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1. Introduction. In this paper, we consider the following problem, and
its generalizations:

Let pn denote the nth prime, π the set of all primes, and Podd the set
consisting of every other prime:

(1.1) Podd = {pn ∈ π | n odd} = {2, 5, 11, 17, 23, . . .}.
Can the set Podd be realized as a finite union of primes in residue classes,

even if we are willing to allow a finite number of exceptions?
More generally, can we realize a given set of primes ideals in a number

field K with rational density relative to the full set of primes ideals of K as a
finite union of prime ideals that arise in the Chebotarev density theorem, i.e.
of Frobenius conjugacy classes in the Galois groups of finite Galois extensions
of K?

In the following we will identify the (positive) prime number p with the
ideal that it generates in the ring of integers.

The natural instinct is that the set Podd above cannot be realized in
this manner. In fact, the cardinality of subsets of primes with density 1/2
is uncountable, for example we can pick subsets by performing a random
coin flip at each prime, yet the number of residue classes (or, more generally,
Frobenius conjugacy classes) is countable. Therefore, most subsets of primes
will fail to arise from residue or conjugacy classes.

In this article we prove that Podd cannot be realized as a finite union of
primes in residue/conjugacy classes, even if we are willing to allow a finite
number of exceptions.

We will show that the set Podd is too ‘quiet’ relative to the set of all
primes to arise from such arithmetic sets. Primes in progressions, or in
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Frobenius conjugacy classes, are quantifiably irregular, as a result of the
non-trivial zeros of the L-functions that govern them.

1.1. Chebotarev sets. Let K be a number field, and let π(K) denote
the set of all non-zero prime ideals of K. Let L/K be a finite Galois exten-
sion of number fields with Galois group Gal(L/K) = G. For a prime ideal
p ∈ π(K), unramified in L/K, let (L/K, p) denote the conjugacy class of
Frobenius automorphisms of primes P ∈ π(L) dividing p. If C ⊂ G is a
conjugacy class in G, let π(L/K,C) denote the set of primes p ∈ π(K) such
that p is unramified in L/K and (L/K, p) is equal to C.

For two sets S1 and S2 the symmetric difference S1 4 S2 is the set
(S1 \ S2) ∪ (S2 \ S1). We will say two sets S1 and S2 are equal up to finite
sets if S1 4 S2 is finite.

Definition 1. Call a set of primes P ⊆ π(K) a Chebotarev set for K if
there are finitely many finite Galois extensions Li/K and conjugacy classes
Ci ⊂ Gal(Li/K) such that P =

⋃
i π(Li/K,Ci) up to finite sets. That is,

P 4
⋃
i π(Li/K,Ci) is finite.

We allow the possibility that P is the empty set (i.e. the number of fields
Li is zero).

Suppose that K ⊆ L′ ⊆ L is a tower of finite extensions with L′/K and
L/K both Galois. Then a conjugacy class in Gal(L′/K) can be lifted to a
finite union of conjugacy classes in Gal(L/K). Hence P is a Chebotarev set
for K if and only if there is a finite Galois extension L/K and a finite number
of distinct conjugacy classes Ci ⊂ Gal(L/K) such that P =

⋃
i π(L/K,Ci)

up to finite sets.

Given Chebotarev sets P,Q ⊆ π(K) the following properties are conse-
quences of the Chebotarev density theorem:

• the natural and Dirichlet densities δ(P ) exist and are equal to∑
i |Ci|
|G|

;

• if δ(P ) = 0 or 1 then P is finite or co-finite;
• if P,Q are Chebotarev sets then so are P ∪Q, P ∩Q, π(K)\P , P4Q.

Thus, any subset of π(K) with no density or irrational density cannot be a
Chebotarev set. Also, any set of density 0 (resp. 1) which is infinite (resp.
co-infinite) cannot be a Chebotarev set. So, for example, the set of (positive)
primes congruent to 3 mod 4 constitute a Chebotarev set of Q, but they are
generators of an infinite set of prime ideals of density 0 when viewed in
K = Q(i) and therefore do not form a Chebotarev set of K.
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Our problem is to produce a set P ⊂ π(Q) of positive rational density
which is provably not a Chebotarev set.

For a subset P ⊂ π(K) of prime ideals of K, let P (x) denote the function
which counts the number of elements in P and with absolute norm ≤ x:

(1.2) P (x) = #{p ∈ P | NK/Q(p) ≤ x}.

We also let

(1.3) π(x,K) = #{p ∈ π(K) | NK/Q(p) ≤ x}.

We have the following theorem.

Theorem 1. Let β ∈ Q with 0 < β < 1. Assume that P ⊂ π(K) is a
Chebotarev set of density β. Then

(1.4) P (x)− βπ(x,K) = Ω(x1/2/log x),

with the implied constant in the Ω depending on P .

Here, for real functions f, g with g > 0, we are using the Ω notation to
mean the following: We say that f(x) = Ω(g(x)) if lim sup |f(x)|/g(x) > 0,
i.e. if there is a constant c > 0 and a sequence xn with xn → ∞ such that
|f(xn)| > cg(xn).

Corollary 1. The set Podd is not a Chebotarev set.

Proof. The set Podd specified in the introduction has natural density
(and hence Dirichlet density) 1/2 in π(Q). Because Podd consists of every
other prime, we have

(1.5) Podd(x)− π(x)/2 =

{
1/2 if p2j−1 ≤ x < p2j ,

0 if p2j ≤ x < p2j+1.

Therefore Theorem 1 implies that Podd cannot be realized as a Chebotarev
set.

As we will explain in the proof of this theorem, the same conclusion
holds if we replace the counting function βπ(x,K) by β Li(x), or with the
counting function sQ(x) of another Chebotarev set Q ⊆ π(K) of non-zero
density δ(Q), which is essentially distinct from P , so long as sδ(Q) = β. By
essentially distinct, we mean that the symmetric difference P4Q is infinite.

Theorem 2. Let P ⊂ π(K) be a Chebotarev set of density β, 0 < β < 1,
and let f(x) stand for β Li(x) or sQ(x), as above. Then

(1.6) P (x)− f(x) = Ω(x1/2/log x),

with the implied constant depending on P and f .
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In a personal communication with the authors, Serre raised the ques-
tion of whether our techniques allow us to address the size of a summatory
function on prime ideals of K with complex valued weight function that is
constant on Frobenius conjugacy classes of G, i.e. a sum of the form

(1.7)
∑

p:Np≤X
punramified

h(p)

with h complex valued and taking on finitely many values according to
conjugacy classes of G. Such a summatory function can be expressed as a
linear combination of counting functions π(x, L/K,C).

More specifically, let C1, . . . , Cr be the distinct conjugacy classes of G.
Let η1, . . . , ηr be complex numbers not all 0, let η be defined by

(1.8) η :=
r∑
j=1

ηjδ(Cj) =
1

|G|

r∑
j=1

ηj |Cj |,

and let π(x, L/K,C) be defined by (3.2).

Theorem 3. Let

(1.9) F (x) =

r∑
j=1

ηjπ(x, L/K,Cj).

Then

(1.10) F (x)− η Li(x) = Ω(x1/2/log x),

with the implied constant depending on the choice of the set {ηj}. Further-
more, the same result holds if we replace Li(x) by π(x,K), though one then
needs the additional restriction that not all the ηj are equal.

The key idea used to prove these theorems is that the functions on the
left hand side of (1.4), (1.6), and (1.10) are discontinuous at an infinite
number of values of x. Consequently, when expressed as a linear combination
of explicit formulas, infinitely many of the non-trivial zeros of the relevant
L-functions must survive. These zeros (in fact we only need one non-trivial
zero to enter) are responsible for making these differences large on average,
which we show by considering their mean square on a logarithmic scale.

Note that the statements of Theorems 1–3 do not assume the General-
ized Riemann Hypothesis. In fact, if the GRH does not hold, stronger Ω
results than these hold, hence we have stated these theorems unconditional
on the GRH.

The precise statement of the Ω bound in the case that the GRH fails
requires some discussion concerning the location of the zeros of the relevant
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L-functions, and how these zeros interact upon taking certain linear combi-
nations of the logarithmic derivatives of these L-functions. This discussion
and the corresponding result can be found in Section 2.5 and in Theorem 6
at the end of Section 3.1.

Also observe that in our theorems we do not prove Ω± results, i.e. we
do not address the question of sign changes. Without further assumptions,
such as linear independence of the non-trivial zeros over Q (other than those
possibly occurring at s = 1/2), we cannot, in general, prove the existence of
sign changes. For a discussion on issues related to sign changes see [7].

Definition 2. Call a set of primes P ⊆ π(K) an almost Chebotarev set
for K if there is a Chebotarev set Q ⊆ π(K) such that P = Q up to sets of
density zero. That is, P 4Q has density zero.

It seems much more difficult to prove the existence of a set which is not
almost Chebotarev—although we suspect that our example, Podd, is one
such set.

We conclude the introduction by noting that Serre studied ‘Frobenian’
(i.e. named differently than here) sets and functions in his paper [8] and
book [9, Chapter 3], the latter in relation to the problem of counting the
number of solutions modulo p to a system of polynomial equations. Lagarias
defined a similar notion of Chebotarev sets in [5], also for studying solutions
to polynomial congruences modulo p. See Lemma 3.1 in his paper for the
equivalence of his definition to ours, though without allowing for finitely
many exceptions.

2. The classical case. In this section we consider the more classical
situation of sets P of rational primes that are realized using residue classes.
We will essentially establish Theorem 1 for the special case of residue classes,
rather than Frobenius conjugacy classes.

The techniques that we develop will serve as a model, in Section 3, where
we will modify our approach to the general setting of Chebotarev sets.

Assume that

(2.1) P = P0 ∪
r⋃
j=1

π(qj , aj) \ P1

where P0, P1 consist of finitely many elements, i.e. the possible exceptions
in excess and deficiency, and

(2.2) π(q, a) = {p prime | p = a mod q}

consists of rational primes in the residue class a mod q.
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As noted in the introduction, there is a single positive integer q and
distinct residue classes aj mod q such that, after relabelling r as needed,

(2.3) P = P0 ∪
r⋃
j=1

π(q, aj) \ P1.

We can also assume that gcd(aj , q)=1, that P0 is disjoint from
⋃r
j=1π(qj , aj),

and P1 is contained within this union.
Next, we define, as usual,

(2.4) π(x, q, a) = #{p ≤ x | p = a mod q}.
From (2.3), we have, for x larger than all the elements of P0 and P1,

(2.5) P (x) = λ+
r∑
j=1

π(x, q, aj),

where

(2.6) λ = |P0| − |P1|.
The prime number theorem states that

(2.7) π(x) ∼ Li(x),

where

(2.8) Li(x) =

x�

2

dt

log t
∼ x

log x
.

The prime number theorem for arithmetic progressions, proven by Hada-
mard and de la Vallée Poussin, asserts, for gcd(a, q) = 1, that primes are
equidistributed amongst the residue classes modulo q that are relatively
prime to q:

(2.9) π(x, q, a) ∼ π(x)/φ(q),

where φ(q) = #{a mod q | (a, q) = 1}. Therefore,

(2.10) P (x) ∼ r

φ(q)
π(x).

We also make the assumption that

(2.11) r/φ(q) < 1,

so that P omits a positive proportion of the primes.

2.1. Outline of proof. We now provide a summary of our proof of
Theorem 1 in the case of residue classes. We begin with the classical for-
mula (2.15) which uses Dirichlet characters to count prime powers in arith-
metic progressions, weighted by the von Mangoldt function. A summation
by parts, and isolating the squares and higher powers of primes, allows us to
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pass to counting primes in arithmetic progressions in formula (2.23). This
leads to formula (2.12) for P (x)− rπ(x)/φ(q) in Lemma 2.1.

We then apply the explicit formula, in Section 2.3, to derive equa-
tion (2.29) in Lemma 2.2. That lemma expresses P (x)−rπ(x)/φ(q) in terms
of non-trivial zeros of Dirichlet L-functions, along with two complicated,
but innocuous, terms which are denoted by A(x) and B(x). We then exploit
the fact that P (x) − rπ(x)/φ(q) is discontinuous at the primes to show, in
Lemma 2.3, that the sum over zeros is non-empty.

Having at least one non-trivial zero appear in (2.29), i.e. with αρ 6= 0,
guarantees the Ω bound of Theorem 1, whether the Generalized Riemann
Hypothesis is false or not. The former case is considered in Theorem 4 of
Section 2.5. The latter case is handled in Sections 2.6–2.8 by considering
mean squares of P (x)− rπ(x)/φ(q).

Finally, we generalize our results from the classical case of residue classes
to Chebotarev sets in Section 3.

2.2. Counting primes in arithmetic progressions. Our first step is
to derive the following lemma, which expresses P (x)− rπ(x)/φ(q) in terms
of Dirichlet characters.

Lemma 2.1. For x larger than all the elements of P0 and P1,

(2.12) P (x)− r

φ(q)
π(x)

= λ+
r∑
j=1

π(x, q, aj)−
r

φ(q)
π(x)

= λ+
∑

χmod q
χ 6=χ0

cχ

(
ψ(x, χ)

log x
+

x�

2

ψ(t, χ)

t(log t)2
dt

)
+
rR(x, 1)

φ(q)
−

r∑
j=1

R(x, q, aj)

− r

φ(q)

(∑
pk≤x, p|q log p

log x
+

x�

2

∑
pk≤t, p|q log p

t(log t)2
dt

)
,

where λ is defined in (2.6), R(x, 1) and R(x, q, a) are defined, below,
in (2.25) and (2.19), and

(2.13) cχ =
1

φ(q)

r∑
j=1

χ̄(aj).

Proof. For a given q, let χ be a Dirichlet character modulo q. We will
denote the principal character by χ0.

As in the proof of Dirichlet’s theorem, it is easier to count prime powers
weighted by the von Mangoldt function than it is to simply count primes.
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Thus, let

(2.14) ψ(x, χ) :=
∑
n≤x

χ(n)Λ(n),

where Λ(n) = log p if n = pm for some m ∈ Z, and Λ(n) = 0 otherwise.
We have

ψ(x, q, a) :=
∑
n≤x

n≡amod q

Λ(n)(2.15)

=
1

φ(q)

∑
χmod q

χ̄(a)
∑
n≤x

Λ(n)χ(n)

=
1

φ(q)

∑
χmod q

χ̄(a)ψ(x, χ).

The main contribution to ψ(x, q, a) comes from the principal character:

(2.16) ψ(x, χ0) =
∑
pk≤x
p-q

log p = ψ(x)−
∑
pk≤x
p|q

log p.

Therefore

(2.17) ψ(x, q, a) =
1

φ(q)

(
ψ(x) +

∑
χmod q
χ 6=χ0

χ̄(a)ψ(x, χ)−
∑
pk≤x
p|q

log p
)
.

We define

Π(x, q, a) :=
∑
n≤x

n≡amod q

Λ(n)

log n
=

∑
pk≤x

pk≡amod q

1

k
(2.18)

= π(x, q, a) +R(x, q, a)

with

(2.19) R(x, q, a) =
∑
pk≤x
k≥2

pk≡amod q

1

k
.

Therefore,

(2.20) π(x, q, a) = Π(x, q, a)−R(x, q, a).

Now, summing by parts yields

(2.21) Π(x, q, a) =
ψ(x, q, a)

log x
+

x�

2

ψ(t, q, a)

t(log t)2
dt,

so that

(2.22) π(x, q, a) =
ψ(x, q, a)

log x
+

x�

2

ψ(t, q, a)

t(log t)2
dt−R(x, q, a).
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Substituting (2.17) into the above, we get

(2.23) π(x, q, a)

=
1

φ(q)

(
ψ(x)

log x
+

x�

2

ψ(t)

t(log t)2
dt−

∑
pk≤x, p|q log p

log x
−
x�

2

∑
pk≤t, p|q log p

t(log t)2
dt

)

+
1

φ(q)

∑
χmod q
χ 6=χ0

χ̄(a)

(
ψ(x, χ)

log x
+

x�

2

ψ(t, χ)

t(log t)2
dt

)
−R(x, q, a).

The special case of q = 1 (and any value for a) of (2.22) is

π(x) =
ψ(x)

log x
+

x�

2

ψ(t)

t(log t)2
dt−R(x, 1),(2.24)

with

(2.25) R(x, 1) =
∑
k≥2

π(x1/k)

k
.

With these formulas in hand, consider again the difference P (x) −
r

φ(q)π(x). Subtracting r
φ(q)π(x) from (2.5), and then substituting (2.23)

and (2.24), gives the lemma.
Note, that, on summing over r values of aj and subtracting r/φ(q)

times (2.24), we cancelled the main term

(2.26)
r

φ(q)

(
ψ(x, χ0)

log x
+

x�

2

ψ(t, χ0)

t(log t)2
dt

)
.

2.3. Applying the explicit formula. We will show that the right
hand side of (2.12) can get as large, in absolute value, as� x1/2/log x. This
will be independent of the GRH. In fact, if GRH fails, the lower bound that
we can prove is at least as large.

To accomplish this, we will write an explicit formula for (2.12) in terms of
the zeros of the Dirichlet L-functions, L(s, χ), where χ runs over all Dirichlet
characters for the modulus q.

The explicit formula for ψ(x, χ), where χ 6= χ0 is a primitive character,
takes the form, for x > 1 not a prime power,

(2.27) ψ(x, χ) = −
∑
ρχ

xρχ

ρχ
− (1− aχ) log x− b(χ) +

∞∑
m=1

xaχ−2m

2m− aχ
,

where ρχ runs over the non-trivial zeros of L(s, χ), with the sum over zeros
taken as limX→∞ |=ρχ| < X. Also, aχ = 1 if χ(−1) = −1 and 0 other-
wise, and b(χ) is a constant depending on χ, namely the constant term
in the Laurent expansion about s = 0 of (L′/L)(s, χ) (Taylor expansion if
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χ(−1) = −1). If x is a prime power, the right hand side above converges
to ψ(x, χ) − Λ(x)χ(x)/2, i.e. one needs to subtract half of the last term in
the sum defining ψ(x, χ). For a derivation of this explicit formula see, for
instance, Davenport [2, pp. 115–120].

When χ is an imprimitive character, say induced by χ1 mod q1, then

(2.28) ψ(x, χ) = ψ(x, χ1)−
∑
pk≤x
p|q

(log p)χ1(pk).

For notational convenience, in the case of imprimitive χ, we set aχ = aχ1

and also b(χ) = b(χ1).

Therefore, we have shown that we can rewrite (2.12) in the following
form.

Lemma 2.2. For x > max(λ, 1), and not a prime power,

P (x)− r

φ(q)
π(x) =

1

log x

∑
ρ

αρ
xρ

ρ
+A(x) +B(x),(2.29)

where αρ ∈ C (described below in (2.32)), and the sum over ρ is taken over
the union over the non-trivial zeros of all L(s, χ), χ mod q, χ 6= χ0.

Here, the function A(x) gathers together all the remaining terms that are
discontinuous:

A(x) =
rR(x, 1)

φ(q)
−

r∑
j=1

R(x, q, aj)−
r

φ(q)

∑
pk≤x, p|q log p

log x
(2.30)

− 1

log x

∑
χmod q
χ 6=χ0

χ imprimitive

cχ
∑
pk≤x
p|q

(log p)χ1(pk),

and B(x) incorporates the rest:

(2.31) B(x) = λ− r

φ(q)

x�

2

∑
pk≤t, p|q log p

t(log t)2
dt+

∑
χmod q
χ 6=χ0

cχ

(x�
2

ψ(t, χ)

t(log t)2
dt

− (1− aχ) +
b(χ)

log x
− 1

log x

∞∑
m=1

xaχ−2m

2m− aχ

)
.

Recall that cχ is given in (2.13). The role of the sum over imprimitive
characters in A(x) is to account for (2.28).

We assume that the ρ in (2.29) are distinct, by grouping equal ρ under the
same αρ. In the case of imprimitive characters, the non-trivial zeros of L(s, χ)
coincide with those of the Dirichlet L-function L(s, χ1), corresponding to the
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inducing character χ1. More precisely, for given ρ,

(2.32) αρ = −
∑

χmod q
χ 6=χ0

cχmχ(ρ),

where mχ(ρ) is the multiplicity of the zero ρ for L(s, χ).

We believe that

(2.33) αρ = Oq(1)

as cχ = O(1), and we expect, for given χ and ρ, that mχ(ρ) = 0 or 1 (i.e.
we expect ρ to be at most a simple zero of L(s, χ)). More should be true:
distinct L(s, χ), for primitive χ, presumably have distinct zeros.

For our purposes, we only need an estimate for the number of zeros in
an interval, and we will use the following estimate:

(2.34)
∑
|=ρ|<T

|αρ| = Oq(T log T ).

The above bound follows from the asymptotic formula for the number of
zeros of L(s, χ) given in (2.56), which also implies the following estimate
that we will use:

(2.35)
∑

n≤|=ρ|<n+1

|αρ| = Oq(log n) as n→∞.

Lemma 2.3. Infinitely many αρ in (2.29) are non-zero.

Proof. Notice that A(x) has jump discontinuities at a relatively thin set
of prime powers: R(x, 1) and R(x, q, aj) jump when x is a prime power pk

with k ≥ 2. The remaining terms in A(x) jump at prime powers pk with
p | q, k ≥ 1. Hence, overall, A(x) has only finitely many jump discontinuities
at the primes, namely the primes p that divide q. Furthermore, every term
that appears in B(x) is continuous with respect to x. But P (x) − r

φ(q)π(x)

is discontinuous at all primes (our assumption that r/φ(q) < 1 enters here).

Therefore, the sum over ρ in (2.29) must have infinitely many terms
with αρ 6= 0, otherwise the sum over ρ would be a continuous function for
all x.

2.4. Ω results. The fact that at least one αρ is non-zero is a crucial
point, and we are now in a position to obtain our Ω results.

Let Θ be the lim sup of the real parts of the zeros ρ such that αρ 6= 0,
i.e. the zeros that appear in (2.29):

(2.36) Θ = lim sup{<ρ | αρ 6= 0}.

Equivalently, from (2.12), Θ is the lim sup of the real parts of the poles of
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the function

(2.37) −
∑
χ 6=χ0

cχ
L′(s, χ)

L(s, χ)
,

and also of the real parts of the singularities of

(2.38)
∑
χ 6=χ0

cχ logL(s, χ).

Notice that Θ ≥ 1/2, since the zeros of L(s, χ) that occur off the half-line
(assuming GRH fails) come in pairs, ρ and 1− ρ, symmetric about the line
<s = 1/2.

2.5. Ω bound, assuming Θ > 1/2. We first assume that Θ > 1/2, i.e.
the GRH fails, and at least one zero to the right of <(s) = 1/2 survives in
the explicit formula on taking the linear combination in (2.12).

We will prove the following theorem.

Theorem 4. Assume that Θ > 1/2. Then, for every δ > 0,

(2.39) P (x)− r

φ(q)
π(x) = Ω(xΘ−δ),

with the implied constant depending on δ and q.

Proof. We do so by establishing, assuming Θ > 1/2, the estimate

(2.40)
r∑
j=1

Π(x, q, aj)−
r

φ(q)
Π(x) = Ω(xΘ−δ).

The left hand side above is easier to work with than (2.39), since L-func-
tions naturally count prime powers rather than just primes. Notice that
Π(x, q, a)− π(x, q, a) = Oq(x

1/2/log x) and Π(x) − π(x) = O(x1/2/log x)
(see (2.47) and (2.48) below). Hence, for 0 < δ < Θ−1/2, we see that (2.40)
implies (2.39). The bound (2.39) then holds for every δ > 0, since taking δ
larger gives a weaker bound.

For a contradiction, assume that (2.40) does not hold, i.e. there exists
a δ > 0 such that |

∑r
j=1Π(x, q, aj) − r

φ(q)Π(x)| � xΘ−δ. Consider the

Dirichlet integral (akin to Dirichlet series, see [4, Chapter 5])

(2.41)

∞�

1

∑r
j=1Π(x, q, aj)− r

φ(q)Π(x)

xs+1
dx

=
1

s

∑
χ

cχ logL(s, χ)− r

sφ(q)
log ζ(s)

=
1

s

∑
χ 6=χ0

cχ logL(s, χ) +
r

sφ(q)

∑
p|q

log(1− p−s).
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One can prove this identity, when <s > 1, by observing that the numerator
of the integrand is a step function with steps at prime powers, and then
integrating termwise the contribution from each prime power. The assump-
tion that <s > 1 is used to rearrange integration and summation, and also
to identify the resulting Dirichlet series with the right hand side above.

Notice that the right hand side above has singularities (branch cuts)
coming from the zeros of L(s, χ), specifically from the ρ with αρ 6= 0, i.e.
those that survive the linear combination

∑
χ 6=χ0

cχ logL(s, χ). There are
also some additional singularities originating on the line <s = 0.

Now, if the numerator of the above integrand is � xΘ−δ, then the left
hand side of (2.41) defines an analytic function for <s > Θ − δ. But this
contradicts, from the definition of Θ, the fact that the right hand side has
singularities in this half-plane. Therefore,

(2.42)
r∑
j=1

Π(x, q, aj)−
r

φ(q)
Π(x) = Ω(xΘ−δ)

for all δ > 0.

This establishes the theorem. By taking δ sufficiently small, it also proves
Theorem 1, for residue classes, in the case that Θ > 1/2.

2.6. Ω estimate in the classical case, assuming Θ = 1/2. In this
subsection, we assume that Θ = 1/2. This can occur in two ways: either
if the GRH holds, or if the only zeros surviving the linear combination of
explicit formulas arising from (2.12) are on the half-line.

Theorem 5. If Θ = 1/2, then

(2.43) P (x)− r

φ(q)
π(x) = Ω(x1/2/log x).

While we could modify the approach given in the previous subsection, it
is complicated by the presence of the squares of primes. We could adapt the
approach described in Ingham [4] for the problem of ψ(x) − x, and prove
that

(2.44)
r∑
j=1

Π(x, q, aj)−
r

φ(q)
Π(x) = Ω±(x1/2/log x),

i.e. the difference of these prime power counting functions gets, in size, as
large as a constant times x1/2/log x, and points in both positive and nega-
tive directions for infinite sequences of x → ∞. Now the squares of primes
contribute an amount to P (x)− r

φ(q)π(x) that is asymptotically a constant

times x1/2/log x, i.e. of the same size as (2.44), but always pointing in one
direction. Hence, estimate (2.44) would establish (2.43).
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Instead, however, we will take an alternate approach that yields more
information. We will consider two mean square averages of the remainder
term, each giving a separate proof of (2.43). Both averages are of interest in
their own right. To do so we first prove the following lemma which provides
for a more manageable formula in comparison to Lemma 2.2.

Lemma 2.4. Let

(2.45) κ =
1

φ(q)

r∑
j=1

∑
b2=aj mod q

1.

Then, writing ρ = 1/2 + iγ, we have

(2.46)

P (x)− r

φ(q)
π(x) =

x1/2

log x

( ∑
0<|γ|<X

αρ
xiγ

ρ
+ ν +O

(
x1/2(logX)2

X
+

1

log x

))
,

where ν is equal to r/φ(q) − κ plus, if the term ρ = 1/2 appears in (2.29),
2α1/2.

Proof. We first bound each term that appears in A(x), B(x). The prime
number theorem and (2.25) give

(2.47) R(x, 1) = π(x1/2)/2+O(x1/3/log x) = x1/2/log x+O(x1/2/(log x)2).

Similarly, from the prime number theorem for arithmetic progressions,

(2.48)
r∑
j=1

R(x, q, aj) = κx1/2/log x+Oq(x
1/2/(log x)2),

with the implied constant in the O depending on q, and with κ defined
above.

Finally, there are only finitely many p | q. Furthermore, pk ≤ x implies
that k ≤ (log x)/log p. Hence

∑
pk≤x, p|q log p = Oq(log x), and so

(2.49)

−1

2

∑
pk≤x, p|q log p

log x
− 1

log x

∑
χmod q
χ 6=χ0

χ imprimitive

cχ
∑
pk≤x
p|q

(log p)χ1(pk) = Oq(1).

Putting these together gives

(2.50) A(x) = (r/φ(q)− κ)x1/2/log x+Oq(x
1/2/(log x)2).

To estimate B(x), notice that

(2.51)

x�

2

∑
pk≤t, p|q log p

t(log t)2
dt�q

x�

2

dt

t log t
� log log x.
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Thus, because λ and the second line of (2.31) are bounded, we have

B(x)�q

∣∣∣∣∑
χ 6=χ0

cχ

x�

2

ψ(t, χ)

t(log t)2
dt

∣∣∣∣+ log log x.(2.52)

Let

(2.53) G(x, χ) =

x�

2

ψ(t, χ)

t
dt.

Equation (5), p. 117 of Davenport [2] gives the explicit formula with a rate
of convergence:

ψ(x, χ) = −
∑

|=ρχ|<X

xρχ

ρχ
+Oq(x(log xX)2/X + log x),(2.54)

valid for x ≥ 2 (or else for x > 1 by adding a 1 to the O term). Note
that this formula, with the O(log x) included, is true for both primitive and
imprimitive characters, and whether x is equal to a prime power or not. We
have also absorbed the last three terms of (2.27) into the O term above.
Thus, integrating and letting X →∞, we obtain

(2.55) G(x, χ) = −
∑
ρχ

xρχ

ρ2
χ

+Oq((log x)2).

The above series over ρχ converges absolutely, as can be seen from the
asymptotic formula for the number of zeros [2, p. 101],

(2.56) N(T, χ) := #{ρχ | |=ρχ| ≤ T} =
T

π
log

qT

2π
− T
π

+O(log T + log q).

Summing over χ we get

(2.57)
∑
χ 6=χ0

cχ

x�

2

ψ(t, χ)

t
dt = −

∑
ρ

αρ
xρ

ρ2
+Oq((log x)2),

with the sum over all non-trivial zeros ρ of all L(s, χ) for the modulus q.
The same coefficients αρ appear here as in (2.29) because the same lin-
ear combination of the terms involving the zeros ρ appears as in the sum∑

χ 6=χ0
cχψ(x, χ).

It follows, on integrating by parts, that

(2.58)
∑
χ 6=χ0

cχ

x�

2

ψ(t, χ)

t(log t)2
dt�q

x1/2

(log x)2

∑
ρ

|αρ|
|ρ|2
�q

x1/2

(log x)2
.

The last bound follows, on summing by parts, from (2.34).
Thus, returning to (2.52), we get

(2.59) B(x)�q
x1/2

(log x)2
.
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Thus, our estimates (2.50) and (2.59) for A(x) and B(x) give

(2.60) P (x)− r

φ(q)
π(x)

=
1

log x

(∑
ρ

αρ
xρ

ρ
+

(
r

φ(q)
− κ
)
x1/2 +O(x1/2/log x)

)
,

By (2.54), for 2 ≤ x < X, we can write this as a finite sum over ρ, as ex-
pressed in (2.46). The assumption x < X is used here to simplify, in (2.54),
log(xX) by logX. We also use it below when estimating the contribution
from the above O term.

Finally, we need to deal with the possibility of non-trivial zeros at
s = 1/2. Such terms contribute 2α1/2x

1/2/log x to the sum in (2.46).

2.7. A mean square estimate of the average difference. We con-
tinue with our proof of Theorem 5. Let

(2.61) ∆(x) :=
log x

x1/2

(
P (x)− r

φ(q)
π(x)

)
.

Rather than work with ∆(x) directly, it is technically easier to work with
its average:

(2.62) M(x) :=
1

x

x�

2

∆(t) dt =
∑
ρ 6=1/2

αρ
xiγ

ρ(iγ + 1)
+ ν +O(1/log x).

The latter equality can be derived by integrating the bracketed expression
in (2.46) termwise, and letting X →∞. Recall that ν is defined in (2.46).

The lemma below will be used to prove our Ω bound (2.43).

Lemma 2.5. The following holds:

(2.63) lim
Y→∞

1

Y

Y�

log 2

|M(ey)|2 dy =
∑
|γ|>0

|αρ|2

|ρ(iγ + 1)|2
+ ν2 > 0.

Proof. For any ε > 0, there exists T = T (ε) such that

(2.64) M(x) =
∑

0<|γ|<T

αρ
xiγ

ρ(iγ + 1)
+ ν + V (x),

where

(2.65) V (x) < ε

for all x sufficiently large. This can be obtained using estimate (2.35) to
show that the sum in (2.62) converges absolutely, and hence uniformly in x.
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The natural scale at which to analyze the explicit formula is logarithmic.
Set y = log x, and consider

(2.66)
1

Y

Y�

log 2

|M(ey)|2 dy.

Substitute the right hand side of (2.64) for M(ey). Now,

lim
Y→∞

1

Y

Y�

log 2

∣∣∣∣ ∑
0<|γ|<T

αρ
eiγy

ρ(iγ+1)
+ν

∣∣∣∣2 dy=
∑

0<|γ|<T

|αρ|2

|ρ(iγ+1)|2
+ν2,(2.67)

which follows by multiplying

(2.68)
∑

0<|γ|<T

αρ
eiγy

ρ(iγ + 1)
+ ν

by its conjugate, expanding, and noting that only the diagonal terms survive
the limit Y →∞. Next, the expression in (2.68) is bounded for y ∈ R, and
combining with (2.65) gives

1

Y

Y�

log 2

(
2

∣∣∣∣ ∑
0<|γ|<T

αρ
eiγy

ρ(iγ+1)
+ ν

∣∣∣∣|V (ey)|+ |V (ey)|2
)
dy � ε+ ε2(2.69)

for all Y sufficiently large.
Since we may make ε as small as we wish, we get the equality ex-

pressed in (2.63). We also have the inequality stated in (2.63) because, by
Lemma 2.3, at least one αρ is non-zero.

Hence,

(2.70) M(ey) = Ω(1),

i.e.

(2.71) M(x) = Ω(1),

which implies, from (2.62), that

(2.72) ∆(x) = Ω(1),

and hence from (2.61) we get (2.43) of Theorem 5.

2.8. Unsmoothed mean square estimate. In this subsection we give
an alternate proof of the Ω bound (2.43) by working out an unsmoothed
mean square.

Substituting y = log x and Y = logX in (2.46), we consider

(2.73)

P (ey)− r

φ(q)
π(ey) =

ey/2

y

( ∑
0<|γ|<eY

αρ
eiγy

ρ
+ ν +O

(
ey/2Y 2

eY
+

1

y

))
.
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Unlike M(x) which was uniformly approximated by the finite sum (2.64), the
above diverges absolutely and cannot be uniformly approximated. However,
we can show that we can approximate the sum with finitely many terms so
that the remainder term is uniformly small in mean square.

Thus, we truncate the sum over ρ at some large but fixed T (i.e. indepen-
dent of y), and consider the mean square of the remainder. This is essentially
Lemma 2.2 of [7], but we provide slightly more details here. Thus, for T ≥ 1
and log 2 ≤ y, we have

(2.74) P (ey)− r

φ(q)
π(ey) =

ey/2

y

( ∑
0<|γ|<T

αρ
eiγy

ρ
+ ν + r(y, T )

)
,

where, for all Y ≥ y,

(2.75) r(y, T ) =
∑

T≤|γ|<eY
αρ
eiγy

ρ
+O

(
ey/2Y 2

eY
+

1

y

)
.

The following lemma gives a bound on the mean square of the remainder
r(y, T ).

Lemma 2.6. Let T > 1 and Y > T 1/2/log T . Then

(2.76)
1

Y/2

Y�

Y/2

|r(y, T )|2 dy �q
(log T )2

T
.

Proof. Substitute (2.75) into the integrand, and use the inequality

(2.77) |a+ b|2 ≤ 2(|a|2 + |b|2),

which follows from the arithmetic geometric mean inequality 2|ab| ≤
|a|2 + |b|2, to get

(2.78)

Y�

Y/2

|r(y, T )|2 dy �
Y�

Y/2

∣∣∣∣ ∑
T≤|γ|≤eY

αρ
eiyγ

1/2 + iγ

∣∣∣∣2 dy +
1

Y
.

The term 1/Y comes about from integrating the square of the O term
in (2.73). Multiplying out the sum above by its conjugate, estimating the
resulting integral, and extending the double sum to infinity, we see that the
right hand side above becomes

(2.79)
∑

T≤|γ1|≤eY
T≤|γ2|≤eY

αρ1ᾱρ2
ρ1ρ̄2

Y�

Y/2

eiy(γ1−γ2) dy +
1

Y

�
∑

T≤|γ1|≤∞
T≤|γ2|≤∞

|αρ1 | |αρ2 |
|ρ1| |ρ2|

min

(
Y,

1

|γ1 − γ2|

)
+

1

Y
.



Chebotarev sets 115

Breaking up the sum over zeros into unit intervals |γ| ∈ [n, n + 1) with
n ∈ Z, n ≥ T − 1, and using (2.35) shows that the above sum is bounded by

(2.80) � Y
∑

n≥T−1

(log n)2

n2
+

∑
n≥T−1
m≥n+1

logm

m

log n

n

1

m− n
.

The first sum accounts for the contribution of the diagonal terms, i.e. where
|γ1| lies in an interval [n, n+ 1) and |γ2| lies in [m,m+ 1), with |m−n| ≤ 1.
For such pairs of zeros, which could potentially be very close, we use Y as an
upper bound for min(Y, 1/|γ1−γ2|). For all other pairs of zeros the quantity
1/|γ1 − γ2| � 1/|m − n| is much smaller than Y . This gives the second
sum above, i.e. the off-diagonal terms. We have also exploited symmetry in
taking half the terms, i.e. we have dropped n ≥ m+ 1.

By comparing with the integral
	∞
T (log t)2/t2 dt, we get, on integrating

by parts,

(2.81)
∑

n≥T−1

(log n)2

n2
� (log T )2

T
.

To bound the off-diagonal contribution, break up the sum over m into the
terms n + 1 ≤ m ≤ 2n and the tail m > 2n. The first portion can be
estimated as follows:∑

n≥T−1
n+1≤m≤2n

logm

m

log n

n

1

m− n
�

∑
n≥T−1

(log n)2

n2

∑
n+1≤m≤2n

1

m− n
(2.82)

�
∑

n≥T−1

(log n)3

n2
� (log T )3

T
.

For the contribution from the tail, use 1/|m− n| < 2/m when m > 2n:∑
n≥T−1
m>2n

logm

m

log n

n

1

m− n
�

∑
n≥T−1

log n

n

∑
m>2n

logm

m

1

m
(2.83)

�
∑

n≥T−1

(log n)2

n2
� (log T )2

T
,

where we used
∑

m>2n(logm)/m2 � (log n)/n in passing from the second
expression to the third.

Putting these bounds together gives

(2.84)

Y�

Y/2

|r(y, T )|2 dy �q Y
(log T )2

T
+

(log T )3

T
+

1

Y
.

For given T and all Y > T 1/2/log T , the first term on the right hand side
dominates. Dividing by 1/(Y/2) gives the lemma.
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Returning to (2.74), we consider the mean square:

(2.85)
1

Y/2

Y�

Y/2

∣∣∣∣(P (ey)− r

φ(q)
π(ey)

)
y

ey/2

∣∣∣∣2 dy
=

1

Y/2

Y�

Y/2

∣∣∣∣ ∑
0<|γ|<T

αρ
eiγy

ρ
+ ν + r(y, T )

∣∣∣∣2 dy.
The above equals

(2.86)
1

Y/2

Y�

Y/2

∣∣∣∣ ∑
0<|γ|<T

αρ
eiγy

ρ
+ ν

∣∣∣∣2 dy + E

where

(2.87) |E| � 1

Y/2

Y�

Y/2

∣∣∣∣ ∑
0<|γ|<T

αρ
eiγy

ρ
+ν

∣∣∣∣|r(y, T )| dy+
1

Y/2

Y�

Y/2

|r(y, T )|2 dy.

By multiplying the expression inside the absolute value of (2.86) by its
conjugate, and integrating termwise, we get

(2.88)
1

Y/2

Y�

Y/2

∣∣∣∣ ∑
0<|γ|<T

αρ
eiγy

ρ
+ ν

∣∣∣∣2 dy = ν2 +
∑

0<|γ|<T

|αρ|2

|ρ|2
+OT (1/Y ).

Next we estimate E. The bound (2.87) gives

|E| � max
Y/2≤y≤Y

∣∣∣∣ ∑
0<|γ|<T

αρ
eiγy

ρ
+ ν

∣∣∣∣ 1

Y/2

Y�

Y/2

|r(y, T )| dy(2.89)

+
1

Y/2

Y�

Y/2

|r(y, T )|2 dy.

Lemma 2.6 gives an estimate for the second integral:

(2.90)
1

Y/2

Y�

Y/2

|r(y, T )|2 dy � (log T )2

T
.

Now, from (2.35),

(2.91)

∣∣∣∣ ∑
0<|γ|<T

αρ
eiγy

ρ
+ ν

∣∣∣∣� (log T )2.

Furthermore, the Cauchy–Schwarz inequality gives

(2.92)
1

Y/2

Y�

Y/2

|r(y, T )| dy � +
1

Y/2

( Y�

Y/2

dy ·
Y�

Y/2

|r(y, T )|2 dy
)1/2

,
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which, by Lemma 2.6, is

(2.93) � (log T )/T 1/2.

Since we may choose T as large as we please, on combining the above esti-
mates we see that, as Y →∞,

(2.94)
1

Y/2

Y�

Y/2

∣∣∣∣(P (ey)− r

φ(q)
π(ey)

)
y

ey/2

∣∣∣∣2 dy → ν2 +
∑
ρ6=1/2

|αρ|2

|ρ|2
.

As in the previous subsection, the right hand side above is positive because
at least one of the αρ is non-zero. Therefore,

(2.95)

(
P (ey)− r

φ(q)
π(ey)

)
y

ey/2
= Ω(1),

hence giving another proof of Theorem 5.

Note that it is important that r/φ(q) < 1, since if we take P to be
the set of all primes then it can be realized, in many ways, as a union of
primes in residue classes by taking all residue classes modulo q, for any
positive integer q. The reason the proof fails in this case is that P (x)−π(x)
is then identically zero (and hence continuous), giving a mean square for
P (x)−π(x), and more precisely of (2.94), which is always zero. The positivity
of the right hand side of that equation requires there to be at least one non-
zero term appearing on the right hand side. However, from (2.13), all the
cχ and hence αρ are 0, and similarly for the term r/φ(q) − κ which then
equals 0.

3. Generalization to Chebotarev sets. Here we generalize the prob-
lem to prime ideals and Chebotarev sets.

Therefore, let L be a Galois extension of K with Galois group G =
Gal(L/K). For a prime ideal p ∈ K, we let the Artin symbol (L/K, p)
denote the conjugacy class of Frobenius automorphisms corresponding to
the prime ideals P ∈ L that divide p.

Given a conjugacy class C of G, we let

(3.1) π(L/K,C) = {p ∈ π(K) | p unramified in L, (L/K, p) = C}

consist of the unramified prime ideals p ∈ K, and Frobenius conjugacy class
in G equal to C. We define the counting function

(3.2) π(x, L/K,C) :=
∑

NK/Q(p)≤x
p∈π(L/K,C)

1

to be the number of prime ideals in π(L/K,C) with norm less than or equal
to x. Throughout what follows, we simply write Na rather than NK/Q(a).
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The Chebotarev density theorem states that

(3.3) π(x, L/K,C) ∼ |C|
|G|

Li(x),

and the prime number theorem for prime ideals in K states that

(3.4) π(x,K) := {p ∈ π(K) | Np ≤ x} ∼ Li(x).

Therefore, say we have a subset P of prime ideals in π(K) that is realized, up
to finitely many exceptions, as a finite union of Frobenius conjugacy classes
in the Galois group G of some Galois extension L of K. We can restrict
ourselves to the case of a single Galois extension L for similar reasons that
we were able to restrict ourselves to a single modulus q in the previous
section. See the comments in the introduction in Section 1.1.

3.1. Proof of Theorems 1 and 2. All the formulas used in the classical
situation of residue classes in Section 2 have analogues in the case of number
fields. In particular, the explicit formula for our situation has been worked
out, with remainder terms, by Lagarias and Odlyzko [6]. We develop and
collect below the needed formulas.

Define

ψ(x, L/K,C) :=
∑

Npm≤x
punramified

(L/K,p)m=C

logNp,(3.5)

Π(x, L/K,C) :=
∑

Npm≤x
p unramified

(L/K,p)m=C

1

m
(3.6)

= π(x, L/K,C) +R(x, L/K,C),

where

R(x, L/K,C) :=
∑

Npm≤x
p unramified,m ≥ 2

(L/K,p)m=C

1

m
,(3.7)

so that

π(x, L/K,C) = Π(x, L/K,C)−R(x, L/K,C)(3.8)

=
ψ(x, L/K,C)

log x
+

x�

2

ψ(t, L/K,C)

t(log t)2
dt−R(x, L/K,C).

Likewise, define

(3.9) Π(x,K) :=
∑

Npm≤x

1

m
= π(x,K) +R(x,K),



Chebotarev sets 119

where

(3.10) R(x,K) :=
∑

Npm≤x
m≥2

1

m
.

Thus,

π(x,K) = Π(x,K)−R(x,K)(3.11)

=
ψ(x,K)

log x
+

x�

2

ψ(t,K)

t(log t)2
dt−R(x,K).

We will also use

R(x,K) =
∑

Np2≤x

1

2
+

∑
Npm≤x
m≥3

1

m
(3.12)

= x1/2/log x+O(x1/3/log x),

which follows from the prime number theorem for ideals, with the implied
constant in the O depending on K. Similarly, from the Chebotarev density
theorem, we have

(3.13)
r∑
j=1

R(x, L/K,Cj) = κx1/2/log x+O(x1/2/(log x)2),

with the implied constant depending on L/K and the Cj , and, overriding
the notation for κ used earlier,

(3.14) κ =
1

|G|

r∑
j=1

|Cj |
∑
b2∈Cj

1,

the inner sum counting the number of conjugacy class representatives b ∈ G
that, when squared, lie in Cj .

To obtain an explicit formula for ψ(x, L/K,C), Lagarias and Odlyzko
mimic the approach taken in Davenport for primes in arithmetic progression,
using the following linear combination of logarithmic derivatives of Artin
L-functions in order to extract primes ideals (and their powers) lying in the
conjugacy class C:

FC(s) := −|C|
|G|

∑
φ

φ̄(g)
L′

L
(s, φ, L/K)(3.15)

=
∑
pm

θ(pm) log(Np)(Np)−ms,

where g is any element of the conjugacy class C, φ runs over the irreducible
characters of G, and, for unramified p,

(3.16) θ(pm) =

{
1 if (L/K, p)m = C,

0 otherwise,
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while, for ramified p, |θ(pm)| ≤ 1. Notice that, while the right hand side of
(3.15) resembles the Dirichlet series that gives the counting function in (2.15),
there is a minor difference. Above, and also in (3.17) below, the characters
are primitive. The way to interpret (2.15) so that it matches with the formula
here, is that each χ in (2.15) should be replaced by its inducing character
at a cost of O(log x) to ψ(x, q, a) coming from the primes that ramify.

Brauer [1] proved that each Artin L-function can be written as a ratio of
Hecke L-functions, hence the linear combination of logarithmic derivatives
of Artin L-functions above can be written in terms of Hecke L-functions. In
our situation, the particular linear combination turns out, nicely, to have a
similar form to (3.15). Lagarias and Odlyzko use a construction (Lemma 4.1
in their paper) of Deuring [3] to write

FC(s) = −|C|
|G|

∑
χ

χ̄(g)
L′

L
(s, χ, L/E),(3.17)

where χ runs over the irreducible Hecke characters of H = 〈g〉, the cyclic
subgroup generated by g, and E is the fixed field of H.

The advantage of writing FC(s) in terms of Hecke characters is that
the analytic properties of Hecke L-functions are well established. Lagarias
and Odlyzko carry out a Perron integral in order to extract the Dirichlet
coefficients, with Npm ≤ x, of FC(s).

Restricting to 2 < x < X, equation (7.4) of [6] gives

(3.18) ψ(x, L/K,C)

=
|C|
|G|

(
x−

∑
χ

χ̄(g)
∑

|=ρχ|<X

xρχ
ρχ

)
+ remainder(x,X,L/K,C),

where

(3.19) remainder(x,X,L/K,C) = O(x(logX)2/X + log x),

with the implied constant depending on L/K and C. Here, ρ runs over all
the non-trivial zeros of L(s, χ, L/E). The main term (|C|/|G|)x arises from
the principal character χ0 since L(s, χ0, L/E) has, up to finitely many Euler
factors, ζ(s) as one of its factors, and hence a simple pole at s = 1.

Our remainder term is simpler than in (7.4) of Lagarias and Odlyzko be-
cause we are taking L/K to be fixed. Furthermore, remainder(x,X,L/K,C)
is a piecewise continuous function, with O(log x) discontinuities at the points
x = Npm, where p runs over the ramified primes in K.

Substitute (3.18) into (3.8), apply estimate (3.13), and then substitute
all into

(3.20) P (x) = λ+

r∑
j=1

π(x, L/K,Cj),
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where λ ∈ Z accounts for finitely many exceptions, and x is sufficiently large
(so that x exceeds the norm of any of these exceptions). Letting

(3.21) β =
r∑
j=1

|Cj |/|G|,

we deduce, on subtracting the analogous formula for βπ(x,K) and cancelling
the main term coming from the pole at s = 1 of the factor of ζ(s) in the
Dedekind zeta function ζK , that, for 2 ≤ x < X and assuming GRH,

(3.22) P (x)− βπ(x,K)

=
x1/2

log x

( ∑
|γ|<X

αρ
xiγ

ρ
+ (β − κ) +O

(
x1/2(logX)2

X
+

1

log x

))
,

with some αρ ∈ C, and the sum over ρ is over the non-trivial zeros of all
relevant L-functions, namely the Hecke L-functions, for each Cj in (3.17).
More precisely,

(3.23) αρ = − 1

|G|

r∑
j=1

|Cj |
∑
χ 6=χ0

χ̄(gj)mχ(ρ),

with mχ(ρ) the multiplicity of the zero ρ for L(s, χ, L/Ej).

Bounds (2.34) and (2.35) continue to hold, though with the implied
constants depending on L, K, and Cj rather than on q.

As in the classical case, if the term ρ = 1/2 appears in the sum, we
absorb it into the constant term. Thus, let µ = β−κ plus, in the event that
ρ = 1/2 appears in the sum, 2α1/2. The above then becomes

(3.24) P (x)− βπ(x,K)

=
x1/2

log x

( ∑
0<|γ|<X

αρ
xiγ

ρ
+ µ+O

(
x1/2(logX)2

X
+

1

log x

))
.

The cancellation of the main term deserves some elaboration. The
L-function corresponding to the principal character in (3.17) factors as
the product of ζE(s) and Hecke L-functions, and, because K ⊆ E, ζE(s)
itself has ζK(s) as a factor. The latter Dedekind zeta function is responsi-
ble for cancellation in (3.22) of the main term. We therefore see that we
could, in the statement of Theorem 1, replace βπ(x,K) with just β Li(x),
since this would have the same effect of cancelling the main term, with
no further impact on the form of the remaining terms. Similarly, we could
replace the counting function by β

δ(Q)Q(x) where Q ⊆ π(K) is another Cheb-

otarev set with density δ(Q), or more generally, take any difference of the
form (1.10), since the choice of η there ensures cancellation of the main
term.
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Next, the jump discontinuities of the left hand side of (3.24), up to
given x, outnumber those of the O term of the right hand side, for the
same reason as in the case of residue classes mod q: the discontinuities of
the remainder term occur at x = Npm, m ≥ 2, for p ∈ π(K), coming
from the terms R(x, L/K,Cj) and R(x,K), of which, because m ≥ 2, there
are O(x1/2/log x) many. The other discontinuities come from the ramified
primes of which there are finitely many (and O(log x) of their powers, but
these powers are already counted as discontinuities of R(x,K)). On the
other hand, the left hand side has jump discontinuities at all prime ideals
π ∈ π(K) of which there are asymptotically x/log x many. We therefore
conclude, as previously, that infinitely many of the αρ must be non-zero or
else the sum over zeros would be a continuous function and the right hand
side would not have sufficiently many discontinuities.

Again this holds when we replace βπ(x,K) with β Li(x) orQ(x) as above,
though in the latter case we must also ensure that Q does not essentially
coincide with P , namely that the symmetric difference P 4Q is infinite. In
each case the difference between P (x) and any of these counting functions
has discontinuities at a positive proportion of Np for primes ideals p ∈ π(K),
i.e. at � x/log x points. The same applies to the difference in (1.10).

As in the previous section, define

(3.25) Θ = lim sup{<ρ | αρ 6= 0}.
Then Θ ≥ 1/2.

If Θ = 1/2, we have two mean square estimates analogous to those in
Sections 2.7 and 2.8. In order to carry out these estimates, we also need a
bound, as before, for the number of non-trivial zeros of a Hecke L-function,
N(L, T ) = |{ρ | L(ρ) = 0, |=ρ| ≤ T, 0 < <ρ < 1}|, in intervals of length one.
Lagarias and Odlyzko [6, Lemma 5.4] prove that N(L, T + 1)−N(L, T ) =
O(log T ), with the implied constant depending on the L-function, hence
the method used to obtain the mean square estimate in the case of Dirichlet
L-functions and residue classes follows through as before, and we summarize
the formulas.

Adapting the notation used in Section 2.7, let

(3.26) ∆(x) :=
log x

x1/2
(P (x)− βπ(x,K))

and

(3.27) M(x) :=
1

x

x�

2

∆(t) dt.

Then

(3.28) lim
Y→∞

1

Y

Y�

log 2

|M(ey)|2 dy =
∑
|γ|>0

|αρ|2

|ρ(iγ + 1)|2
+ µ2
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and

lim
Y→∞

1

Y/2

Y�

Y/2

∣∣∣∣(P (ey)− rπ(ey,K))
y

ey/2

∣∣∣∣2 dy = µ2 +
∑
ρ 6=1/2

|αρ|2

|ρ|2
.

And, because at least one αρ is non-zero, both mean squares are positive.
From either, we can thus conclude as in Section 2.7 or 2.8 that

(3.29) P (x)− βπ(x,K) = Ω(x1/2/log x).

This concludes our proof of Theorems 1–3.

We also get the following theorem, depending on the value of Θ:

Theorem 6. For every δ > 0,

(3.30) P (x)− βπ(x,K) = Ω(xΘ−δ),

with the implied constant depending on δ and P .

Proof. If Θ = 1/2 then Theorem 1 provides a stronger result and the
above therefore holds. If Θ > 1/2, the theorem follows, as in Section 2.5,
from the fact that at least one αρ is non-zero and from the identity, initially
derived with the assumption that <s > 1,

(3.31)

∞�

1

∑r
j=1Π(x, L/K,Cj)− βΠ(x,K)

xs+1
dx

=
1

s

r∑
j=1

∑
χj

χ̄(gj) logL(s, χj , L/Ej)− β log ζK(s),

where, for 1 ≤ j ≤ r, χj runs over all the irreducible Hecke characters of
Hj = 〈gj〉 and Ej is the fixed field of Hj .

Finally, a similar theorem holds for a variety of counting functions. As
before, let Q ⊆ π(K) be a Chebotarev set with the same density β as P , such
that the symmetric difference P 4Q is infinite, and F any finite extension
of Q. Let f(x) stand for β Li(x) or Q(x). For each such choice of f(x), the
difference P (x)− f(x) can be expressed as a linear combination of explicit
formulas having the same form as (3.22), though with the constant term
β − κ replaced by −κ in the case of f(x) = β Li(x), and by κ2 − κ when
f(x) = Q(x), where κ2 is the analogue of (3.14) for the Chebotarev set Q.
Thus, defining Θf to be the analogue, for a given f , of (3.25), and likewise
ΘF for the difference in (1.10), we have the following theorem:

Theorem 7. Let f(x) be as in the above paragraph, and F (x) and η be
given by (1.9) and (1.8). Then, for every δ > 0,

(3.32) P (x)− f(x) = Ω(xΘf−δ),
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with the implied constant depending on δ, P , and f , and

(3.33) F (x)− η Li(x) = Ω(xΘF−δ),

with the implied constant depending on Θ and η. The latter result also holds
(with ΘF adjusted accordingly) if we replace Li(x) by π(x,K), with the re-
striction that not all ηj are equal.
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