15). Similarly the contribution of bad primes v to (13)
is

∞∑

d=1

∑

deg(v)=d
v bad

d av
mT d

1− avmT d
=

∞∑

N=1



∑

d|N

d
∑

deg(v)=d
v bad

av
mN/d


TN .(17)

Since av = 0 or ±1 and there are only finitely many bad primes v we see that the coefficient
of TN above is bounded by a constant depending on E/K. Using this and (16), we simplify
(13) as follows:

(18) T
L′

L
((SymmE)/K, T ) =

∞∑

N=1


(qm/2)N

∑

d|N

d
∑

deg(v)=d
v good

Um(
N
d
θv) +OE(1)


TN .

On the other hand, taking the log derivative of (9) and comparing the N -th coefficient of
TN with (18), we conclude that

−
νm∑

j=1

γm,j
N = (qm/2)N

∑

d|N

d
∑

deg(v)=d
v good

Um(
N
d
θv) +OE(1) .

Dividing out both sides by q(m+1)N/2 this finishes the proof of Proposition 2.3. �
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Corollary 2.4. With notation as in Theorem 2.2, one has:

∑

deg(v)=N

Um(θv) ≪E m
qN/2

N
.

Proof. In (12), we split out the term d = N to get

(19)
N

qN/2

∑

deg(v)=N

Um(θv) = −
νm∑

j=1

eiNθm,j − q−N/2
∑

d|N
d≤N/2

d
∑

deg(v)=d
v good

Um(
N
d
θv) +OE(q

−N/2) .

Then, it is enough to show that the right side is bounded by (m + 1) times an absolute
constant. From Lemma 2.1, we have

(20)

∣∣∣∣∣−
νm∑

j=1

eiNθm,j

∣∣∣∣∣ ≤ CE/Km.

To bound the rest of the summation in the right side of (19), we use the trivial bound

(21) |Um(θ)| ≤ m+ 1,

which is immediate from (14), and the count of places of fixed degree in K = Fq(C) (see
e.g [3, Prop. 6.3]) which yields the estimate

(22)
∣∣∣
( ∑

deg(v)=d

1
)
− qd

d

∣∣∣ ≤ 2gC + 1

1− q−1
qd/2 .

The second term on the right hand side of (19) is then bounded above in absolute value
by

(m+ 1)q−N/2
∑

d|N
d≤N/2

d
∑

deg(v)=d
v good

1 ≪C mq−N/2
∑

d|N
d≤N/2

qd ≪ m.

The proof follows. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We begin with (19) and separate out the term d = N/2, which exists
only when N is even. (Recall, by definition, E(N) = 1 if N is even and 0 otherwise.)

N

qN/2

∑

deg(v)=N

Um(θv) =−
νm∑

j=1

eiNθm,j − 1

qN/2

∑

d|N
d≤N/2

d
∑

deg(v)=d

Um(
N
d
θv) +OE(q

−N/2)(23)

=−
νm∑

j=1

eiNθm,j − E(N)
N/2

qN/2

∑

deg(v)=N/2

Um(2θv)

− 1

qN/2

∑

d|N
d≤N/3

d
∑

deg(v)=d
v good

Um(
N
d
θv) +OE(q

−N/2) .
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First, we handle the terms with d ≤ N/3. From (21) and (22) again,
∣∣∣∣∣∣∣∣

1

qN/2

∑

d|N
d≤N/3

d
∑

deg(v)=d
v good

Um(
N
d
θv)

∣∣∣∣∣∣∣∣
≤ m+ 1

qN/2

∑

d|N
d≤N/3

d

(
qd

d
+OC

(
qd/2

d

))
(24)

≪ mq−N/6 .

Next, to estimate
∑

deg(v)=N/2 Um(2θv), we consider the following Fourier expansion of V (θ) :=

Um(2θ) with respect to the orthonormal basis {Uk}∞k=0

V (θ) =
∞∑

k=0

〈V, Uk〉Uk(θ).

One has:
∑

deg(v)=N/2

V (θv) =

∞∑

k=0

〈V, Uk〉
∑

deg(v)=N/2

Uk(θv)

= 〈V, U0〉
∑

deg(v)=N/2

1 +

∞∑

k=1

〈V, Uk〉
∑

deg(v)=N/2

Uk(θv)

= 〈V, U0〉
(
qN/2

N/2
+OC(q

N/4/N)

)
+

∞∑

k=1

〈V, Uk〉
∑

deg(v)=N/2

Uk(θv) .

Note that Lemma 2.5 below provides the Fourier coefficients of V explicitly. In particular,

(25) 〈V, U0〉 = (−1)m.

Moreover, Corollary 2.4 gives

∑

deg(v)=N/2

Uk(θv) ≪E k
qN/4

N
.

Again, by Lemma 2.5, we can determine 〈V, Uk〉 for all k ≥ 1. We deduce
∞∑

k=1

〈V, Uk〉
∑

deg(v)=N/2

Uk(θv) ≪E
qN/4

N

∞∑

k=1

|〈V, Uk〉|k

≪E
qN/4

N
m2.(26)

From (25) and (26), we obtain

(27)
N/2

qN/2

∑

deg(v)=N/2

Um(2θv) = (−1)m +OE(m
2q−N/4) .

Collect (24) and (27) and put them into (23), to obtain

N

qN/2

∑

deg(v)=N

Um(θv) = −
νm∑

j=1

eiNθm,j − E(N)(−1)m +OE(m
2q−N/6) .

This finishes the proof of Theorem 2.2. �
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Lemma 2.5. For m ≥ 0,

Um(2θ) = U2m(θ)− U2m−2(θ) + · · ·+ (−1)m+1U2(θ) + (−1)m.

Proof. Using (14), one can prove that

Um+1(2θ) + Um(2θ) = U2(m+1)(θ).

Now, an easy induction on m completes the proof. �

2.3. Limiting distribution arising from smooth functions. We now derive from Theo-
rem 2.2 a decomposition of TV (X) (under suitable hypotheses on the function V ) from which
we deduce the existence of a limiting distribution for TV (X).

Let V : [0, π] −→ R be a function and let Vm := 〈V, Um〉 be the m-th Fourier coefficient of
V . To ensure convergence, we will assume that Vm ≪ m−3−η for some η > 0. In particular
this will guarantee that the Fourier expansion

V (θ) =

∞∑

m=1

VmUm(θ)

converges (uniformly and absolutely) for θ ∈ [0, π], by the trivial bound |Um(θ)| ≤ m + 1.
The reason why we require such a strong decay rate for Vm is that we also need to ensure
the convergence of the error term in (28).

Assuming further that 〈V, U0〉 = 0 we may apply Theorem 2.2 to get:

TV (X) =
X

qX/2

X∑

N=1

∑

deg v=N
v good

V (θv) =
X

qX/2

X∑

N=1

∞∑

m=1

Vm

∑

deg v=N
v good

Um(θv)

=
X

qX/2

X∑

N=1

qN/2

N

(
E(N)

∞∑

m=1

Vm(−1)m+1 −
∞∑

m=1

Vm

νm∑

j=1

eiNθm,j +O

(
∞∑

m=1

m2Vmq
−N/6

))
.(28)

We break the last line into:

TV (X) = T
(I)
V (X) + T

(II)
V (X) +O(X(logX)−1q−X/6),

where

T
(I)
V (X) :=

X

qX/2

X∑

N=1

qN/2

N
E(N)

(
∞∑

m=1

Vm(−1)m+1

)
,

T
(II)
V (X) := − X

qX/2

X∑

N=1

qN/2

N

(
∞∑

m=1

Vm

νm∑

j=1

eiNθm,j

)
.

To simplify T
(I)
V (X) and T

(II)
V (X) further, we use [4, Cor. 2.3 and Cor. 2.4]. Since the

statements are quite short we recall them without proof in the following lemma.

Lemma 2.6. Let N ≥ 1 be an integer and let E(N) be as above. The following holds.

(i) Let

(29) c±(X) :=

{
q/(q − 1) for even X,
√
q/(q − 1) for odd X.
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Then

X

qX/2

X∑

N=1

E(N)
qN/2

N
= c±(X) + o(1) ,

as X → ∞.
(ii) Let γ :=

√
qeiθ be a complex number of argument θ ∈ [0, 2π]. Then7

X

qX/2

X∑

N=1

γN

N
=

γeiθX

γ − 1
+ o(1) ,

as X → ∞.

Applying (i) of the lemma we obtain

(30) T
(I)
V (X) = c±(X)

∞∑

m=1

(−1)m+1Vm + o(1) .

For T
(II)
V (X), we apply (ii) of the lemma with γ = γm,j/q

m/2 (see (10)). Then, as X → ∞,

X

qX/2

X∑

N=1

qN/2

N
eiNθm,j =

X

qX/2

X∑

N=1

(γm,j/q
m/2)N

N
=

γm,j

γm,j − qm/2
eiθm,jX + o(1).

Thus,

(31) T
(II)
V (X) =

∞∑

m=1

Vm

(
νm∑

j=1

γm,j

γm,j − qm/2
eiθm,jX

)
+ o(1) ,

which converges absolutely by our assumption that Vm ≪ m−3−η.
Next we separate out the terms with γm,j = q(m+1)/2, or equivalently θm,j = 0. To do so,

define

(32) Mm(1) := #{j | θm,j = 0 with j = 1, . . . , νm}.

In other words, Mm(1) is the multiplicity of the zero T = q−(m+1)/2 in L((SymmE)/K, T ).
Then, from (31),

(33) T
(II)
V (X) = −

∞∑

m=1

Vm

√
q

√
q − 1

Mm(1)−
∞∑

m=1

Vm

∑

j=1,...,νm
θm,j 6=0

γm,j

γm,j − qm/2
eiθm,jX + o(1).

Combining (30) and (33) we obtain the following result.

Proposition 2.7. For a function V : [0, π] −→ R with 〈V, U0〉 = 0 and Vm ≪ m−3−η for
some η > 0, we have that

TV (X) = QV (X) +RV (X) + oX→∞(1)

7In [4] this is stated under the assumption θ ∈ [0, π] but the conclusion obviously holds more generally
for any θ ∈ [0, 2π] simply by applying complex conjugation.
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where

QV (X) :=

∞∑

m=1

(
(−1)m+1c±(X)−

√
q

√
q − 1

Mm(1)

)
Vm ,

RV (X) :=−
∞∑

m=1

Vm

∑

j=1,...,νm
θm,j 6=0

γm,j

γm,j − qm/2
eiθm,jX .

Here c±(X) and Mm(1) are defined as in (29) and (32).

Corollary 2.8. Let V be as in Proposition 2.7. The quantity TV (X) has a limiting distri-
bution µV in the sense of Definition 1.1. Moreover, for k ≥ 1,

(34) lim
M→∞

1

M

M∑

X=1

TV (X)k =

∫

R

tkdµV (t).

Proof. This is the function field analogue of [13, Lemmas 2.3 and 2.5]. We just need to make
a slight adaption to handle the difference arising from the fact that our definition of limiting
distribution (Definition 1.1) uses a (discrete) summation, rather than an integral.

First, we outline the proof of existence of a limiting distribution. This is well-known in
the number field setting, originally described in [25] and in [1] for more general situations.
Following [1], we say that a real-valued function φ(X) defined for all positive integers X is
called a B2-almost periodic function if for any ǫ > 0, there exists a real-valued trigonometric
polynomial

(35) PN(ǫ)(X) =

N(ǫ)∑

n=1

rn(ǫ)e
iλn(ǫ)X

such that

(36) lim sup
Y→∞

1

Y

Y∑

X=1

|φ(X)− PN(ǫ)(X)|2 < ǫ2.

(Here, λn(ǫ) is real and rn(ǫ) is complex.) Using a discrete version of the Kronecker-Weyl
theorem, it can be shown that any trigonometric polynomial of the form (35) has a limiting
distribution (in the sense of Definition 1.1.) Also, an obvious adaptation of [1, Th. 2.9]
shows that any B2-almost periodic function has a limiting distribution. Next, for any (large)
positive number M , we define (using the notation of Proposition 2.7)

EV (X,M) = −
∑

m≥M

Vm

∑

j=1,...,νm
θm,j 6=0

γm,j

γm,j − qm/2
eiθm,jX + oX→∞(1),

so that TV (X) is a sum of a trigonometric polynomial and EV (X,M). Using a trivial bound
we easily obtain

(37) |EV (X,M)| ≤
√
q

√
q − 1

∑

m≥M

|Vm|νm + oX→∞(1).

The decay condition on Vm now implies its mean square can be made arbitrarily small by
choosing M large and we deduce that TV (X) is B2-almost periodic, thus has a limiting
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distribution, say, µV . In fact, a straightforward calculation shows that TV (X) is bounded
for all X , therefore, µV is supported on a bounded set in R. To prove (34), as in [13, Lemma
2.5], we choose a Lipschitz continuous function f equal to tk on a set containing the support
of µV and to zero outside and apply (2). We omit the details. �

2.4. Limiting distribution arising from TE(X). In this subsection, we look into the
special case TE(X) = TV (X) i.e. V (θ) = −U1(θ) = −2 cos θ, as defined in (1). Thus we
have Vm = 0 for all m ≥ 2. Recall from §2.1 that L(E/K, T ) is a polynomial in T of degree
ν1 = NE/K . We will write its inverse zeros as γj = qeiθj for j = 1, . . . , NE/K , so that

(38) L(E/K, T ) =

NE/K∏

j=1

(1− qeiθjT ).

We note from the definition (32) that M1(1) = rank(E/K), the analytic rank of E/K.
Proposition 2.7 gives the following statement in the case V = −U1.

Corollary 2.9. With notation as above we have

(39) TE(X) = QE(X) +RE(X) + oX→∞(1),

where

QE(X) :=

√
q

√
q − 1

rank(E/K)− c±(X) ,

RE(X) :=
∑

j=1,...,NE/K

θj 6=0

1

1− q−1/2e−iθj
eiθjX =

∑

j=1,...,NE/K

θj 6=0

γj
γj −

√
q
eiθjX .

Proof. This is obvious from Proposition 2.7 because V1 = −1 and Vm = 0 for all m ≥ 2. �

Corollary 2.8 applied to the case V = −U1 enables us to study the random variable XE

associated to the limiting distribution of TE(X). Theorem 1.2(i) shows that we can obtain
simple closed formulæ for the mean and variance of XE .

Proof of Theorem 1.2(i). First, we compute

E[XE ] = lim
M→∞

1

M

M∑

X=1

TE(X).

From Corollary 2.9, we have

(40) TE(X) =

√
q

√
q − 1

rank(E/K)− c±(X) +
∑

θj 6=0

1

1− q−1/2e−iθj
eiθjX + oX→∞(1).

It is easy to show that

lim
M→∞

1

M

M∑

X=1

( √
q

√
q − 1

rank(E/K)− c±(X)

)
=

√
q

√
q − 1

(
rank(E/K)− 1

2

)
.

In addition, for any θ ∈ (0, 2π),

(41)

M∑

X=1

eiθX = O

(
1

‖θ/2π‖

)
,
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where ‖·‖ denotes the distance to the nearest integer. The formula for E[XE ] follows imme-
diately from (40). For V[XE ], we must compute

V[XE ] = lim
M→∞

1

M

M∑

X=1

(TE(X)− E[XE ])
2.

Note that
√
q/(2(

√
q − 1)) − c±(X) = ±√

q/(2(
√
q + 1)), with a + (resp. −) sign if X is

odd (resp. even). Thus

(42)


1

2

√
q

√
q − 1

− c±(X) +
∑

θj 6=0

1

1− q−1/2e−iθj
eiθjX




2

=

1

4

( √
q

√
q + 1

)2

±
√
q

√
q + 1

∑

θj 6=0

1

1− q−1/2e−iθj
eiθjX +


∑

θj 6=0

1

1− q−1/2e−iθj
eiθjX




2

.

Using this and (40), we obtain

V[XE ] = lim
M→∞

1

M

M∑

X=1


1

2

√
q

√
q − 1

− c±(X) +
∑

θj 6=0

1

1− q−1/2e−iθj
eiθjX




2

=
1

4

( √
q

√
q + 1

)2

+ lim
M→∞

1

M

M∑

X=1


∑

θj 6=0

1

1− q−1/2e−iθj
eiθjX




2

,

where the last line follows from (42) and (41). Next we compute

M∑

X=1


∑

θj 6=0

1

1− q−1/2e−iθj
eiθjX




2

=

M∑

X=1


∑∗

θj 6=0

m(θj)e
iθjX

1− q−1/2e−iθj




2

=
M∑

X=1


∑∗

θk 6=0

m(θk)e
iθkX

1− q−1/2e−iθk




∑∗

θl 6=0

m(θl)e
−iθlX

1− q−1/2eiθl


 .

Splitting out the diagonal term, the right hand side equals

M
∑∗

θj 6=0

m(θj)
2

|1− q−1/2e−iθj |2 +
∑∗

θk,θl 6=0
k 6=l

m(θk)m(θl)

(1− q−1/2e−iθk)(1− q−1/2eiθl)

M∑

X=1

ei(θk−θl)X .

We divide the last line by M , let M → ∞, and use (41) one more time to obtain

V[XE ] =
1

4

( √
q

√
q + 1

)2

+
∑∗

θj 6=0

m(θj)
2

|1− q−1/2e−iθj |2 .

This concludes the proof. �
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3. Ulmer’s family

The goal of this section is to prove the results stated in §1.2 regarding the function TE(X)
associated to the elliptic curves of Ulmer’s family in [28]. Let Fq(t) be the rational function
field over Fq. Following [28], we define Ed/Fq(t) to be the elliptic curve over Fq(t) given by
the Weierstrass equation

Ed : y
2 + xy = x3 − td,

and we write Td(X) for the function TE(X) that arises from Ed/Fq(t). Essential to us is the
following explicit description of their Hasse-Weil L-function.

Proposition 3.1. Suppose that d divides pn + 1 for some n, and let L(Ed/Fq(t), T ) be the
Hasse-Weil L-function of Ed over Fq(t). Then,

L(Ed/Fq(t), T ) = (1− qT )ǫd
∏

e|d
e∤6

(
1− (qT )oe(q)

)φ(e)/oe(q)
.

Here, φ(e) = #(Z/eZ)∗ is the Euler-phi function and oe(q) is the (multiplicative) order of q
in (Z/eZ)∗. Further, ǫd is defined as

ǫd :=

{
0 if 2 ∤ d or 4 ∤ q − 1

1 if 2|d and 4|q − 1
+





0 if 3 ∤ d

1 if 3|d and 3 ∤ q − 1

2 if 3|d and 3|q − 1

.

In particular we have an explicit formula for the analytic rank of Ed/Fq(t):

rank(E/Fq(t)) = ǫd +
∑

e|d
e∤6

φ(e)

oe(q)
.

Proof. This is essentially a corollary of the main results from [28]. To briefly highlight the
main ingredients, [28, Cor. 7.7 and Prop. 8.1] computes the characteristic polynomial, under
the action of Frobenius, of the (degree 2 component of the) étale cohomohology group for (a
certain quotient of) the Fermat surface of degree d, whose image under blow-ups provides
a smooth proper model for Ed over Fq(t). Under the assumption that d divides pn + 1 for
some n, this characteristic polynomial is given precisely by the expression in the statement
of the present proposition.

The statement about the rank is then a straightforward consequence of the formula for
the L-function of Ed/Fq(t). �

Proposition 3.2. Let c±(X) be defined as in (29). Then

Td(X) = −c±(X) +
ǫd

1− q−
1
2

+
∑

e|d
e∤6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2
+ oX→∞(1)

for X large enough, where 0 ≤ (X mod ℓ) ≤ ℓ−1 is the remainder in the Euclidean division
of X by ℓ.
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Proof. We combine Corollary 2.9 and Proposition 3.1 to obtain

(43) Td(X) = −c±(X) +
ǫd

1− q−
1
2

+
∑

e|d
e∤6

φ(e)

oe(q)

oe(q)−1∑

k=0

e2πikX/oe(q)

1− q−1/2e−2πik/oe(q)
+ oX→∞(1).

To simplify this, define

fℓ(X) :=
ℓ−1∑

k=0

e2πikX/ℓ

1− q−1/2e−2πik/ℓ

for any positive integer ℓ. Then,

fℓ(X) =

ℓ−1∑

k=0

e2πikX/ℓ
∞∑

m=0

q−m/2e−2πikm/ℓ =

∞∑

m=0

q−m/2
ℓ−1∑

k=0

e2πik(X−m)/ℓ

=

∞∑

m=0

q−m/2

{
ℓ if X ≡ m mod ℓ

0 otherwise
= ℓ

∞∑

j=0

q−((X mod ℓ)+jℓ)/2 =
ℓq−(X mod ℓ)/2

1− q−ℓ/2
.

Now, we use this with ℓ = oe(q) in (43) and finish the proof. �

As a first consequence we deduce the existence and a nontrivial lower bound for δ(Ed)
which is valid in general. We also get a conditional upper bound that will be used to prove
Proposition 3.7. It will be useful to consider the periodic part of Td(X), so we define

(44) T per
d (X) := −c±(X) +

ǫd

1− q−
1
2

+
∑

e|d
e∤6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2
.

(Note that T per
d (X) = Td(X) + oX→∞(1).)

Corollary 3.3. The density δ(Ed) exists; more precisely assuming that d ≥ 7 divides pn +1
for some n, the function T per

d (X) is 2n-periodic. Furthermore, one has

δ(Ed) ≥
1

2n
,

and, provided there exists some X0 ≥ 2 such that T per
d (X0) < 0, one also has

δ(Ed) ≤ 1− 1

2n
.

Proof. The existence of δ(Ed) is clear since Td(X) is periodic up to a function of size oX→∞(1).
Let us prove the second part of the statement. Let k ≥ 1 be the integer such that q = pk.

Note first that the expression
∑

e|d
e∤6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2

is 2n-periodic. This follows since p2n ≡ 1 mod d, which implies that q2n = p2kn ≡ 1 mod e
for every e | d, and hence oe(q) | 2n.

If X ≡ 0 mod 2n, then Proposition 3.2 implies that
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Td(X) = −c±(X) +
ǫd

1− q−
1
2

+
∑

e|d
e∤6

φ(e)
1

1− q−oe(q)/2
+ oX→∞(1),

a quantity which is positive for X large enough, since φ(d) is even for d ≥ 3 and thus

2

1− q−oe(q)/2
> c±(X).

Finally the upper bound is a trivial consequence of the 2n-periodicity of T per
d (X) and of

the existence of some X0 such that T per
d (X0) < 0, combined with the fact that Td(X) =

T per
d (X) + oX→∞(1). �

3.1. Cases of extreme bias for Ulmer’s family: proof of Theorem 1.5.

Proof of Theorem 1.5(i). If d and q satisfy one of the two stated assumptions, then ǫd ≥ 1.
Then, the statement easily follows because

−c±(X) +
ǫd

1− q−1/2
≥ − 1

1− q−1
+

1

1− q−
1
2

=
q−

1
2 − q−1

(1− q−1)(1− q−
1
2 )

> 0,

thus using Proposition 3.2 we see that Td(X) > 0 for all large enough X . �

Proof of Theorem 1.5(ii). By Proposition 3.2 and by positivity, we have (recall that p is large
enough, and therefore so is d)

Td(X) = −c±(X) +
ǫd

1− q−
1
2

+
∑

e|d
e∤6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2
+ oX→∞(1)

≥ φ(d)q−(X mod od(q))/2 − 1− op→∞(1)− oX→∞(1)

≥ φ(d)q−(od(q)−1)/2 − 1− op→∞(1)− oX→∞(1).

However, we have that q2n/k ≡ 1 mod d, that is od(q) | 2n/k. We conclude that

Td(X) ≥ φ(d)q
1
2 q−

n
k − 1− op→∞(1)− oX→∞(1)

= φ(d)q
1
2 (d− 1)−1 − 1− op→∞(1)− oX→∞(1).

This quantity is positive for large enough X , since d is large enough, φ(d)/(d− 1) ≥ (e−γ +

o(1))/ log log d and the condition on n implies that log log(pn + 1) ≤ q
1
2/2 + log log p+ 1.

�

Our aim is now to prove Theorem 1.5(iii). As a preliminary result we give examples of very
biased races, for which the lower bound of Corollary 3.3 is essentially sharp. We will then
show using a result of Goldfeld that there exist arbitrarily large values of p and d satisfying
the conditions of the statement (i) of the proposition.

Proposition 3.4. (i) Let d ≥ 7 and p ≥ 3 be two primes such that p is a primitive root

modulo d. Selecting q = p
d−1
2

+1, we have that Td(X) is quite biased towards negative
values; precisely

1

d− 1
≤ δ(Ed) ≤

4

d− 1
.

22



(ii) Assume that d = pn + 1 = 2ℓ with ℓ ≥ 7 a prime, p ≡ 3 mod 4 and n ≥ 4 an even
number. Pick q = pn−1. Then Td(X) is quite biased towards negative values; precisely

1

2n
≤ δ(Ed) ≤

2

n
.

Proof. (i) We first see that the conditions of Ulmer’s construction are satisfied. This is clear

since p
d−1
2 ≡ −1 mod d, hence d | pn + 1 with n = (d− 1)/2.

Note also that since d ≥ 5 is prime, ǫd = 0. Moreover, od(q) ∈ {(d − 1)/2, d − 1}. This
is clear since q ≡ −p mod d, and p is a primitive root modulo d. Proposition 3.2 then takes
the form

Td(X) = −c±(X) + φ(d)
q−(X mod od(q))/2

1− q−od(q)/2
+ oX→∞(1).

If X ≡ j mod (d− 1) with j /∈ {0, 1, (d− 1)/2, (d− 1)/2 + 1}, then

Td(X) ≤ −q−
1
2 + 2(d− 1)q−2/2 + oX→∞(1) = −q−

1
2

(
1− 2(d− 1)

p
d+1
4

)
+ oX→∞(1),

a quantity which is negative for X large enough since for d ≥ 7 and p ≥ 3 we have 4(d−1) <

p
d+1
4 . We have thus shown that Td(X) is negative for most of the values of X mod (d− 1).
Combining this with Corollary 3.3 we conclude that

1

d− 1
≤ δ(Ed) ≤

4

d− 1
.

(ii) First note that the given choice of paramaters ensures that ǫd = 0. Proposition 3.2
yields the formula

Td(X) = −c±(X) + φ(ℓ)
q−(X mod oℓ(q))/2

1− q−oℓ(q)/2
+ φ(2ℓ)

q−(X mod o2ℓ(q))/2

1− q−o2ℓ(q)/2
+ oX→∞(1).

We have qn ≡ (−p−1)n ≡ −1 mod d. We claim that n is the least positive integer such
that this congruence holds. Indeed this minimality condition holds by definition for the
congruence pn ≡ −1 mod d. Now q ≡ −p−1 mod d and n is even, thus the claim follows.
Since (Z/dZ)× is cyclic (it is isomorphic to (Z/ℓZ)×), this implies that od(q) = o2ℓ(q) = 2n.
Now consider an integer j such that 4 ≤ j ≤ 2n− 1. We have that

φ(2ℓ)
q−(j mod o2ℓ(q))/2

1− q−o2ℓ(q)/2
≪ ℓq−4/2 ≪ pn−2(n−1) = p2−n.

Hence, since −c±(j) < 0 and c±(j) ≫ q−
1
2 = p(1−n)/2, we have for p and X large enough and

n ≥ 4 that Td(X) < 0 as soon as X ≡ j mod 2n. Hence,

0 ≤ δ(Ed) ≤
2

n
.

As for the lower bound, it is given once more by Corollary 3.3.
�

We will now see that there are infinitely many choices of primes p and d in (i) of the
proposition (in which both can be arbitrarily large) for which p is a primitive root modulo
d. This is a corollary of the following result of Goldfeld.
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Theorem 3.5 (Goldfeld [15]). Let x ≥ 2 be a real number and let Li(x) :=
∫ x

2
(log t)−1dt.

Let 1 < A ≤ x. Then for each D ≥ 1,

(45) Na(x) := #{p ≤ x : a is a primitive root mod p} = cLi(x) +OD

(
x

(log x)D

)
,

for all a ≤ A with at most c(D)A
9
10 (5 log x + 1)D+2+ log x

logA exceptions, where c is Artin’s
Constant:

c :=
∏

p

(
1− 1

p(p− 1)

)
.

Corollary 3.6. We have for any fixed C ≥ 1 the estimate

∑

p,d≤x both prime
p is a primitive root mod d

1 = cLi(x)2
(
1 +OC

(
1

(log x)C

))
,

and as a consequence,

#{p, d ∈ (x, 2x] both prime : p is a primitive root mod d} ∼ 3cx2

(log x)2
.

Proof. Pick A = x and D = C in Goldfeld’s Theorem, and let A(x) be the set of a ≤ x for

which (45) does not hold, thus |A(x)| ≪C x
9
10 (log x)C+3. We then write

∑

p,d≤x both prime
p is a primitive root mod d

1 =
∑

p≤x

Np(x) =
∑

p≤x

cLi(x) +
∑

p≤x

(Np(x)− cLi(x))

= cLi(x)2 +O

(
∑

p≤x

|Np(x)− cLi(x)|
)

+O

(
x2

(log x)C

)
,

by the Prime Number Theorem. The first error term is bounded as follows:

∑

p≤x

|Np(x)− cLi(x)| =
∑

p≤x
p∈A(x)

|Np(x)− cLi(x)| +
∑

p≤x
p/∈A(x)

|Np(x)− cLi(x)|

≪C |A(x)|π(x) + x2

(log x)C+1
≪C

x2

(log x)C
.

�

Proof of Theorem 1.5(iii). This is a direct consequence of Proposition 3.4(i) and Corollary
3.6. Note that the curves Ed in Proposition 3.4 have rank either one or two (depending on
the parity of (d − 1)/2). Indeed the proof of Proposition 3.4 shows that the multiplicative
order of q modulo d is d − 1 (resp. (d − 1)/2) if (d − 1)/2 is even (resp. odd), and we get
the corresponding value of the rank by applying Proposition 3.1. �
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3.2. Cases of moderate bias for Ulmer’s family: proof of Theorem 1.7. We start
this section by proving a first result about moderate bias. We will later specialize in order
to obtain races which are not biased at all.

Proposition 3.7. Fix n ≥ 2 even, p ≡ 3 mod 4 and k ≥ 1. Pick q = pkn+1 and d = pn + 1.
Then for n fixed and p large enough, Td(X) is moderately biased, that is

1

2n
≤ δ(Ed) ≤ 1− 1

2n
.

Remark 3.8. Note that the bounds of Proposition 3.4(ii) are much more precise. However,
although we believe that there are infinitely many curves satisfying the hypotheses of Propo-
sition 3.4(ii), this seems hard to prove given the restrictive arithmetic conditions that d has
to satisfy.

Proof of Proposition 3.7. Since the given choice of paramaters ensures that ǫd = 0, Proposi-
tion 3.2 takes the form

Td(X) = −c±(X) +
∑

e|d
e∤6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2
+ oX→∞(1).

We now show that for each e | d with e ∤ 6, we have oe(q) ≥ 3. Note first that (p−1, e) and
(p+1, e) both divide 2. Indeed we have obviously (p−1, e) | (p−1, d) and (p+1, e) | (p+1, d).
We compute

(p− 1, d) = (p− 1, pn + 1) = (p− 1, pn−1 + 1) = · · · = (p− 1, p+ 1) = 2 ;

(p+ 1, d) = (p+ 1, pn + 1) = (p+ 1, pn−1 − 1) = (p+ 1, pn−2 + 1) = · · · = (p+ 1, p− 1) = 2 ,

since n is even. Note that e ∤ 6, and also d ≡ 2 mod 4 implies e 6= 4. We conclude from
the above computation that e ∤ (p + 1)(p − 1), that is oe(p) ≥ 3. Since q ≡ ±p mod e and
p 6≡ ±1 mod e, we also have that oe(q) ≥ 3.

Using this fact, we have that if X ≡ 2 mod 2n, then

Td(X) = −c±(X) +
∑

e|d
e∤6

φ(e)
q−2/2

1− q−oe(q)/2
+ oX→∞(1).

This last quantity is negative for large enough X ≡ 2 mod 2n, since c±(X) = 1+op→∞(1),
and

∑

e|d
e∤6

φ(e)
q−2/2

1− q−oe(q)/2
≪ q−1d ≪ pn−(kn+1) ≪ p−1,

which is negligible compared to c±(X). We conclude by invoking Corollary 3.3.
�

Proof of Theorem 1.7. Firstly, d | p2 + 1 ≡ 2 mod 3 if p 6= 3 (otherwise p2 + 1 ≡ 1 mod 3)
and q ≡ p ≡ 3 mod 4, hence ǫd = 0. Note also that if e | d with e /∈ {1, 2}, then q2 ≡ p2 ≡
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−1 mod e, hence oe(q) = 4. Proposition 3.2 becomes

Td(X) = −c±(X) +
∑

e|d
e 6=1,2

φ(e)
q−(X mod 4)/2

1− q−2
+ oX→∞(1),

hence T per
d (X) = −c±(X) +

∑
e|d, e 6=1,2 φ(e)q

−(X mod 4)/2(1− q−2)−1 is 4-periodic.
If X ≡ 0 mod 4, then

Td(X) = − q

q − 1
+
∑

e|d
e 6=1,2

φ(e)

1− q−2
+ oX→∞(1) ≥ −2 +

d− 2

1− q−2
+ oX→∞(1),

which is positive for X large enough.
If X ≡ 1 mod 4, then

Td(X) = − q
1
2

q − 1
+
∑

e|d
e 6=1,2

φ(e)q−
1
2

1− q−2
+ oX→∞(1) ≥ q−

1
2

(
d− 2

1− q−2
− 2

)
+ oX→∞(1),

which is again positive for X large enough.
As for X ≡ 2 mod 4, we have

Td(X) = − q

q − 1
+
∑

e|d
e 6=1,2

φ(e)q−1

1− q−2
+ oX→∞(1) ≤ −1 + 2dq−1 + oX→∞(1),

which is negative for X large enough since 2d ≤ 2(p2 + 1) < p5/2 ≤ q/2.
Finally, for X ≡ 3 mod 4 we have

Td(X) = − q
1
2

q − 1
+
∑

e|d
e 6=1,2

φ(e)q−
3
2

1− q−2
+ oX→∞(1) ≤ q−

1
2

(
−1 + 2dq−1

)
+ oX→∞(1),

which is negative for X large enough. Since Td(X) is positive for asymptotically half of the
values of X , we conclude that δ(Ed) =

1
2
. �

3.3. On the closure of the set of densities δ(Ed): proof of Theorem 1.8. We first
need the following preliminary result.

Proposition 3.9. Let p ≥ 17 and n ≥ 3 be primes such that n ∤ p + 1, and set d =
(pn + 1)/(p+ 1) and q = pk with k ≥ 4 even and coprime to n. Then the curve Ed has rank
exactly (d− 1)/n, and we have that

1

k
− 2

nk
≤ δ(Ed) ≤

1

k
+

1

2n
.

Proof. We first see that ǫd = 0. Indeed we have that

(46) d = 1− p+ p2 − p3 + · · ·+ pn−1 ≡ n ≡ 1 mod 2.

Moreover, if p ≡ 1 mod 3, then d ≡ 2/2 ≡ 1 mod 3. If p ≡ 2 mod 3, then we have

d = 1− p+ p2 − p3 + · · ·+ pn−1 ≡ 1− 2 + 1− 2 + · · ·+ 1 ≡ n 6≡ 0 mod 3,
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hence 6 ∤ d and ǫd = 0.
We will now show that for every e | d with e ∤ 6, oe(q) = n. First, pn ≡ −1 mod e, so

oe(p) ∈ {2, 2n} (indeed −1 6≡ 1 mod e since e ∤ 6). Note that (e, p+ 1) = 1; indeed

(d, p+ 1) = (pn−1 − pn−2 + pn−3 − · · ·+ 1, p+ 1) = (−2pn−2 + pn−3 − · · ·+ 1)

= · · · = (−(n− 1)p+ 1, p+ 1) = (n, p+ 1) = 1,

since n is prime and n ∤ p+ 1. We also have

(pn + 1, p− 1) = (pn−1 + 1, p− 1) = · · · = (p+ 1, p− 1) = 2,

hence (d, p− 1) = 1 (since d is odd by (46)). We conclude that (e, (p+ 1)(p− 1)) = 1, and
so since e > 1 (recall that e ∤ 6), p2 6≡ 1 mod e and thus oe(p) = 2n. Since (k, 2n) = 2, it
follows that oe(q) = n.

We now turn to the study of Td(X). We have

Td(X) = −c±(X) +
∑

e|d
e∤6

φ(e)
q−(X mod n)/2

1− q−n/2
+ oX→∞(1)

= −c±(X) + (d− 1)
q−(X mod n)/2

1− q−n/2
+ oX→∞(1).

If X ≡ j mod 2n with 0 ≤ j ≤ 2(n− 2)/k, then

Td(X) ≥ −2 + (d− 1)q−
n−2
k + oX→∞(1) ≥ −2 +

p

2
+ oX→∞(1),

which is positive for large enough X .
If X ≡ j mod 2n with (2n− 1)/k + 1 ≤ j ≤ 2n− 1, then

Td(X) ≤ − q−
1
2

1− q−1
+ 2(d− 1)q−

n−1/2
k

− 1
2 + oX→∞(1) ≤ − 1

q
1
2

+
4

(pq)
1
2

+ oX→∞(1),

which is negative for large enough X , since we have assumed p ≥ 17.
We conclude that

1

k
− 2

nk
≤ δ(Ed) ≤

1

k
+

1

2n
− 1

2nk
.

�

Proof of Theorem 1.8. From Theorems 1.5 and 1.7, we already know that {0, 1
2
, 1} ⊂ S.

Fix m ≥ 2 and ǫ > 0. Let p > min(17, 2ǫ−1), and pick a prime n > p+1, so that n ∤ p+1.
Letting k = 2m in Proposition 3.9, we find a curve Ed such that

1

2m
− ǫ ≤ δ(Ed) ≤

1

2m
+ ǫ.

The theorem follows since ǫ is arbitrary. �

The proof of Proposition 3.9 shows in fact that under the stated assumptions, 2n is the
smallest period of the periodic part T per

d (X) of Td(X).
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4. Central Limit Theorem

The goal of this section is to prove a Central Limit Theorem, in particular we will prove
Theorems 1.2(ii) and 1.3.

Definition 4.1. Recall from (10) and (38) that we denote the inverse zeros of L(E/K, T ) by
{γj = qeiθj} with j = 1, . . . , NE/K . Let ǫ(E/K) = ±1 be the sign of the functional equation
for E/K, that is, the unique number satisfying

(47) L(E/K, T ) = ǫ(E/K)(qT )NE/KL(E/K, 1/(q2T )).

(See e.g. [30, Th. 2.2.1].) Define the set of forced zeros of E/K to be

(48) FZ(E/K) :=





{ǫ(E/K)q} if NE/K is odd,

{q,−q} if NE/K is even and ǫ(E/K) = −1,

{} otherwise.

We will denote by {θ1, ..., θk} the set of angles which do not come from forced zeros of
L(E/K, T ). We will say that an elliptic curve E over K satisfies the linear independence
(LI) hypothesis if the multiset

{
θj/π : 0 < θj ≤ π, j ∈ {1, . . . k}

}
∪ {1}

is linearly independent over Q.

The idea behind this definition is quite simple. When we say that E/K satisfies LI, we are
willing to ignore any trivial multiplicative relation among the zeros, namely, the relations
coming from complex conjugation and forced zeros γ = ±q, as well as those γ = q arising
from the vanishing of L(E/K, T ) at the central point, or, a positive analytic rank of E/K.
In our work [6] we prove a stronger statement involving the possible multiplicative relations
among inverse zeros of reduced L-functions i.e. the Q-polynomial obtained by quotienting
L(E/K, T ) by the product of linear factors corresponding to FZ(E/K). (Note that any
forced zero γ = ±q would cause linear dependence over Q.) Indeed, our work [6] shows that
generically not only does LI hold, but also the rank is at most one.

Before we prove a Central Limit Theorem which implies Theorem 1.2(ii), we need several
lemmas.

Lemma 4.2. We have that

L′

L
(E/K, q−3/2) = OC(logq NE/K).

Proof. This is a function field analogue of Littlewood’s bound (L′/L)(1, χ) = O(log log q)
for Dirichlet characters χ modulo q. Let D be an effective divisor on the curve C (recall
that C/Fq is the curve whose function field is by definition K) i.e. D =

∑
v nv · v where

nv are nonnegative integers, nv = 0 for all but finitely many v’s, and v runs over the set
of places of K. Using the standard definition of the degree of a divisor (for D as above,
degD =

∑
v nv deg v), we let |D| := qdeg(D). Also, we define the von Mangoldt function on

C by

ΛC(D) =

{
deg v if D = nv · v for some v,

0 otherwise.
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Define

anv·v(E) = αv
nv + βv

nv ,

with notation as in §2.1, and further αv = av(E), βv = 0 if v is a place of bad reduction of
E/K. We claim that:

(49) − L′

L
(E/K, q−3/2) =

∑

D : D=nv·v
nv≥0, v place of K

ΛC(D)aD(E)

|D|3/2 .

To see this, we use (16), (17) which coincide in the case m = 1 (which is the relevant case)
and an exact version of their consequence (18).

We rewrite the right hand side of (49) as follows

(50)
∑

n≥1

∑

v place of K

deg v

qndeg v
· an·v(E)

q(n deg v)/2
.

The sum of the terms with n ≥ 2 is

≪
∑

n≥2

∑

v place of K

deg v

qndeg v
=
∑

d≥1

∑

v place of K
deg v=d

d

q2d
· 1

1− q−d
≪C

∑

d≥1

q−d =
1

q − 1
,

by (22). Next we split the rest of the sum (50) as S1 + S2 where

S1 :=
∑

d≤2 logq NE/K

d

qd

∑

v place of K
deg v=d

av(E)

qdeg v/2
, S2 :=

∑

d>2 logq NE/K

d

qd

∑

v place of K
deg v=d

av(E)

qdeg v/2
.

Applying again (22) we trivially have

S1 ≪C logq NE/K .

Finally we deduce S2 ≪ NE/K/q
logq NE/K = 1 from Theorem 2.2. �

The following sum over the angles θj which do not come from forced zeros gives an estimate
for the variance of the random variable XE.

Lemma 4.3. We have the estimate

IE :=
k∑

j=1

∣∣∣∣
2

1− q−
1
2 e−iθj

∣∣∣∣
2

=
2q

q − 1
NE/K +O

(
logNE/K + rank(E/K)

)
.

Proof. The quantity IE can be computed by evaluating the log derivative of (56) at T = q−1/2

(see Page 1370 in [4] for a similar calculation). We see that

(51) IE =
4q

q − 1

(
q−1/2L

′

L
(E/K, q−1/2)−

√
q

√
q − 1

rank(E/K)− k

)
.

The functional equation (47) yields

(52) q−1/2L
′

L
(E/K, q−1/2) = NE/K − q−3/2L

′

L
(E/K, q−3/2).
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This gives in turn

(53) IE =
2q

q − 1
NE/K +

4q

q − 1

(
1

2
−

√
q

√
q − 1

)
r(E/K)− 4

√
q

q − 1

L′

L
(E/K, q−3/2).

The desired estimate follows from an application of Lemma 4.2. �

The following lemma is an application of the Berry-Esseen inequality.

Lemma 4.4. Fix two parameters 0 < ǫ < 1 and 1 ≤ M ≤ ǫ−
1
2 , and assume that the

characteristic function X̂(ξ) of the random variable X satisfies the following properties:

(i) |X̂(ξ)| ≤ 10ξ−4 for |ξ| ≥ ǫ−
1
4 , and

(ii) | log X̂(ξ) + ξ2

2
| ≤ 10ǫ(Mξ2 + ξ4) for |ξ| ≤ ǫ−

1
4 .

Then, the distribution function FX(x) of X satisfies

sup
x∈R

|FX(x)−G(x)| ≪ Mǫ,

where G(x) is the distribution function of the Gaussian and the implied constant is absolute.
(The constant 10 appearing both in (i) and (ii) can be replaced by any positive absolute
constant.)

Proof. We will apply the Berry-Esseen inequality [10, Theorem 2a]

(54) sup
x∈R

|FX(x)−G(x)| ≪
∫ T

−T

X̂(ξ)− e−
ξ2

2

ξ
dξ +

1

T
.

Taking T = ǫ−1 and applying the hypotheses on X̂(ξ), we note that the integral equals
∫

|ξ|≤ǫ−
1
4

e−ξ2/2 e
O(ǫ(Mξ2+ξ4)) − 1

ξ
dξ +O

(∫

ǫ−
1
4 ≤|ξ|≤ǫ−1

∣∣∣∣
ξ−4

ξ

∣∣∣∣ dξ
)

≪
∫

|ξ|≤ǫ−
1
4

e−ξ2/2 ǫ(Mξ2 + ξ4)

|ξ| dξ + ǫ

≤ ǫ

∫

R

|Mξ + ξ3|e−ξ2/2 dξ + ǫ ≪ Mǫ.

The result follows.
�

Theorem 4.5. Suppose that {E/K} is a family of elliptic curves satisfying LI such that

(55)
rank(E/K)√

NE/K

→ 0

as NE/K → ∞. Let XE be the random variable associated to the limiting distribution of
TE(X) (see Corollary 2.8 in the case V = −U1), and define the normalized random variable

YE :=
√

q−1
q
XE/

√
NE/K. Then, YE converges in distribution to the standard Gaussian.

More precisely, the distribution function FE of YE satisfies

sup
x∈R

|FE(x)−G(x)| ≪ rank(E/K) + 1√
NE/K

,

where G denotes the distribution function of the Gaussian.
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Proof. Define m(E/K,−q) to be the multiplicity of the inverse zero γ = −q in L(E/K, T ).
Then, we can write

(56) L(E/K, T ) = (1 + qT )m(E/K,−q)(1− qT )rank(E/K)
k∏

j=1

[
(1− γjT )(1− γjT )

]
,

with γj = qeiθj and 0 < θj < π for j = 1, . . . , k. We have

(57) NE/K = m(E/K,−q) + rank(E/K) + 2k.

From (56) and Corollary 2.9, it is easy to deduce that

(58) TE(X) =

√
q

√
q − 1

rank(E/K)− c±(X)

− (−1)Xm(E/K,−q)

√
q

√
q + 1

+ 2
k∑

j=1

ℜ
(

eiθjX

1− q−
1
2 e−iθj

)
+ oX→∞(1).

From now on, we will assume that E/K satisfies LI. This implies in particular that

m(E/K,−q) =

{
1 if −q ∈ FZ(E/K),

0 if −q 6∈ FZ(E/K).

Define BE(ξ) by

(59) BE(ξ) :=
1

2
[exp(iB0 ξ) + exp(iB1 ξ)]

with

B0 :=

√
q

√
q − 1

rank(E/K)− q

q − 1
+m(E/K,−q)

√
q

√
q + 1

and

B1 :=

√
q

√
q − 1

rank(E/K)−
√
q

q − 1
−m(E/K,−q)

√
q

√
q + 1

.

To prove Theorem 4.5, we proceed as in [4, Th. 6.2]. First, we find from the expression
(58) that

(60) X̂E(ξ) = BE(ξ)

k∏

j=1

J0

(
2ξ

|1− q−
1
2 e−iθj |

)
.

Indeed, note that (58) implies that XE = X1+X2, where X1 is a Bernoulli random variable

with values B0 and B1, and X2 := 2
∑k

j=1ℜ(Zj)/|1−q−
1
2 e−iθj | with Zj uniformly distributed

on the unit circle in C. LI then implies that the random variables X1, Z1, Z2, . . . , Zk are
mutually independent, and therefore the characteristic function ofXE is given by the product
of the characteristic functions of these random variables. We then obtain (60) by performing
a standard calculation, noting that E[eitX1 ] = 1

2
eitB0 + 1

2
eitB1 , and E[eitℜ(Zj )] = J0(t).

31



It follows that the normalized random variable YE satisfies

log ŶE(ξ) = logBE

(√
q − 1

q

ξ√
NE/K

)
+

k∑

j=1

log J0

(∣∣∣∣
2

1− q−
1
2 e−iθj

∣∣∣∣
√

q − 1

q

ξ√
NE/K

)
.

The Taylor series of log J0(z) has radius of convergence slighly larger than 12/5, since J0(z)
has no zero in this region. Also, the argument of log J0 in the last equation never exceeds
6.83|ξ|/

√
NE/K in absolute value, and hence we have for |ξ| ≤ .35

√
NE/K that

log ŶE(ξ) = O

(
|ξ|rank(E/K)√

NE/K

)
− q − 1

4q

ξ2

NE/K

k∑

j=1

∣∣∣∣
2

1− q−
1
2 e−iθj

∣∣∣∣
2

+O

(
ξ4

NE/K

)
.

Given the assumptions of the theorem and Lemma 4.3, it follows that log ŶE(ξ) → − ξ2

2
pointwise as NE/K tends to infinity. In light of Levy’s theorem, this establishes the first part
of the theorem.

For the second part, we write Yi := (1 − q−1)−
1
2Xi/

√
NE/K (i = 1, 2), where the Xi were

defined earlier in the proof. We will apply Lemma 4.4 to the random variable Y2, with the
parameters ǫ := 1/NE/K, M = c(logNE/K +rank(E/K)), where c is the implied constant in
Lemma 4.3. With the help of Lemma 4.3, we see that the characteristic function of Y2

Ŷ2(ξ) =

k∏

j=1

J0

(∣∣∣∣
2

1− q−
1
2 e−iθj

∣∣∣∣
√

q − 1

q

ξ√
NE/K

)

satisfies the estimate

log Ŷ2(ξ) = −ξ2

2
+O

(
logNE/K + rank(E/K)

NE/K
ξ2 +

ξ4

NE/K

)

in the range |ξ| ≤ 0.35
√
NE/K ; hence (ii) of Lemma 4.4 holds for NE/K large enough.

Moreover, the bound log J0(x) ≤ −x2/2 valid for |x| ≤ 12/5 combined with Lemma 4.3
imply that

log Ŷ2(ξ) ≤ −(1 + o(1))
ξ2

2

for |ξ| ≤ 0.35
√
NE/K , and hence we clearly have Ŷ2(ξ) ≤ ξ−4 in this range. To show that (i)

of Lemma 4.4 holds, it remains to show that |Ŷ2(ξ)| ≪ ξ−4 in the range |ξ| ≥ 0.35
√
NE/K .

In the range |ξ| ≥ 5
√
NE/K , we use the bound |J0(x)| ≤

√
2/(π|x|) to deduce that

|Ŷ2(ξ)| ≤
k∏

j=1

(
1 + q−

1
2

(1− q−1)
1
2

√
NE/K

πξ

)
≤
(
7
√

NE/K

πξ

)k/2

,

a quantity which is ≤ ξ−4 as soon as |ξ| ≥ 5
√

NE/K (we used LI and the fact that k =

(1
2
+ o(1))NE/K, which follows from our assumption on the growth of the rank in terms of

NE/K).

The last range that we need to treat is 0.35
√
NE/K ≤ |ξ| ≤ 5

√
NE/K ; we need to show

that |Ŷ2(ξ)| ≤ ξ−4. For these values of ξ we always have that

0.28 ≤
∣∣∣∣

2

1− q−
1
2 e−iθj

∣∣∣∣
√

q − 1

q

|ξ|√
NE/K

≤ 35,
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and hence from the properties of the Bessel function J0,

|Ŷ2(ξ)| ≤ 0.981k.

This last quantity is ≤ ξ−4, since 0.981k ≤ (5NE/K)
−4 is clearly true for large enough NE/K .

The conclusion of Lemma 4.4 is then that the distribution function of Y2 satisfies

(61) sup
x∈R

|FY2
(x)−G(x)| ≪ rank(E/K) + logNE/K

NE/K

.

Now note that YE = Y1+Y2 and that |Y1| ≪ (rank(E/K)+1)/
√
NE/K with probability one.

Hence, denoting by Z a standard Gaussian random variable, we can apply (61) to deduce
the following about the distribution function of YE:

FE(x) = P[Y1 + Y2 ≤ x] = P[Y1 + Y2 ≤ x
∣∣ |Y1| ≪ (rank(E/K) + 1)/

√
NE/K ]

= P[Y2 ≤ x+O((rank(E/K) + 1)/
√
NE/K)]

= P[Z ≤ x+O((rank(E/K) + 1)/
√

NE/K)] +O

(
rank(E/K) + logNE/K

NE/K

)

= G(x) +O

(
rank(E/K) + 1√

NE/K

)
,

since e−x2/2 is bounded by 1. Noting that the above calculation is uniform in x, the result
follows. �

Proof of Theorem 1.2(ii). It is a consequence of Theorem 4.5. �

Corollary 4.6. Assuming LI, the condition rank(E/K) = o(
√

NE/K) implies the estimate

δ(E) =
1

2
+O

(
rank(E/K) + 1√

NE/K

)

Proof. Define the random variable YE :=
√

q−1
q
XE/

√
NE/K , and denote by FE(x) its distri-

bution function. We have by Theorem 4.5 that

1− δ(E) = FE(0) =
1

2
+O

(
rank(E/K) + 1√

NE/K

)
,

since the Gaussian is symmetric around 0.
�

Proof of Theorem 1.3. The proof is obtained by combining Corollary 4.6 and [6, Th. 2.3]
(choosing k = 1). Let us briefly recall what the latter result asserts. In the notation set
before stating Theorem 1.3 let f ∈ Fd(Fqn) and let γj(f) (seen as complex numbers after

fixing an embedding of Qℓ in C) be the set of inverse roots of L(Ef/K, T ) that are not forced
zeros (see (48)) of the Q-polynomial L(Ef/K;T ). By Deligne’s purity result the inverse roots
γj(f) all have the same modulus (equal to the cardinality of the subfield of constants in K)
so we may divide the γj(f)’s by the common modulus and write eiθj(f), θj(f) ∈ [0, 2π), for
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the complex numbers of modulus 1 thus obtained. The main object of study in [6] is the
multiplicative Z-module

Rel ((γj(f))) =

{
(nj) ⊆ Z :

∏

j

einjθj(f) = 1

}
,

which is the set of multiplicative relations among the inverse roots γj(f). Of course there
are multiplicative relations among the γj(f)

′s: the ones coming from the functional equation
satisfied by L(Ef/K, T ). In other words these relations come from the invariance of the set
of roots of L(Ef/K, T ) under inversion. In terms of the angles θj(f) ∈ [0, 2π), this can be
rephrased by saying that for each j, 2π − θj(f) is again the angle of some inverse root of
L(Ef/K, T ). In [6] these relations are called trivial and the Z-module Rel ((γj(f))) is called
trivial if it only consists of trivial relations. From [6, Th. 2.3] we know that for all p bigger
than a constant depending only on d, for all big enough p-power q := pm (precisely m has
to be bigger than a constant depending only on Fd := Fd × Fp) and for all d bigger than an
absolute constant,

(62) q−n(d+1)# {f ∈ Fd(Fqn) : Rel ((γ,j(f))) is nontrivial } ≪ nq−nγ−1

log q ,

where one can take 2γ = 4 + 7Nf (Nf − 1), the implied constant depends only on d and the
base curve E/K, and Nf is the degree of the the Q-polynomial L(Ef/K, T ).

Now we claim that

(63) d ≤ Nf ≤ 2d+ CE/K ,

where CE/K is a constant depending only on E/K. To see why this holds, first recall (see
e.g. [6, Th. 1.1(3)] and the references therein) that

Nf = degMf + 2degAf + 4(g − 1) .

Recall also that if ∆ ∈ K is the discriminant of the minimal Weierstrass model of E/K then
the discriminant of the minimal Weierstrass model of Ef/K is f 6∆ (see [6, Section 2.1]).
Thus the locus SingEf of bad reduction of Ef/K consists, besides the locus SingE of bad
reduction of the base curve E/K, of the irreducible factors of f . From the above formula
for Nf , one deduces

deg (SingEf) ≤ Nf ≤ 2 deg (SingEf ) + 4g .

We have ∑

π|f

[Fqdegπ : Fq] ≤ deg (SingEf ) ≤ deg (SingE) +
∑

π|f

[Fqdeg π : Fq]

where the summation is over irreducible factors π of f . Obviously this sum equals deg f = d.
The claim follows. Inserting the upper bound in (62) we obtain

(64) q−n(d+1)# {f ∈ Fd(Fqn) : Rel ((γ,j(f))) is nontrivial } ≪ nq−nd−2(14+bE/d)−1

log q ,

under the same conditions as in (62), and where bE is a constant depending only on E.
Next we use Corollary 4.6. To do so we note that if the Z-module Rel((γ,j(f))j) is trivial

then Ef/K satisfies LI and rank(Ef) ≤ 1. Indeed any non-trivial Q-linear relation8 involv-
ing elements of {1} ∪ {θj(f)/π ∈ [0, 1]} immediately leads (by clearing denominators and
exponentiating) to a non-trivial relation in Rel((γ,j(f))j). Moreover if rankEf ≥ 2 then one

8Note that the tuple of coefficients (r1, 0, . . . , 0), r1 ∈ Q×, does not give a Q-linear relation.
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of the θj(f)’s is zero (since the forced zeros contribute at most 1 to this count) which of
course produces a non-trivial relation. This discussion shows that (64) implies

(65) # {f ∈ Fd(Fqn) : Ef/K violates LI or rank(Ef ) ≥ 2} ≪ nqn(d+1) log q

qnd−2(14+bE/d)−1 ,

under the same conditions as in (64). Theorem 1.3 follows from combining this with Corol-
lary 4.6 and the lower bound in (63). �
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References

[1] A. Akbary, N. Ng, and M. Shahabi, Limiting distributions of the classical error terms of prime number

theory, Q. J. Math. 65 (2014), no. 3, 743–780, DOI 10.1093/qmath/hat059.
[2] S. Baig and C. Hall, Experimental data for Goldfeld’s conjecture over function fields, Exp. Math. 21

(2012), no. 4, 362–374, DOI 10.1080/10586458.2012.671638.
[3] A. Brumer, The average rank of elliptic curves. I, Invent. Math. 109 (1992), no. 3, 445–472.
[4] B. Cha, Chebyshev’s bias in function fields, Compos. Math. 144 (2008), no. 6, 1351–1374.
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