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Highly biased prime number races
Daniel Fiorilli

Chebyshev observed in a letter to Fuss that there tends to be more primes of the
form 4nC3 than of the form 4nC1. The general phenomenon, which is referred
to as Chebyshev’s bias, is that primes tend to be biased in their distribution among
the different residue classes mod q. It is known that this phenomenon has a strong
relation with the low-lying zeros of the associated L-functions, that is, if these
L-functions have zeros close to the real line, then it will result in a lower bias.
According to this principle one might believe that the most biased prime number
race we will ever find is the Li.x/ versus �.x/ race, since the Riemann zeta
function is the L-function of rank one having the highest first zero. This race has
density 0:99999973 : : : , and we study the question of whether this is the highest
possible density. We will show that it is not the case; in fact, there exist prime
number races whose density can be arbitrarily close to 1. An example of a race
whose density exceeds the above number is the race between quadratic residues
and nonresidues modulo 4849845, for which the density is 0:999999928 : : : . We
also give fairly general criteria to decide whether a prime number race is highly
biased or not. Our main result depends on the generalized Riemann hypothesis and
a hypothesis on the multiplicity of the zeros of a certain Dedekind zeta function.
We also derive more precise results under a linear independence hypothesis.

1. Introduction and statement of results

The study of prime number races started in 1853, when Chebyshev noted in a letter
to Fuss that there seemed to be more primes of the form 4nC 3 than of the form
4nC 1. More precisely, Chebyshev claimed without proof that as c! 0, we have

�
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p

�
e�pc

D e�3c
� e�5c

C e�7c
C e�11c

� e�13c
� � � � !1:

However, as Hardy and Littlewood [1916] and Landau [1918a; 1918b] have shown,
this statement is equivalent to the Riemann hypothesis for L.s; ��4/, where ��4

denotes the primitive character modulo 4.
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Chebyshev’s observation created a new area of research which goes under the
names of either comparative prime number theory, Chebyshev’s bias or, more
colloquially, prime number races. This rich research area has a long history, en-
compassing authors such as Chebyshev, Littlewood, Wintner, Shanks, Knapowski,
Turan and Kaczorowski, to name a few, and more recently Rubinstein, Sarnak,
Schlage-Puchta, Ng, Martin, Ford, Konyagin and Lamzouri. For a good account of
the history of the subject as well as recent developments, the reader is encouraged
to consult the great expository paper [Granville and Martin 2006].

The modern way to study Chebyshev’s observation is to look at the set of
integers n for which �.nI 4; 3/ > �.nI 4; 1/, which we denote by P4I3;1. One
would like to understand the size of this set; however, it is known that its natural
density does not exist [Kaczorowski 1995]. To remedy this problem we define the
logarithmic density of a set P � N by

ı.P / WD lim
N!1

1

log N

X
n�N
n2P

1

n
;

if the limit exists. In general we define ı.P / and ı.P / to be the lim inf and lim sup
of this sequence. If P D P4I3;1, then this last limit exists under the assumption of
the generalized Riemann hypothesis (GRH) and the linear independence hypothesis
(LI), and equals 0:9959 : : : (see [Rubinstein and Sarnak 1994]).

The generalized Riemann hypothesis states that for every primitive character
� mod q, all nontrivial zeros of L.s; �/ lie on the line <.s/D 1

2
.

The linear independence hypothesis states that for every fixed modulus q, the set[
� mod q
� primitive

f=.��/ WL.��; �/D 0; 0<<.��/ < 1; =.��/� 0g

is linearly independent over Q.
Rubinstein and Sarnak developed a framework to study this question and more

general prime number races. Assuming GRH and LI, they have shown that for any
r-tuple .a1; : : : ; ar / of admissible residue classes mod q (that is, .ai ; q/D 1), the
logarithmic density of the set

PqIa1;:::;ar
WD fn W �.nI q; a1/ > �.nI q; a2/ > � � �> �.nI q; ar /g;

which we denote by ı.qI a1; : : : ; ar /, exists and is not equal to 0 or 1 (we call this
an r-way prime number race). Moreover, they have shown that if r is fixed, then as
q!1,

max
1�a1;:::;ar�q
.ai ;q/D1

ˇ̌̌̌
ı.qI a1; : : : ; ar /�

1

r !

ˇ̌̌̌
! 0:
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In other words, the bias dissolves as q!1. For r D 2, this phenomenon can be
readily seen in [Fiorilli and Martin 2013], where the authors exhibited the list of
the 117 densities which are greater than or equal to 9

10
. By the trivial inclusion

PqIa1;:::;ar
� PqIa1;a2

;

we see that the most biased r-way prime number race is the two-way race appearing
on top of the list in that article, that is,

ı.24I 5; 1/D 0:999988 : : : :

Only one race is known to be more biased: it is the race between Li.x/ and �.x/,
for which the density is

ı.1/ WD ı.fn W Li.n/ > �.n/g/D 0:99999973 : : : :

One can also combine different residue classes mod q to make prime number
races. For two subsets A;B � .Z=qZ/�, we consider the inequality

1

jAj

X
a2A

�.nI q; a/ >
1

jBj

X
b2B

�.nI q; b/; (1)

and denote by ı.qIA;B/ the logarithmic density of the set of n for which it is
satisfied, if the density exists. An example of such race was given by Rubinstein
and Sarnak, who studied the race between

�.xI q;NR/D #fp � x W p is not a quadratic residue mod qg

and
�.xI q;R/D #fp � x W p is a quadratic residue mod qg;

for moduli q having a primitive root. This race appears naturally in their work,
since, as they have shown, it is the property of the competitors being a quadratic
residue or not which determines whether a two-way prime number race is biased or
not. These are good candidates for biased races, however, it can be shown that as
q!1, ı.qINR;R/! 1

2
(but at a much slower rate than two-way races [Fiorilli

and Martin 2013]).
It is known [Bays et al. 2001; Fiorilli and Martin 2013] that under GRH and LI,

low-lying zeros of L.s; �/ have a significant effect on decreasing the bias, which
explains why races of high moduli are very moderately biased. Odlyzko [1990]
has shown that the Dedekind zeta function �K .s/ having the highest first zero in
the critical strip is the Riemann zeta function, which is �0 D

1
2
C i � 14:134725 : : : .

Subsequently, Miller [2002] generalized this result by showing that each member
of a very large class of cuspidal GLn L-functions of real archimedean type has the
property of either having a zero in the interval

�
1
2
�14:13472i; 1

2
C14:13472i

�
, or
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having a zero whose real part is strictly larger than 1
2

(violating GRH). In particular,
this class contains all Dirichlet, rational elliptic curve and modular form L-functions,
and possibly also contains all Artin and rational abelian variety L-functions.1 By
these considerations, one might conjecture that the highest density one will ever
find by doing prime number races with L-functions of real archimedean type is
ı.1/D 0:99999973 : : : .

As it turns out, this is false, and we can find races which are arbitrarily biased.
This is achieved by considering races between linear combinations of prime counting
functions, and we will see in Section 5 that the key to finding such biased races is
to take a very large number of residue classes.

The first (and most extreme) example we give is a quadratic residue versus
quadratic nonresidue race as in [Rubinstein and Sarnak 1994], but for a general
modulus q. We take A D NR WD fa 2 .Z=qZ/� W a 6� � mod qg and B D R WD

fb 2 .Z=qZ/� W b �� mod qg in (1). An elementary argument using the Chinese
remainder theorem shows that jBjD�.q/=�.q/ and jAjD�.q/.1�1=�.q//, where
for G D .Z=qZ/�,

�.q/ WD ŒG WG2�D

8̂̂̂<̂
ˆ̂:

2!.q/ if 2 − q;

2!.q/�1 if 2 j q but 4 − q;

2!.q/ if 4 j q but 8 − q;

2!.q/C1 if 8 j q;

and !.q/ denotes the number of distinct prime factors of q.

Theorem 1.1. Assume GRH and LI. Then for any � > 0 there exists q such that

1� � < ı.qINR;R/ < 1: (2)

Moreover, for any fixed 1
2
���1 there exists a sequence of moduli fqng such that

lim
n!1

ı.qnINR;R/D �: (3)

In concise form,
fı.qINR;R/g D

�
1
2
; 1
�
:

To prove the existence of highly biased races we do not need the full strength
of LI; in fact, we only need a much weaker hypothesis on the multiplicity of the
elements of the multiset of all nontrivial zeros of quadratic Dirichlet L-functions
modulo q, which we will denote by Z.q/. Note that LI implies that the elements
of this set have multiplicity one.

1The restriction to L-functions of real archimedean type is crucial here, since Bober et al. [2014]
have given an example of an L-function having a first zero whose imaginary part is t0 � 14:496. They
have also shown that under certain conditions, all L-functions have a zero in the interval .�t2; t2/,
with t2 � 22:661.
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Theorem 1.2. Assume GRH, and assume that there exists an increasing sequence
of moduli q such that log q D o.�.q// and such that each element of Z.q/ has
multiplicity o.�.q/= log q/. Then for any � > 0 there exists q such that

1� � < ı.qINR;R/� ı.qINR;R/ < 1: (4)

Remark 1.3. The difference between (2) and (4) is explained by the fact that it is
not known whether ı.qINR;R/ exists under GRH alone.

Remark 1.4. For a fixed modulus q � 2, write

q D 2e
Y
p jq
p¤2

pep and ` WD
Y
p jq
p¤2

p:

One can show that under GRH,2 ı.qINR;R/D ı.2min.3;e/`INR;R/: Therefore,
when studying ı.qINR;R/ one can assume without loss of generality that q is of
the form 2m`, where ` is an odd squarefree integer and m� 3.

Remark 1.5. We will see that what controls the bias in these races is the number
of prime factors of q and the size of q. More precisely, under GRH and LI the two
following statements are equivalent:X

p jq

log p D o.2!.q//; (5)

ı.qINR;R/D 1� o.1/: (6)

Using this, we can show that the set of moduli q�x such that ı.qINR;R/D1�o.1/

has density .log x/��Co.1/, where �D 1� .1C log log 2/= log 2D 0:086071 : : : .
It is an interesting coincidence that the integers satisfying (5) also appear in the
Erdös multiplication table (see Ford’s work [2008a; 2008b] on integers having a
divisor in a given interval).

In terms of random variables, Theorem 1.2 can be explained by saying that the
extreme examples we are considering correspond to random variables whose mean
is much larger than their standard deviation. The easy way to show that this implies
a very large bias is to use Chebyshev’s inequality; however this approach is quite
imprecise when the ratio E ŒX �=

p
Var ŒX � is large. Instead, one should study the large

deviations of X � E ŒX �. The theory of large deviations of remainder terms arising
from prime counting functions was initiated by Montgomery [1980], and has since

2First note that there are no real primitive characters modulo pe with p ¤ 2 and e � 2, and there
are no real primitive characters modulo 2e for e � 4. That is, the conductor of any real character
modulo q divides 2min.3;e/`. The claimed equality follows from Lemma 2.1, since L.s; ��/ and
L.s; �/ have the same nontrivial zeros, and thus Eq.x/DE2min.3;e/`.x/C o.1/.
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q !.q/ �.q/= log q0 ı.qINR;R/

3 1 1:82 0:999063

15 2 1:47 0:999907

105 3 1:71 0:999928

1155 4 2:26 0:999877

15015 5 3:33 0:999950

255255 6 5:14 0:9999946

4849845 7 8:31 0:999999928

111546435 8 13:81 0:999999999954

Table 1. First few values of ı.qINR;R/ for half-primorial moduli.

then been developed by Monach [1980], Montgomery and Odlyzko [1988], Rubin-
stein and Sarnak [1994], and more recently Ng [2004] and Lamzouri [2012]. Exploit-
ing the results of Montgomery and Odlyzko we are able to be more precise in (2).

Theorem 1.6. Assume GRH and LI, and define q0 WD
Q

p jq

p. If �.q/= log q0 is large
enough, then we have

exp
�
�a1

�.q/

log q0

�
� 1� ı.qINR;R/� exp

�
�a2

�.q/

log q0

�
;

where a1 and a2 are positive absolute constants.

This last theorem shows that the convergence in (2) can be quite fast. It is
actually possible to explicitly compute a density which exceeds ı.1/, namely
ı.4849845INR;R/ D 0:999999928 : : : . In Table 1 we list the first few values
of ı.qINR;R/ for half-primorial moduli (that is, for q the product of the first k

primes excluding pD 2). These values were computed using Myerscough’s method
[2013] and Rubinstein’s lcalc package.

Remark 1.7. As remarked in [Rubinstein and Sarnak 1994], these densities can
theoretically be computed to any given level of accuracy under GRH alone. Indeed,
using the B2 almost-periodicity of these races, this amounts to computing a finite
number of zeros of Dirichlet L-functions to a certain level of accuracy.

Remark 1.8. One can summarize Remark 1.5, Theorem 1.1 and Theorem 1.6 by
the statement

ı.qINR;R/�
1
p

2�

Z 1
�
p

2!.q/�1= log q0
e�

x2

2 dx:
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Remark 1.9. Using our analysis, one can show under GRH and LI that for almost
all squarefree integers q,

ı.qINR;R/� 1
2
D .log q/

log 2�1

2
Co.1/:

That is to say, most such races have a very moderate bias.

It is possible to analyze highly biased races in a more general setting, and to
determine which features are needed for this bias to appear. To do this we take EaD
.a1; : : : ; ak/ a vector of invertible reduced residues modulo q and Ę D .˛1; : : : ; ˛k/

a nonzero vector of real numbers such that
Pk

iD1 ˛i D 0. We will be interested in
the race between positive and negative entries of Ę; that is, we define

ı.qI Ea; Ę/ WD ı.fn W ˛1�.nI q; a1/C � � �C˛k�.nI q; ak/ > 0g/:

Moreover, we define

�i WD

(
1 if ai �� mod q;

0 if ai 6�� mod q;

and we assume without loss of generality that

kX
iD1

�i˛i < 0:

(By Lemma 5.1, this will force ı.qI Ea; Ę/> 1
2

. If
Pk

iD1�i˛iD 0, then ı.qI Ea; Ę/D 1
2

.
If
Pk

iD1�i˛i>0, then we multiply Ę by�1 and study the complementary probability
ı.qI Ea;�Ę/D 1� ı.qI Ea; Ę/.)

There are many choices of vectors Ea and Ę which yield highly biased races.
We give some examples with constant coefficients, which we believe are the most
natural.

Theorem 1.10. Assume GRH and LI, and let

kR �
�.q/

�.q/
and kN �

�
1�

1

�.q/

�
�.q/

be two positive integers. Take a1; : : : ; akN
to be any distinct quadratic nonresidues

mod q, with coefficients ˛1 D � � � D ˛kN
D kR , and akNC1; : : : ; akNCkR

to be any
distinct quadratic residues mod q, with ˛kNC1 D � � � D ˛kNCkR

D �kN . There
exists an absolute constant c > 0 such that if for some 0< � < 1=.2c/ we have

1

kN

C
1

kR

< �
�.q/2

�.q/ log q
; (7)

then
ı.qI Ea; Ę/ > 1� c�:
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Remark 1.11. Fix 0< � < 1=.2c/ and define N�.q/ to be the number of positive
integers kN , kR for which kN � .1� 1=�.q//�.q/, kR � �.q/=�.q/ and

1

kN

C
1

kR

< �
�.q/2

�.q/ log q
:

Then, for values of q for which �.q/ � ��2 log q, we have that N�.q/ tends to
infinity as q !1. Hence, for values of q for which log q D o.�.q//, (7) has a
large number of solutions.

Remark 1.12. Theorem 1.10 shows the existence of highly biased races with the
same number of residue classes on each side of the inequality. Indeed, for moduli q

with log qDo.�.q//, taking kRDkN with �.q/ log q=�.q/2Do.kR/ and choosing
any residue classes a1; : : : ; akNCkR

gives a race with ı.qI Ea; Ę/D 1� o.1/.

Remark 1.13. In Theorem 1.1, we have

kN D

�
1�

1

�.q/

�
�.q/ and kR D

�.q/

�.q/
;

which explains why we obtained a highly biased race when �.q/was large compared
to log q.

Here is our most general class of highly biased races.

Theorem 1.14. Assume GRH and LI. There exists an absolute constant c > 0 such
that if for some 0< � < 1=.2c/ we have

kP
iD1

˛2
i� kP

iD1

�i˛i

�2 < � �.q/2

�.q/ log q
; (8)

then
ı.qI Ea; Ę/ > 1� c�:

Remark 1.15. Trivially, one has

kP
iD1

˛2
i� kP

iD1

�i˛i

�2 � 1

kR

;

where kR WD

kP
iD1

�i . Hence, for (8) to be satisfied, one needs kR to be larger than

��1�.q/ log q

�.q/2
:
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Since kR � �.q/=�.q/, this imposes the condition on q

�.q/� ��1 log q:

Remark 1.16. The goal of Theorem 1.14 is to give a large class of biased races,
without necessarily being precise on the value of ı.qI Ea; Ę/. One can use the
Montgomery–Odlyzko bounds [1988] to obtain more precise estimates in some
particular cases.

The previous examples of highly biased races all have the property that the number
of residue classes involved is very large in terms of q (it is at least q1�o.1/). In the
next theorem we show that this condition is necessary, and that moreover highly
biased races are very particular, in the sense that they must satisfy precise conditions.

Theorem 1.17. Assume GRH and LI. There exist absolute positive constants K1, K2

and 0< � < 1
2

such that if k �K1�.q/ and� kP
iD1

�i˛i

�2
kP

iD1

˛2
i

�K2

�.q/ log
3�.q/

k
�.q/2

; (9)

then
ı.qI Ea; Ę/� 1� �: (10)

(Hence this race cannot be too biased.)

Remark 1.18. Applying the Cauchy–Schwarz inequality and using that kR WDPk
iD1�i � �.q/=�.q/, one sees that if �.q/�K2 log.3�.q/=k/, then whatever Ea

and Ę are, (9) holds. Moreover, in the range �.q/ >K2 log.3�.q/=k/ we have that
if kR �K2�.q/=�.q/

2, then (9) holds. We conclude that a necessary condition to
obtain a highly biased race is that kR� �.q/=�.q/2.

An interesting feature of prime number races is Skewes’ number. It is by
definition the smallest x0 for which

�.x0/ > Li.x0/:

This number has been extensively studied since Skewes’ paper [1933] in which he
showed under the Riemann hypothesis that

x0 < 10101034

:

The Riemann hypothesis has since then been removed and the upper bound greatly
reduced; we refer the reader to [Bays and Hudson 2000] for the list of such im-
provements. The current record is due to the authors of that work, who showed that
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x0 < 1:3983� 10316, and moreover this bound is believed to be close to the true
size of x0.

One could also study the generalized Skewes’ number

xqIa;b WD inffx W �.xI q; a/ < �.xI q; b/g:

However, two-way prime number races become less and less biased as q grows;
that is, ı.qI a; b/! 1

2
uniformly in a and b coprime to q. Hence, for large q we

expect this generalized Skewes number to be small and uninteresting.
The situation is quite different with the highly biased race we constructed; in fact,

we expect the Skewes number

xq WD inffx W �.xI q;NR/ < .�.q/� 1/�.xI q;R/g

to tend to infinity as �.q/= log q0 tends to infinity (q0 is the radical of q). Using
similar arguments to those of [Montgomery 1980; Ng 2000], we can speculate on
the exact growth rate of xq .

Conjecture 1.19. As �.q/= log q0 tends to infinity we have

log log xq �
�.q/

log q0
:

2. Results without the linear independence hypothesis

The goal of this section is to prove Theorem 1.2 (from which the first part of
Theorem 1.1 clearly follows). We first note that if ADNR and B DR, then (1) is
equivalent to

�.xI q;NR/ > .�.q/� 1/�.xI q;R/:

Lemma 2.1. Fix q � 3. Assuming GRH, we have that

Eq.x/W D
�.xI q;NR/� .�.q/� 1/�.xI q;R/

p
x= log x

D �.q/� 1C
X
�mod q

�2D�0

� ¤�0

X
�

xi�

��
C ox!1.1/:

Proof. Let b be an invertible reduced residue mod q. We will use the orthogonality
relation X

�mod q

�2D�0

� ¤�0

�.b/D

�
�.q/� 1 if b �� mod q;

�1 if b 6�� mod q:
(11)
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The explicit formula gives

X
�mod q

�2D�0

� ¤�0

 .x; �/D�
X
�mod q

�2D�0

� ¤�0

X
��

x��

��
COq.log x/; (12)

where �� runs over the nontrivial zeros of L.s; �/. The left side of (12) is equal toX
�mod q

�2D�0

� ¤�0

X
p�x

�.p/ log pC
X
�mod q

�2D�0

� ¤�0

X
p2�x

�.p/2 log pCOq

�
x

1
3

�

D .�.q/� 1/
X
p�x

p��mod q

log p �
X
p�x

p 6��mod q

log pC .�.q/� 1/
p

xC oq.
p

x /;

by (11) and the prime number theorem. Combining this with a standard summation
by parts we get that

�.xI q;NR/� .�.q/� 1/�.xI q;R/
p

x= log x
D�.q/�1C

X
�mod q

�2D�0

� ¤�0

X
�

xi�

��
Cox!1.1/: �

Lemma 2.2. Assuming GRH, the quantity Eq.x/ defined in Lemma 2.1 has a
limiting logarithmic distribution; that is, there exists a Borel measure �q on R such
that for any bounded Lipschitz continuous function f W R! R we have

lim
Y!1

1

Y

Z Y

2

f .Eq.e
y// dy D

Z
R

f .t/ d�q.t/:

Proof. This follows from analysis in [Rubinstein and Sarnak 1994; Akbary et al.
2013]. �

Remark 2.3. By the Portmanteau theorem, the Lipschitz assumption in the last
lemma can be removed.

Remark 2.4. As Schlage-Puchta has pointed out to me, it is possible to show under
GRH that for all but a countable set of values of c, the density

Fq.c/ WD lim
Y!1

1

Y
measfy � Y WEq.e

y/� cg



1744 Daniel Fiorilli

exists. Moreover, one can show that in the domain where F is defined,

sup
x<c

Fq.x/� lim inf
Y!1

1

Y
measfy � Y WEq.e

y/� cg

� lim sup
Y!1

1

Y
measfy � Y WEq.e

y/� cg � inf
x>c

Fq.x/;

and so in particular if Fq.x/ is continuous at xD c, then the set fy�Y WEq.e
y/� cg

has a density.

Let Xq be the random variable associated to�q . We will show that Xq can be very
biased, in the sense that Prob ŒXq > 0� can be very close to 1. To do so we will com-
pute the first two moments of Eq.e

y/, which we relate to the random variable Xq .

Lemma 2.5. Under GRH, we have that

lim
Y!1

1

Y

Z Y

2

Eq.e
y/ dy D

Z
R

t d�q.t/;

lim
Y!1

1

Y

Z Y

2

Eq.e
y/2 dy D

Z
R

t2 d�q.t/:

Proof. We will only prove the second statement, as the first follows along the same
lines. Similarly as in [Schlage-Puchta 2000], we can compute that

lim
Y!1

1

Y

Z Y

0

jEq.e
y/j4 dy D

X
�1C�2C�3C�4D0

1

�1�2�3�4

<1;

where the last sum runs over quadruples of nontrivial zeros of quadratic Dirichlet
L-functions modulo q. This implies that as M !1,

lim sup
Y!1

1

Y

Z
0�y�Y

jEq.e
y/j>M

jEq.e
y/j2 dy! 0: (13)

Indeed, if this was not the case then we would have that for all M >M0,

lim sup
Y!1

1

Y

Z
0�y�Y

jEq.e
y/j>M

jEq.e
y/j2 dy � � > 0;

and so

lim sup
Y!1

1

Y

Z
0�y�Y

jEq.e
y/j>M

jEq.e
y/j4 dy � �M 2;
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which would contradict the fact that the fourth moment is finite. We now define the
bounded Lipschitz function

HM .t/ WD

8<:
t2 if jt j �M;

M 2.M C 1� jt j/ if M < jt j �M C 1;

0 if jt j �M C 1:

We then have

1

Y

Z Y

2

Eq.e
y/2 dy

D
1

Y

Z
2�y�Y

HM .Eq.e
y// dy �

1

Y

Z
2�y�Y

M<jEq.e
y/j�MC1

HM .Eq.e
y// dy

C
1

Y

Z
2�y�Y

jEq.e
y/j>M

Eq.e
y/2 dyI

therefore by (13) and Lemma 2.2 we get that

lim sup
Y!1

1

Y

Z Y

2

Eq.e
y/2 dy D

Z
R

HM .t/ d�q.t/C �M ;

where �M tends to zero as M !1. Using the bound

�q..�1;�M �[ ŒM;1//� exp.�c2

p
M /

(see [Rubinstein and Sarnak 1994, Theorem 1.2]), we get by taking M !1 that

lim sup
Y!1

1

Y

Z Y

2

Eq.e
y/2 dy D

Z
R

t2 d�q.t/:

The same reasoning applies to the lim inf, and thus the proof is finished. �

The following calculation is similar to that of Schlage-Puchta [2000], who
computed the moments of e�t=2 .et I�/.

Lemma 2.6. Assume GRH. Then,

E ŒXq �D �.q/� 1C z.q/ and Var ŒXq �D
X�

¤0

m2


1
4
C  2

;

where the last sum runs over the imaginary parts of the nontrivial zeros of

Zq.s/ WD
Y

�2D�0

� ¤�0

L.s; �/;
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m denotes the multiplicity of the zero 1
2
C i , the star means that we count the

zeros without multiplicity, and z.q/ denotes the multiplicity of the (possible) real
zero  D 0.

Proof. By Lemma 2.1 we have thatZ Y

2

Eq.e
y/ dy D .�.q/� 1C z.q//.Y � 2/

C

X
�mod q

�2D�0

� ¤�0

X
�¤0

1
1
2
C i�

Z Y

2

ei�y dyC oY!1.Y /

D .�.q/� 1C z.q//.Y � 2/COq.1/C oY!1.Y /;

by absolute convergence. Taking Y !1 and applying Lemma 2.5 gives that

E ŒXq �D lim
Y!1

1

Y

Z Y

2

Eq.e
y/ dy D �.q/� 1C z.q/:

The calculation of the variance follows from Lemma 2.1 and from Parseval’s
identity for B2 almost-periodic functions [Besicovitch 1926]. (An alternative way
to compute the variance is to argue as in [Schlage-Puchta 2000].) �

Remark 2.7. It is a general fact that Besicovitch almost-periodic functions [1955]
always have a mean value. Moreover, Parseval’s identity [Besicovitch 1955; 1926]
shows that Besicovitch B2 almost-periodic functions f .y/ have a second moment,
given by

lim
Y!1

1

Y

Z Y

0

f .y/2 dy D
X
n�1

A2
n;

where the An are the Fourier coefficients of f .

Lemma 2.8. Let � mod q be a Dirichlet character. We have for k � 1 that

bk.�/ WD
X
�

1�
1
4
C  2

�

�k �k log q�;

where the sum is counted with multiplicity.

Remark 2.9. One has an exact formula for bk.�/, in terms of the values of the
derivatives of log L.s; �/ evaluated at sD 1 [Fiorilli and Martin 2013, Lemma 3.15].



Highly biased prime number races 1747

Proof. This follows from applying the Riemann–von Mangoldt formula and sum-
mation by parts:

bk.�/D
X
j�j<1

1�
1
4
C  2

�

�k C Z 1
1

dN.t; �/�
1
4
C t2

�k
�k N.1; �/C 2k

Z 1
1

tN.t; �/�
1
4
C t2

�kC1
dt �k log q�: �

Lemma 2.10. Assume GRH. If

B.q/ WD
E ŒXq �p
Var ŒXq �

is large enough, then

ı.qINR;R/� 1� 2
Var ŒXq �

E ŒXq �2
:

Proof. It is clear from Lemmas 2.6 and 2.8 that Var ŒXq �� log q0, and therefore
our assumption that B.q/ is large enough implies that E ŒXq � is also large enough,
say at least 4. Now let

H.x/ WD

�
0 if x < 0;

1 if x � 0;
f .x/ WD

8<:
0 if x < 0;

x if 0� x < 1;

1 if x � 1:

Clearly, f .x/ is bounded Lipschitz continuous and f .x/�H.x/. Therefore,

ı.qINR;R/D lim inf
Y!1

1

Y

Z Y

2

H.Eq.e
y// dy � lim inf

Y!1

1

Y

Z Y

2

f .Eq.e
y// dy;

which by Lemma 2.2 is equal toZ
R

f .t/ d�q.t/D 1�

Z
R

.1�f .t// d�q.t/

D 1�

Z 1

�1

.1�f .t// d�q.t/� 1��q.�1; 1�:

We now apply Chebyshev’s inequality:

�q.�1; 1�D Prob ŒXq � 1�D Prob ŒXq � E ŒXq �� 1� E ŒXq � �

� Prob ŒjXq � E ŒXq �j � E ŒXq �� 1��
Var ŒXq �

.E ŒXq �� 1/2
� 2

Var ŒXq �

E ŒXq �2
;

since E ŒXq �� 4, and therefore

ı.qINR;R/� 1� 2
Var ŒXq �

E ŒXq �2
: �
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Proof of Theorem 1.2. By Lemma 2.6, our hypothesis implies that for the sequence
of moduli q under consideration,

Var ŒXq ��max

.m /

X


� m

1
4
C  2

�

D o

�
�.q/

log q
�.q/ log q

�
D o

�
�.q/2

�
;

by Lemma 2.8. Lemma 2.6 also implies that E ŒXq �� �.q/, and hence Lemma 2.10
implies that

ı.qINR;R/� 1� o.1/:

The last inequality to show, that is, ı.qINR;R/< 1, follows from a lower bound on
�E.�1;�1� similar to that in [Rubinstein and Sarnak 1994, Theorem 1.2], which
holds in greater generality [Akbary et al. 2013]. Using this lower bound, one does an
analysis similar to that in the proof of Lemma 2.10, replacing the function f .x/with

g.x/ WD

8<:
1 if x < �1;

�x if � 1� x < 0;

0 if x � 0;

in order to obtain a lower bound for

1� ı.qINR;R/D lim sup
Y!1

1

Y

Z 1
2

.1�H.Eq.e
y/// dy: �

3. A central limit theorem

The goal of this section is to show a central limit theorem under GRH and LI, from
which the second part of Theorem 1.1 will follow. We first translate our problem
to questions on sums of independent random variables, which can be done thanks
to LI. Recall that we are interested in the set of n such that

�.nI q;NR/ > .�.q/� 1/�.nI q;R/:

Lemma 3.1. Assume GRH and LI. Then the logarithmic density of the set of n for
which �.nI q;NR/ > .�.q/� 1/�.nI q;R/ exists and is equal to

Prob ŒXq > 0�;

where Xq is the random variable defined in Section 2. Moreover, we have

Xq � �.q/� 1C
X
�mod q

�2D�0

� ¤�0

X
�>0

2<.Z�/q
1
4
C  2

�

; (14)

where the Z� are independent identically distributed random variables following
a uniform distribution on the unit circle in C.
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Proof. By Lemma 2.1, we have that

�.xI q;NR/� .�.q/� 1/�.xI q;R/
p

x= log x
D �.q/� 1C

X
�mod q

�2D�0

� ¤�0

X
�

xi�

��
C o.1/;

since LI implies that there are no real zeros. It follows by the work of Rubinstein
and Sarnak that ı.qINR;R/ exists and equals Prob ŒXq > 0� (their analysis shows
that the distribution function of Xq is continuous). Moreover, an argument similar
to the proof of [Fiorilli and Martin 2013, Proposition 2.3] shows that (14) holds. �

One can show that the random variables in (14) have variance Var Œ<.Z�/�D
1
2

and have mean E ŒZ� �D 0. Using this and the fact that they are mutually indepen-
dent, we recover Lemma 2.6:

E ŒXq �D �.q/� 1; Var ŒXq �D
X
�mod q

�2D�0

� ¤�0

X
�

1
1
4
C  2

�

; (15)

since the zeros come in conjugate pairs (� is real). We will see in the following
lemma that Var ŒXq �� �.q/ log q0 (recall that q0 WD

Q
p jq

p), and this is a crucial fact
in our analysis.

Lemma 3.2. Assume GRH and LI, and let Xq be the random variable defined
in (14). We have that

Var ŒXq �D 2!.q/�1��q log q0
�
1CO

�
log log q0

log q0

��
;

where �q D 1 if 2 j q, and �q D 0 otherwise. In particular,

Var ŒXq �� �.q/ log q0:

Proof. By Remark 1.4, we have that

Var ŒXq �D Var ŒX2e`�;

where e � 3, 2e k q and ` WD
Q

p jq;p¤2 p. Therefore we assume from now on
(without loss of generality) that qD 2e`, with e� 3 and ` an odd squarefree integer.

Lemma 3.5 of [Fiorilli and Martin 2013] gives thatX
�

1
1
4
C  2

�

D log q�� log� �  � .1C�.�1// log 2C 2<
L0

L
.1; ��/

D log q�CO.log log q�/; (16)
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by Littlewood’s GRH bound on .L0=L/.1; �/. Plugging this into (15), we get

Var ŒXq �D
X

� mod q

�2D�0

log q�CO
�
2!.q/ log log q

�
:

If q is odd, then there is exactly one primitive real character mod d for every d j q,
henceX
� mod q

�2D�0

log q� D
X
d jq

log d D
X
d jq

X
p jd

log p D
X
p jq

.log p/2!.q/�1
D 2!.q/�1 log q:

If 2 k q, then there are no primitive characters modulo even divisors of q, soX
�mod q

�2D�0

log q� D
X
d j q

2

log d D 2!.q/�2 log
q

2
:

If 4 k q, then there is exactly one primitive real character modulo divisors which
are multiples of 4, soX

� mod q

�2D�0

log q� D
X
d j q

4

log d C
X

4jd jq

log d D 2!.q/�2 log.2q/:

If 8 k q, then there are exactly two primitive real characters modulo divisors which
are multiples of 8, soX

�mod q

�2D�0

log q� D
X
d j q

8

log d C
X

4jd jq
8−d

log d C 2
X

8jd jq

log d D 2!.q/�2 log.8q/: �

Let Xq be the random variable defined in (14), and define

B.q/ WD
E ŒXq �p
Var ŒXq �

:

It is B.q/ which dictates the behavior of the race we are considering: if B.q/ is
small, then the race will not be very biased, whereas if B.q/ is large, then the race
will have a significant bias. By Lemma 3.2, we have under GRH and LI the estimate

B.q/D

s
2!.q/C1C�q

log q0

�
1CO

�
2�!.q/C

log log q0

log q0

��
: (17)

To prove the second part of Theorem 1.1 we will need a sequence of moduli for
which B.q/ is very regular.
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Lemma 3.3. For any fixed 0 < c < 1, there exists an increasing sequence of
squarefree odd integers fqng such that

2!.qn/C1
D .cC o.1// log qn:

Proof. Fix 0 < c <1, and define ec WD minfe � 1 W 2�ec < 2=log 4g and c1 WD

2�ec c < 2=log 4. Define for `D 1; 2; : : : the intervals

I` WD
�
exp.c�1

1 2`/; 2 exp.c�1
1 2`/

�
; J` WD

�
2 exp.c�1

1 2`/; 4 exp.c�1
1 2`/

�
:

Since c1 < 2=log 4, we have that for all `� 1,

4 exp.c�1
1 2`/ < exp.c�1

1 2`C1/I

hence our intervals are all disjoint. We define p` to be any prime in the interval I`,
and similarly for p0

`
2J

`
. The existence of such primes is granted by Bertrand’s pos-

tulate (note that exp.c�1
1

21/>4). Now, the sequence of moduli we are looking for is

qn WD

Y
1�`�ec

p0`

Y
1�`�n

p`;

since

2!.qn/C1

log qn
D

2nCecC1

Oc.1/C
X

1�`�n

�
c�1

1 2`CO.1/
� D 2nCecC1

c�1
1

2nC1COc.n/

D 2ec c1

�
1COc

�
n

2n

��
D c.1C o.1//;

by definition of c1. �

Before proving the second part of Theorem 1.1, we give some information
about the characteristic function of the random variables we are interested in. The
following lemma implies a central limit theorem.

Lemma 3.4. Assume GRH and LI. Let Xq be the random variable defined in (14),
and define

Yq WD
Xq � E ŒXq �p

Var ŒXq �
D

1p
Var ŒXq �

X
�mod q

�2D�0

� ¤�0

X
�>0

2<.Z�/q
1
4
C  2

�

:

The characteristic function of Yq satisfies, for j�j � 3
5

p
Var ŒXq �,

yYq.�/D�
�2

2
CO

�
�4

�.q/ log q0

�
:
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Moreover, in the same range, we have

yYq.�/� �
�2

2
: (18)

Proof. The proof is very similar to that of [Fiorilli and Martin 2013, Theorem 3.22].
Using the additivity of the cumulant-generating function of Xq , one can show that

log yXq.�/D iE ŒXq ��C
X
�mod q

�2D�0

� ¤�0

X
�>0

log

 
J0

 
2�q

1
4
C  2

�

!!
; (19)

where J0.x/ is the Bessel function of the first kind:

J0.x/D

1X
nD0

.�1/n.x=2/2n

n!2
:

We will use the following Taylor expansion, which is valid for j�j � 12
5

(see [Fiorilli
and Martin 2013, Section 2.2]):

log J0.�/D�
�2

4
CO.�4/: (20)

Plugging this estimate into (19), we get that for j�j � 3
5

,

log yXq.�/D iE ŒXq �� � �
2
X
�mod q

�2D�0

� ¤�0

X
�>0

1
1
4
C  2

�

CO

 
�4

X
�mod q

�2D�0

� ¤�0

X
�>0

1�
1
4
C  2

�

�2
!
:

Applying Lemma 2.8 givesX
�mod q

�2D�0

� ¤�0

X
�>0

1�
1
4
C  2

�

�2 � �.q/ log q0:

Moreover, by Lemma 3.2 we have Var ŒXq �� �.q/ log q0. Putting these together
and using (15), we get that

log yYq.�/D log yXq

�
�p

Var ŒXq �

�
� iE ŒXq �

�p
Var ŒXq �

D�
�2

2
CO

�
�4

�.q/ log q0

�
;
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showing the first assertion. For the second we use the same argument, but we
replace the estimate (20) with the following inequality, valid in the range j�j � 12

5
:

log J0.�/� �
�2

4
: �

Lemma 3.5 (Berry–Esseen inequality). Assume GRH and LI. Denote by Fq the
distribution function of

Yq WD
Xq � E ŒXq �p

Var ŒXq �
;

and by F that of the Gaussian distribution. We have that

sup
x2R

jFq.x/�F.x/j �
1

�.q/ log q0
:

Remark 3.6. One could get a more precise estimate using the Feuerverger–Martin
formula [2000]. However, the estimate of Lemma 3.5 is sufficient for our purposes.

Proof. Since the statement is trivial if �.q/ log q0 is bounded, we can assume without
loss of generality that Var ŒXq �� 1 (by Lemma 3.2).

The Berry–Esseen inequality in the form of [Esseen 1945, Theorem 2a] gives
that for any T > 0,

sup
x2R

jFq.x/�F.x/j �

Z T

�T

yYq.�/� e�
�2

2

�
d�C

1

T
: (21)

We take T WDVar ŒXq �. By Lemma 3.4, the part of the integral with j�j� 3
5

Var ŒXq �
1
4

is at most

Z 3
5

VarŒXq �
1
4

� 3
5

VarŒXq �
1
4

e�
�2

2 .e
O
�

�4

�.q/ log q0

�
� 1/

�
d�

�
1

�.q/ log q0

Z
R

�3e�
�2

2 d��
1

�.q/ log q0
:

We now bound the remaining part of the integral using an argument analogous to
[Fiorilli and Martin 2013, Proposition 2.14]. Fix 0� �� 5

6
. By the properties of

the Bessel function J0.x/, we have that if j�j> �=2, then whatever � 2 R is,ˇ̌̌̌
ˇJ0

 
2�q

1
4
C  2

�

!ˇ̌̌̌
ˇ� J0

 
�q

1
4
C  2

�

!
:
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By (19), this shows that in the range j�j > 5
12

Var ŒXq �
1
4 we have j yXq.�/j �

j yXq.
5

12
Var ŒXq �

1
4 /j (since Var ŒXq �� 1), and so

Z
3
5

VarŒXq �
1
4<j�j�VarŒXq �

yYq.�/� e�
�2

2

�
d�

� yYq

�
5

12
Var ŒXq �

1
4

�
log Var ŒXq �C

Z
j�j> 3

5
VarŒXq �

1
4

e�
�2

2

�
d�

� exp.� 25
577

Var ŒXq �
1
2 /C exp.� 9

51
Var ŒXq �

1
2 /;

by (18). Applying Lemma 3.2, we conclude that the right-hand side of (21) is at
most a constant times .�.q/ log q0/�1. �

Proof of Theorem 1.1, second part. Fix � 2
�

1
2
; 1
�
. We wish to find a sequence of

moduli fqng such that ı.qn;NR;R/! �. The case � D 1 was already covered
in part (1), and the case � D 1

2
follows from taking prime values of q, by the

central limit theorem [Rubinstein and Sarnak 1994]. Therefore we can assume that
1
2
< � < 1.
Let � > 0 be the unique real solution of the equation

1
p

2�

Z 1
��

e�
t2

2 dt D �:

Moreover, let fqng be the sequence of squarefree odd integers from Lemma 3.3 for
which

2!.qn/C1
D log q0n.�

2
C o.1//:

By (17), this gives that as n!1,

B.qn/ WD
E ŒXqn

�p
Var ŒXqn

�
! �:

Define

Yqn
WD

Xqn
� E ŒXqn

�p
Var ŒXqn

�
D

Xqnp
Var ŒXqn

�
�B.qn/:

We will use the central limit theorem of Lemma 3.4, as well as the Berry–Esseen
inequality (21). Denoting by Fqn

the distribution function of Yqn
and by F that of

the Gaussian distribution, we have that
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jı.qn;NR;R/� �j D j Prob ŒXqn
> 0�� �j D j Prob ŒXqn

� 0�� .1� �/j

D jFqn
.�B.qn//�F.��/j

� jFqn
.�B.qn//�F.�B.qn//jC jF.�B.qn//�F.��/j

�
1

�.qn/ log q0n
Cj� �B.qn/j;

by Lemma 3.5 and by the fact that the probability density function of the Gaussian
is bounded on R. Looking at the proof of Lemma 3.3, we see that �.qn/!1,
hence this last quantity tends to zero as n!1, concluding the proof. �

4. A more precise estimation of the bias using the theory of large deviations

To give a more precise estimate for the bias we are interested in under LI, we use
the theory of large deviations of independent random variables. The fundamental
estimate of this section is given in the following theorem.

Theorem 4.1 [Montgomery and Odlyzko 1988, Theorem 2]. For n D 1; 2; : : : ,
let Yn be independent real-valued random variables such that E ŒYn� D 0 and
jYnj � 1. Suppose that there is a constant c > 0 such that E ŒY 2

n �� c for all n. Put
Y D

P
rnYn where

P
r2
n <1.

If
P
jrnj�˛

jrnj � V =2 then

Prob ŒY � V �� exp
�
�

1

16
V 2

� X
jrnj<˛

r2
n

��1�
:

If
P
jrnj�˛

jrnj � 2V then

Prob ŒY � V �� a1 exp
�
�a2V 2

� X
jrnj<˛

r2
n

��1�
:

Here a1 > 0 and a2 > 0 depend only on c.

To make use of these bounds we need to give estimates on sums over zeros.

Lemma 4.2. For T � 1, we haveX
j�j<T

1q
1
4
C  2

�

D
1

�
log.q�

p
T / log T CO.log.q�T //:

Proof. We start from the Riemann–von Mangoldt formula,

N.T; �/D
T

�
log

q�T

2�e
CO.log q�T /:
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With a summation by parts we getX
j�j<T

1q
1
4
C  2

�

DO.log q�/C

Z T

1

dN.t; �/q
1
4
C t2

D
N.T; �/q

1
4
CT 2

C

Z T

1

tN.t; �/�
1
4
C t2

� 3
2

dt CO.log q�/

D

Z T

1

t2

�
log

q�t

2�e�
1
4
C t2

� 3
2

dt CO.log.q�T //

D
1

�
log
�
q�
p

T
�

log T CO.log q�T /: �

Lemma 4.3. Assume LI, and let F.q/ be a subset of the group of Dirichlet charac-
ters mod q such that � 2 F.q/) � 2 F.q/. Define the random variable

Y WD
X

�2F.q/

X
�>0

2<.Z�/q
1
4
C  2

�

;

where the Z� are i.i.d. uniformly distributed on the unit circle. Then, we have for q

large enough that

a1 exp
�
�a2

jF.q/j

L.q/

�
� Prob ŒY � jF.q/j�� exp

�
�a3

jF.q/j

L.q/

�
;

where the ai are absolute constants and

L.q/ WD

P
�2F.q/ log q�

jF.q/j
�

log 2

2
:

Proof. This is a direct application of Theorem 4.1. Taking the sequence frig to be
the 2=

p
1
4
C2

� ordered by size, and denoting by C the constant
p

4=˛2� 1=4, we
have for 0< ˛ � 4 thatX

jrnj�˛

jrnj D

X
�2F.q/

X
0<��C

2q
1
4
C  2

�

;

X
jrnj>˛

jrnj
2
D

X
�2F.q/

X
�>C

4
1
4
C  2

�

:

For the upper bound we take ˛D 4, then we trivially have
P
jrnj�˛

jrnj � jF.q/j=2, so

Prob ŒY � jF.q/j�� exp
�
�

1
16
jF.q/j2

�
c1

X
�2F.q/

log q�
��1�
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for some absolute constant c1. For the lower bound we take ˛ D 2=
p

1
4
CT 2

0
, where

T0 > 1 is a fixed large real number (independent of q and F.q/) such thatX
�2F.q/

X
j�j�T0

1q
1
4
C  2

�

�
4

log 2
L.q/jF.q/j � 2jF.q/j;

whose existence is granted by Lemma 4.2 (we grouped together conjugate charac-
ters). Then Theorem 4.1 gives the bound

Prob ŒY � jF.q/j�� c2 exp
�
�c3jF.q/j

2

� X
�2F.q/

X
�>T0

4
1
4
C  2

�

��1�

� c2 exp
�
�c3jF.q/j

2

�
c4

X
�2F.q/

log q�
��1�

for q large enough and some absolute constants c2, c3 and c4, since if we choose
T1 > T0 independent of � and large enough such that N.2T1; �/�N.T1; �/�

log q� (this is possible by the Riemann–von Mangoldt formula), then we haveX
�2F.q/

X
�>T0

4
1
4
C  2

�

�

X
�2F.q/

X
T1<�<2T1

4
1
4
C  2

�

�

X
�2F.q/

4
1
4
C .2T1/2

.N.2T1; �/�N.T1; �//

�

X
�2F.q/

log q�: �

Proof of Theorem 1.6. Let Xq be the random variable in (14) and define the
symmetric random variable

Yq WDXq � E ŒXq �:

By Lemma 3.1,

ı.qINR;R/D Prob ŒXq > 0�D Prob ŒYq > �E ŒXq � �

D Prob ŒYq < E ŒXq � �D 1�Prob ŒYq � E ŒXq � �:

The proof follows by taking F.q/ WD f� mod q W �2 D �0; �¤ �0g in Lemma 4.3
and by estimating L.q/ as in the proof of Lemma 3.2. �

5. A more general analysis

In this section we do a more general analysis by studying arbitrary linear combina-
tions of prime counting functions.
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Throughout the section, EaD .a1; : : : ; ak/ will be a vector of invertible reduced
residues mod q and Ę D .˛1; : : : ; ˛k/ will be a nonzero vector of real numbers such
that

Pk
iD1 ˛i D 0. Recall that

�i D

�
1 if ai �� mod q;

0 if ai 6�� mod q;

and we assume without loss of generality that

kX
iD1

�i˛i < 0:

To prove Theorems 1.10, 1.14 and 1.17, we need a few lemmas.

Lemma 5.1. Assume GRH and LI. Then the quantity

E.yI q; EaI Ę/ WD �.q/
˛1�.e

y I q; a1/C � � �C˛k�.e
y I q; ak/

ey=2=y

has the same distribution as the random variable

XqIEa; Ę WD��.q/

kX
iD1

�i˛iC

X
�¤�0

j˛1�.a1/C� � �C˛k�.ak/j
X
�>0

2<.Z�/q
1
4
C  2

�

; (22)

where the Z� are independent random variables following a uniform distribution
on the unit circle in C.

Remark 5.2. If we take a1; : : : ; a�.q/.1��.q/�1/ to be the set of all quadratic
nonresidues mod q with ˛1 D � � � D ˛�.q/.1��.q/�1/ D 1=�.q/, and we take
a�.q/.1��.q/�1/C1; : : : ; a�.q/ to be the set of all quadratic residues mod q with
˛�.q/.1��.q/�1/C1D � � � D ˛�.q/D .1��.q//=�.q/, then we recover formula (14).

Proof. In the same way as in the proof of Lemma 3.1, we get by the explicit formula
and by applying GRH that

F.yI q; Ea; Ę/ WD �.q/
˛1 .e

y I q; a1/C � � �C˛k .e
y I q; ak/

ey=2

D �

X
�¤�0

.˛1�.a1/C � � �C˛k�.ak//
X
�

ei�y

��
C oq.1/

(the main terms are canceled since
Pk

iD1 ˛iD 0). By [Rubinstein and Sarnak 1994],
F.yI q; Ea; Ę/ has the same distribution as XqIEa; Ę � E ŒXqIEa; Ę �, since LI implies that
there are no real zeros. The second step is to use summation by parts and to remove
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squares and other prime powers; this gives that

E.yI q; Ea; Ę/C �.q/

kX
iD1

�i˛i C o.1/D F.yI q; Ea; Ę/;

completing the proof. �

Before we give a bound on the variance of this distribution, we prove a lemma
about conductors.

Lemma 5.3. Let 1�L� �.q/. Then,

#f� mod q W q� �Lg �minfL�.q/;L2
g:

Proof. Denoting by ��.d/ the number of primitive characters modulo d , we haveX
d jq

d�L

��.d/�min
�X

d�L

d; L
X
d jq

1

�
: �

Lemma 5.4. Assume LI. Let V .qI Ea; Ę/ WDVar ŒXqIEa; Ę �, where XqIEa; Ę is the random
variable defined in (22). Then,

�.q/kEak22 log
3�.q/

k
� V .qI Ea; Ę/� �.q/kEak22 log q; (23)

where

kEak22 WD

kX
iD1

˛2
i :

Remark 5.5. The upper bound in (23) is attained when q is prime by Lemma 5.8. As
for the lower bound, if we take moduli q with a fixed set of distinct prime factors (for
instance powers of a fixed prime) and consider the race between residues and non-
residues with the weights of Remark 5.2, we obtain by Lemma 3.2 that V .qI Ea; Ę/D

O.1/, and this is of the same order of magnitude as the lower bound in (23).

Proof. Since the Z� in (22) are independent and have variance 1
2

, we have that

Var ŒXqIEa; Ę �D
X
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
2
X
�

1
1
4
C  2

�

(24)

(LI implies there are no real zeros). Combining this with Lemma 2.8 gives

V .qI Ea; Ę/�
X
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
2 log q�: (25)
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Now, ˛1�0.a1/C � � �C˛k�0.ak/D 0, soX
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
2
D

X
� mod q

j˛1�.a1/C � � �C˛k�.ak/j
2

D

X
1�i;j�k

˛i j̨

X
� mod q

�.aia
�1
j /

D �.q/

kX
iD1

˛2
i : (26)

Using this and (25), the upper bound follows from the fact that log q� � log q.
This also gives the lower bound V .qI Ea; Ę/ � .log 3/�.q/kĘk2

2
, which proves

the claim for bounded values of �.q/=k. Hence we assume from now on that
�.q/=k � 576. We fix a parameter 1 < L < �.q/ and discard the characters of
conductor at most L:

V .qI Ea; Ę/� log L
X

� mod qW
q�>L

j˛1�.a1/C � � �C˛k�.ak/j
2

D log L
X

1�i;j�k

˛i j̨

X
� mod qW
q�>L

�.aia
�1
j /

D log L

� kX
iD1

˛2
i

X
� mod q
q�>L

1C
X

1�i¤j�k

˛i j̨

X
� mod qW
q�>L

�.aia
�1
j /

�
;

which by Lemma 5.3 and the orthogonality relations is

� log L

� kX
iD1

˛2
i .�.q/�minfL�.q/;L2

g/�
X

1�i¤j�k

j˛i j̨ jminfL�.q/;L2
g

�
� log LkĘk22Œ�.q/� .kC 1/minfL�.q/;L2

g�

by the Cauchy–Schwarz inequality. Taking L WD .3�.q/=k/
1
3 gives the result, since

then �.q/=k � 576 implies that .kC 1/L2 � �.q/=2. �

Remark 5.6. In the last proof, we did not lose a lot by discarding the characters of
conductor at most .3�.q/=k/

1
3 , since by (26) their contribution is

� �.q/kĘk22 log
3�.q/

k
:
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Proof of Theorem 1.14. We have by Lemma 5.4 that there exists an absolute constant
c > 0 such that

B.qI Ea; Ę/ WD
E ŒXqIEa;Ea�p
Var ŒXqIEa;Ea�

�
�.q/

ˇ̌Pk
iD1 �i˛i

ˇ̌q
c�.q/ log q

Pk
iD1 ˛

2
i

;

a quantity which is greater or equal to .c�/�
1
2 by the condition of the theorem. We

conclude that 1� ı.qI Ea; Ę/� c� by using Chebyshev’s bound in the same way as
in the proof of Theorem 1.1. �

Proof of Theorem 1.10. It is a particular case of Theorem 1.14. �

We now prove our negative results. To do so, we need to provide a central limit
theorem, analogous to Lemma 3.4.

Lemma 5.7. Assume LI, and let

YqIEa; Ę WD
XqIEa; Ę � E ŒXqIEa; Ę �p

Var ŒXqIEa; Ę �
:

The characteristic function of YqIEa; Ę satisfies

log yYqIEa; Ę.�/D�
�2

2
CO

�
�4

log.3�.q/=k/
min

�
1;

k2 log q

�.q/ log.3�.q/=k/

��
in the range j�j � 3=.5kĘk1/, where kĘk1 WD

Pk
iD1 j˛i j.

Proof. As in Lemma 3.4, we compute

log yXqIEa; Ę.�/

D iE ŒXqIEa; Ę ��C
X
�¤�0

X
�>0

log

 
J0

 
2j˛1�.a1/C � � �C˛k�.ak/j�q

1
4
C  2

�

!!
:

We now use the Taylor expansion (20), which is valid as soon as j�j � 3=.5kĘk1/,
since under this condition we have

2j˛1�.a1/C � � �C˛k�.ak/jj�jq
1
4
C  2

�

�
2kĘk1

1
2

3

5kĘk1
D

12

5
:

Applying Lemma 2.8, we obtain that
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log yYqIEa; Ę.�/

D�
�2

2
CO

 
�4

P
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
4 log q��P

�¤�0
j˛1�.a1/C � � �C˛k�.ak/j

2 log q�
�2
!
: (27)

If �.q/=k is bounded, then the statement trivially follows from the boundP
ia

4
i �

�P
i a2

i

�
2. Therefore we assume from now on that �.q/=k � 576.

We now use two different approaches to bound the error term. The first idea is
to “factor out

p
log q�” before applying the trivial inequality

P
ia

4
i �

�P
ia

2
i

�
2.

We have seen in Remark 5.6 that the main contribution to the variance is that of
the characters with q� � L WD .3�.q/=k/

1
3 . We use the same idea here. Setting

‚� WD j˛1�.a1/C � � �C˛k�.ak/j
2, we haveX

�¤�0

‚� log q� �
X
�¤�0

q�>L

‚� log q�

�
p

log L
X
�¤�0

q�>L

‚�
p

log q�

�
p

log L

� X
�¤�0

‚�
p

log q�� kL2
p

log LkĘk22

�
(28)

by Lemma 5.3 and the Cauchy–Schwarz inequality. Now, by our choice of L,
the fact that �.q/=k � 576 and the equality

P
�¤�0

‚� D �.q/kĘk
2
2

(see (26)),
we have

kL2
p

log LkĘk22 �
1

2

p
log L

h
�.q/kĘk22� kL2

kĘk
2
2

i
�

1

2

X
�¤�0

q��L

‚�
p

log q� �
1

2

X
�¤�0

‚�
p

log q�;

hence (28) gives thatX
�¤�0

‚� log q��
p

log L
X
�¤�0

‚�
p

log q�:

Plugging this into (27) and using the trivial bound

X
�¤�0

‚2
� log q� �

� X
�¤�0

‚�
p

log q�
�2

;

we get that the error term is� �4= log L.
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For the second upper bound we use Lemma 5.4 and the Cauchy–Schwarz in-
equality:P

�¤�0
j˛1�.a1/C � � �C˛k�.ak/j

4 log q��P
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
2 log q�

�2
�

log q

log.3�.q/=k/2

P
�¤�0

j˛1�.a1/C � � �C˛k�.ak/j
4

.�.q/kĘk2
2
/2

D
log q

log.3�.q/=k/2

P
i;j ;i0;j 0

ai ai0�ajaj 0 mod q

˛i˛i0 j̨ j̨ 0

�.q/kĘk4
2

�
log q

log.3�.q/=k/2

�qPk
iD1 ˛

2
i

qPk
jD1 1

�4
�.q/kĘk4

2

;

which gives the claimed bound. �

Proof of Theorem 1.17. Let K � 1 and define c > 0 to be the constant implied in
the lower bound in Lemma 5.4. Assume that k � e�e4K

�.q/ and that (9) holds
with K2D cK. Define the vector Ě WD

�
e�K=kĘk1

�
Ę, so that k Ěk1D e�K , which

will allow us to apply Lemma 5.7. Clearly,

ı.qI Ea; Ę/D ı.qI Ea; Ě/;

since multiplying Ę by a positive constant does not affect the inequality

˛1�.nI q; a1/C � � �C˛k�.nI q; ak/ > 0:

We have by Lemma 5.4 and by the definition of c that

B.qI Ea; Ě/ WD
E ŒX

qIEa; Ě
�p

Var ŒX
qIEa; Ě

�
�

�.q/
ˇ̌Pk

iD1 �iˇi

ˇ̌q
c�.q/ log.3�.q/=k/

Pk
iD1 ˇ

2
i

D c�
1
2

�.q/
ˇ̌Pk

iD1 �i˛i

ˇ̌q
�.q/ log.3�.q/=k/

Pk
iD1 ˛

2
i

;

a quantity which is at most
p

K by (9). Defining

Y
qIEa; Ě

WD

X
qIEa; Ě
� E ŒX

qIEa; Ě
�p

Var ŒX
qIEa; Ě

�
;
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we have by Lemma 5.7 and by our condition on k that in the range j�j � 3
5
eK ,

log yY
qIEa; Ě

.�/D�
�2

2
CO

�
�4

e4K

�
:

Combining this with the Berry–Esseen inequality (21) and taking W to be a standard
Gaussian random variable with mean 0 and variance 1, we get

Prob ŒY
qIEa; Ě

> �B.qI Ea; Ě/��Prob ŒW > �B.qI Ea; Ě/�

�

Z 3
5

eK

� 3
5

eK

yY
qIEa; Ě

.�/� e�
�2

2

�
d�C 5

3
e�K

�

Z 3
5

eK

� 3
5

eK

�3e�
�2

2

e4K
d�C e�K

� e�K : (29)

However, since B.qI Ea; Ě/�
p

K, we have that

Prob ŒW � �B.qI Ea; Ě/�� c1

e�
K
2

K

for some absolute constant c1. Therefore, applying (29) gives

ı.qI Ea; Ě/D Prob ŒY
qIEa; Ě

> �B.qI Ea; Ě/�

D Prob ŒW > �B.qI Ea; Ě/�CO.e�K /

� 1� c1e�
K
2 =KC c2e�K ;

a quantity which is less than the right-hand side of (10) for K large enough. The
proof is finished since ı.qI Ea; Ę/D ı

�
qI Ea; Ě

�
. �

To end this section we give an estimate for the variance V .qI Ea; Ę/. While we
have not explicitly made use of this expression, we include it for its intrinsic interest,
and for its ability to give a precise evaluation of the variance V .qI Ea; Ę/ for values
of q having prescribed prime factors.

Lemma 5.8. Assuming GRH and LI, we have that

V .qIEa; Ę/

D �.q/kĘk2.log qCO.log log q//��.q/
X
i¤j

˛i j̨

ƒ
�

q

.q;ai a�1
j
�1/

�
�
�

q

.q;ai a�1
j
�1/

� : (30)
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Proof. Using [Fiorilli and Martin 2013, Proposition 3.3], we obtain thatX
� mod q

j˛1�.a1/C � � �C˛k�.ak/j
2 log q�

D

X
1�i;j�k

˛i j̨

X
� mod q

�.aia
�1
j / log q�

D �.q/

�
log q�

X
p jq

log p

p� 1

� kX
iD1

˛2
i ��.q/

X
i¤j

˛i j̨

ƒ
�

q

.q;ai a�1
j
�1/

�
�
�

q

.q;ai a�1
j
�1/

� :
We have X

p jq

log p

p� 1
�

!.q/X
iD1

log pi

pi � 1
� log log q;

where pi denotes the i -th prime. The claimed estimate then follows by combining
this with the formula

V .qI Ea; Ę/D
X

� mod q

j˛1�.a1/C � � �C˛k�.ak/j
2
X
�

1
1
4
C  2

�

(see (24)) and with (16). Note that by the Littlewood bound .L0=L/.1; �/ �
log log q�, the implied error term is

�

X
� mod q

j˛1�.a1/C � � �C˛k�.ak/j
2 log log q D �.q/kĘk2 log log q: �

It might seem like the second term of (30) is an error term; however, this is not
necessarily true for large values of k (see Lemma 3.2). Nevertheless, we expect
many cancellations to occur since

X
i¤j

˛i j̨ D

� kX
iD1

˛i

�2

�

kX
iD1

˛2
i D�

kX
iD1

˛2
i :
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