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Abstract Letg > 3and2 < r < ¢(g) be positive integers,and ay, . . ., a, be distinct
reduced residue classes modulo ¢. Rubinstein and Sarnak defined §(q; ay, ..., a,)
to be the logarithmic density of the set of real numbers x such that 7(x; g, a;) >
w(x;q,az) > --- > mw(x;q,a,). In this paper, we establish an asymptotic formula
foré(q; ay, ..., a,) whenr > 3isfixed and q is large. Several applications concerning
these prime number races are then deduced. First, comparing with a recent work of
Fiorilli and Martin on the case r = 2, we show that these densities behave differently
when r > 3. Another surprising consequence of our results is that, unlike two-way
races, biases do appear in races involving three or more squares (or non-squares)
to large moduli. Furthermore, we establish a partial result towards a conjecture of
Rubinstein and Sarnak on biased races, and disprove a recent conjecture of Feuerverger
and Martin concerning bias factors. Lastly, we use our method to derive the Fiorilli
and Martin asymptotic formula for the densities when r = 2.
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1 Introduction

In 1853 Chebyshev observed that primes congruent to 3 modulo 4 seem to predominate
over those congruent to 1 modulo 4. In general, if @ is a non-square modulo g and b is
a square modulo g then 7 (x; ¢, a) has a strong tendency to be larger than 7 (x; g, b),
where 7 (x; g, a) denotes the number of primes less than x that are congruent to a
modulo ¢. This general phenomenon is known as “Chebyshev’s bias”. This bias might
appear unexpected in view of the prime number theorem for arithmetic progressions
which states that lim,_, o 7(x; g, a)/m(x; g, b) = 1, for any a and b that are coprime
to g. However, this asymptotic result does not give us any information on the difference
w(x;q,a)—n(x;q,b). In1914, Littlewood [23] proved that the quantities 7 (x; 4, 3) —
w(x;4,1)and w(x; 3,2) — m(x; 3, 1) change sign infinitely often. Similar results to
other moduli were subsequently derived by Knapowski and Turdn [10-17], under
some hypotheses on the zeros of Dirichlet L-functions.

A generalization of Chebyshev’s question is the so-called “Shanks and Rényi prime
number race” which is colorfully described by Knapowski and Turédn in [10-17]. Let
g >3and 2 < r < ¢(q) be positive integers, and denote by A, (q) the set of ordered
r-tuples of distinct residue classes (ay, az, .. ., @) modulo ¢ which are coprime to g.
For (aj, as, ..., a,) € Ar(q), consider a game with r players called “1” through “r”,
where at time x, the player “j” has a score of 7 (x; ¢, a;). Will all r! orderings of the
players occur for infinitely many integers x?

It is generally believed that the answer to this question is yes for all g and all
(ar,ay, ...,a;) € Ar(q). This problem has been extensively studied by many authors,
including Knapowski and Turdn [10-17], Bays and Hudson [1] and [2], Kaczorowski
[18,19] and [20], Feuerverger and Martin [4], Martin [24], Ford and Konyagin [6]
and [7], Fiorilli and Martin [5], and the author [22]. For a complete history of this
subject, one can refer to the delightful articles of Granville and Martin [8], and Ford
and Konyagin [7].

In their fundamental work of 1994, Rubinstein and Sarnak [25] solved the Shanks
and Rényi prime race problem assuming the Generalized Riemann Hypothesis GRH
and the Linear Independence Hypothesis LI (which is the assumption that the non-
negative imaginary parts of the zeros of all Dirichlet L-functions attached to primitive
characters modulo g are linearly independent over the rationals). For (a;, as, ..., a;) €
A (q), let Py.q, ... q, be the set of real numbers x > 2 such that

.....
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n(x;q,a1) >n(x;q,a2) > -+ > mw(x;q,a,).

Rubinstein and Sarnak showed, assuming GRH and LI, that for any (ay, ..., a,) €
Ay (q) the logarithmic density of P.q,, .. 4, defined by

,,,,,

. 1 dt
dg;ay,...,a) = xlggo logx / -

tEPq;a] sy N[2,x]

exists and is positive. In fact this is corollary of a stronger result they proved, that there
exists an absolutely continuous measure [Lg;q;. ..., Such that

8(qg;ar,...,ar) = / dﬂq;al ..... ar(-xlv-"9x}’)' (1.1)

X|>X2>>Xp

All the results we obtain in this paper are conditional on the same two hypotheses
(namely GRH and LI) as the work of Rubinstein and Sarnak. In [6], Ford and Konyagin
showed that assumptions on the locations of the zeros of Dirichlet L-functions are
indeed necessary in order to obtain results on prime number races with three or more
competitors.

In the case of a race between two residue classes a and b modulo ¢, Rubinstein
and Sarnak proved that 6(g; a, b) = 8(q; b, a) = 1/2 if a and b are both squares or
both non-squares modulo ¢, and otherwise §(q; a, b) > 1/2 if a is a non-square and
b is a square modulo ¢ (note that §(g; b, a) = 1 — §(q; a, b)). They also showed that
8(q;a,b) — 1/2 as g — oo, uniformly for all distinct reduced residue classes a, b
modulo ¢. In fact, they proved that in general all biases disappear when ¢ — oo. Let

1
A = max 8(g;ar,...,ar) — —|.
r(q) (@1, €A, (q) (g5 a1 D=

Then for any fixed r > 2, Rubinstein and Sarnak showed, assuming GRH and LI, that
Ar(g) > 0 asqg — oo. (1.2)

In the case r = 2, Fiorilli and Martin [5] have recently established an asymptotic
expansion for 8(g; a, b) — 1/2 when a is a non-square and b is a square modulo ¢,
conditionally on GRH and LI. A corollary of their results is that for g large

1
£29) = o

A surprising consequence of our results is that A, (¢) behaves in a completely different
way when r > 3.

@ Springer



1120 Y. Lamzouri

Theorem 1.1 Assume GRH and LI. Let r > 3 be a fixed integer. If q is large, then

1
Ar(g) = —.
logg

Recall that a bias occurs in a two-way race {g; ai, a2} if and only if one of the residue
classes a; and a; is a square and the other is a non-square modulo g. An interesting

problem is then to determine when these biases appear for general races {¢; ay, ..., ar}
with » > 3. To make things clear we need to precisely define the notions of “biased”
and “unbiased” races. Although Rubinstein and Sarnak called a race {q; ay, ..., a,}

unbiased if the density function associated to the measure (ty.4,,... 4, is Symmetric, we
believe that a more appropriate definition is the following

Definition 1.2 Let (a1, ..., a,;) € A,(q). Therace {q; a1, ..., a,} is said to be unbi-
ased if for every permutation o of the set {1, 2, ..., r} we have
1
8(q; ao(1y, - .-, a5(r)) =68(g;ai, ..., ar) = I

Furthermore, a race is said to be biased if this condition does not hold.

First, observe that if the race {q;ai,...,a,} is unbiased then the races
{q; ai,,...,a;} are unbiased for any subset {i1,..., i} of {1,...,7}. In view of
the results of Rubinstein and Sarnak on two-way races, this clearly shows that a race
{g;ai,...,a} is biased if there are 1 < i # j < r such that g; is a square and
a; is a non-square modulo g. Furthermore, it is obvious from (1.1) that the race
{g: a1, ..., a}is unbiased if the density function of 114.q4.....q, is Symmetric. Rubin-

stein and Sarnak investigated the Fourier transform of 44,4, ,....q, forr > 3, and showed
that the only case when this distribution is symmetric occurs when » = 3 and

a) =ajpmodgqg, a3za1p2m0dq, (1.3)

forsome p # 1 with p3 = 1 mod ¢. However, this result still leaves open the possibility
that unbiased races not satisfying assumption (1.3) might exist (since, for example,
a function can be positive half of the time without being symmetric). Nonetheless,
Rubinstein and Sarnak conjectured that the only case when a race involving three or
more competitors is unbiased corresponds to (1.3).

Conjecture 1.3 (Rubinstein and Sarnak [25]) Whenr > 3, the race {q; ay, ..., ay} is
unbiased if and only if r = 3 and the residue classes ay, a>, and az satisfy assumption
(1.3).

Feuerverger and Martin [4] were the first to exhibit explicit examples of biased races
with three competitors, where the residue classes are either squares or non-squares
not satisfying assumption (1.3). For example they showed, under GRH and LI, that
the races {8; 3,5, 7} and {12; 5,7, 11} are biased. However, all the examples they
considered satisfy r < 4 and g < 12, thus leaving open the problem of determining
the existence of biased races of this type for any ¢ > 12 and 3 < r < ¢(q). We
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Prime number races with three or more competitors 1121

answered this question for any fixed r > 3 if ¢ is large enough. Indeed we show that
unlike two-way races, biases do appear in races involving three or more squares (or
non-squares) modulo g, if ¢ is sufficiently large.

Theorem 1.4 Assume GRH and LI. Givenr > 3, there exists a positive number qo(r)
such that for any q > qo(r) there are two r-tuples (ay, . .., a,), (b, ..., by) € A (q),
with all of the a; being squares and all of the b; being non-squares modulo q, and
such that both the races {q; a1, ...,a,} and {q; b1, . .., by} are biased.

For distinct non-zero integers ay, . . . , a,, we define Q,, .. 4, to be the set of positive
integers ¢ such thatay, . .., a, are distinct modulo ¢, and (¢, ;) = 1forall1 <i <r.
When r = 3, assumption (1.3) implies that a% = apazmodg, a% = ajazmodg,
and a% = ajaomod g. Hence if ¢ > 2max(|a;|?) then these congruences become
identities. However, since the a; are assumed to be distinct these equalities can not
hold. This leads to a weak form of Conjecture 1.3:

Conjecture 1.5 Letr > 3 and ay, . .., a, be distinct non-zero integers. Then for all
positive integers g € Q... a, Such that ¢ > 2 max(|a; |2), the race {q; ay, ..., a;} is
biased.

.....

We prove the following partial result towards this conjecture, which follows from
Theorem 2.6 below.

Theorem 1.6 Assume GRH and LI. Let r > 3 and ay, ..., a, be distinct non-zero
integers such that a; /ay equal —1 or a prime power, for some 1 < j # k < r. Then
for all but finitely many integers q € Qy,.....a,, the race {q; ai, ..., a,} is biased.

,,,,,

To establish these results, we prove an asymptotic formulafor é(g; ay, . . ., a,) valid
for large ¢, and then we investigate the behavior of its first few terms. Our approach is
different from the one used by Fiorilli and Martin [5] in the case r = 2. Their method
relies on using a certain symmetry of the measure ji4.4, 4, (Which is a measure on
R?) to reduce the RHS of (1.1) to a one dimensional integral over a related measure
pg on R. This symmetry could be used to reduce the measure (ty.4,,... 4, in the case
r > 3 toameasure on R" 1, as is done in [4]. However, this does not help in this case,
and one might as well deal with the original measure on R’. Instead, our approach
relies on studying the measure fi4.q,.....q, by carefully analyzing its Fourier transform
Qg:ay.....a,- In particular, we will exploit the fact that /i,.4, .4, can be approximated
by the Fourier transform of a multivariate Gaussian at small arguments, when g — 0.

In the next section we shall discuss these results in details. In particular we shall
describe the asymptotic formula we prove for the densities 6 (¢; a1, . . . , @) and deduce
further consequences.

2 Detailed statement of results

For a non-principal Dirichlet character x modulo g, we denote by {y,} the multiset
of imaginary parts of the non-trivial zeros of L(s, x). Let xo denote the principal
character modulo ¢ and define S = Ux;ﬁxomodq {yx}. Moreover, let {U(yx)}yxes be
a multiset of independent random variables uniformly distributed on the unit circle.
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1122 Y. Lamzouri

Rubinstein and Sarnak established, under GRH and LI, that the distribution 1,4,
is the probability measure corresponding to the random vector

.....

Xq;m ..... ar =X@.a1),...,X(q.,a)),
where
2Re(x (@)U (yy))
X(g,@)==Cyl@)+ 2, > —F—"—,
X#x0 vx>0 \/ 4 + VX
xmod g
and
Co@y=—1+ > 1 Q2.1
b’=amodg
1<b=q
Note that for (a, g) = 1 the function C, (a) takes only two values: C,(a) = —1ifais

a non-square modulo ¢, and Cy(a) = C,4(1) if a is a square modulo g. Furthermore,
an elementary argument shows that C,(a) < d(g) < ¢° for any € > 0, where
d(q) = Zml 4 1 1s the usual divisor function.

The covariance matrix of a random vector Z = (Z1, ..., Z,) is the n x n matrix

whose (/. k) entry is Cov(Z;, Zx) = E((z,- —E(Z)) (2 — ]E(Zk))), where E(Y)
denotes the expectation of the random variable Y. Let Covy.q,.... 4, be the covariance

matrix of the random vector X.4, ... 4, - A straightforward computation shows that the
entries of Covyq, ... 4, are

.....

if j=k

Cov,. Lk
OVq,al ar(] ) [B (al,ak) lf‘]#k,

where
x(5)
Ng:=2 > > - ,andB(ab)—ZZ e ()
X#x0 Vx>0 4 X#X0 vx>0 4 x
xmod g xmod g

We shall later prove (see Lemma 3.1 and Corollary 5.4 below) that

Ny~ ¢(g)logg, and By(a,b) < ¢(q),

uniformly for all pairs (a, b) of distinct reduced residue classes modulo ¢.
In the case r = 2, Fiorilli and Martin [5] established, under GRH and LI, that

1_cq<a1>—cq(az>+0( Cq(1)? )
2 S2aVg(ar. ad) Vy(ar, az)3/?

8(q:a1,az) = 2.3)
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where V, (a1, a2) = 2N, — 2B4(a1, az). In Sect. 8 we shall derive this asymptotic
using a slight modification of our method.

Before stating our results, let us define some notation which shall be used throughout
this paper. Let

Cy=Cylay,...,ar):

max |Cy(a;)|, and By = By(a1,...,a)
1<j=q

max |B,(a;,ar)l.
15j<k§rl q(aj, ar)l

Moreover for 1 < j # k < r, we define the following integrals which shall appear in
the asymptotic formula of §(¢q; ay, ..., a;)

2 2
+...+
aj(r) = Qn)~"/? / X exp(—%)dxl coodxy,

X[ >X2>...> Xy
) B x% + ..+ x?
rj(r) = Q)" / (xj — Dexp —fr dxy...dx,,
X|>X2>...>X,
and
2 2
X + - + X
Bix(r) == 2m)~"/? / X j Xk €Xp (—%)d}q .. .dx,.
X|>X2> o >Xp

Theorem 2.1 Assume GRH and LI. Fix an integer r > 2. If q is a large positive
integer and (ay, ..., a,) € A.(q), then

1 1 1
S(giar,....a) == — —= > aj(NCola) +— D Bjx(r)Bylaj. a)
rt /Ny 1<j<r N 1<j<k<r

1
oy | 2 MOC@ 42 3 BisCe(apCytar

1<j<r 1<j<k<r

1 ¢,B, B?
+0 _+M+_’1 .
’(Nq NP N

As a corollary we obtain

Corollary 2.2 Under the same assumptions of Theorem 2.1 we have

1 1 1
8(g;ar,...,ar) = — — — Z aj(r)Cylaj) + — Z Bjx(r)By(a;, ax)
rt Ny 1<j<r Ny 1<j<k<r

c? B?
+o.\ L+-%)
(Nq N2

@ Springer



1124 Y. Lamzouri

In particular, we get for r = 3 that

Corollary 2.3 Under the same assumptions of Theorem 2.1 we have

1 1
8(q: ar,az,a3) = - + ——=(Cy(a3) — Cy(ar))

6 4,/ Ny

1
+—F—+—(By(a1, a2) + By(az, a3) — 2By (ay, az))
473N, I o

c?2 B2

+oL+-2L).

(%)
Remark The main difference between the cases r = 2 and r > 3 lies in the fact
that B12(2) = 0, which implies that the terms involving B, (a;, a;) are missing in
the case r = 2. Indeed, we shall later prove that the contribution of these terms can
be >, 1/loggq. This explains the surprising behavior of A,(g) when r > 3, since
Cya)/ \/N>q = g~ 1/2+°() Note that our asymptotic formula is not accurate in the

case r = 2 since the error term may exceed the main term. We shall slightly modify
the argument of the proof to handle this case in Sect. 8.

Investigating the terms B, (a;, a;) and using the fact that B; < ¢(g), we prove
the following result, which is a stronger form of Theorem 1.1.

Theorem 2.4 Assume GRH and LI. Fix r > 3 and let q be large. Then for all
(ai,...,ay) € A (q) we have

1 1
8(gsar, ..., ar) = = <K .
r! loggq
Moreover there exist residue classes (by, ..., b,), (di,...,d;) € A, (q) such that
1 1
5@ibr by =~ + D s d) < - — SO
r!  logg r!  logg
for some constant c1(r) > 0 which depends only on r.
This result implies that for some residue classes ay, .. ., @, modulo g the distance
|6(g;ai,...,ar)—1/r!|canbe >, 1/logq. An interesting question is then to inves-

tigate for which residue classes modulo g does this extreme bias occur. To this end let
us make the following definition.

Definition 2.5 Fixr > 3andletq belarge. Wecallarace {q; ay, . .., a,} “q-extremely
biased” if for some permutation o of the set {1, ..., r} we have

1
3(g; as(1ys -+ Ao(r) — = | >r

r! logg’
We can completely characterize g-extremely biased races {q; a1, ..., a,} when the
residue classes ay, . .., a, are bounded and g is large.
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Prime number races with three or more competitors 1125

Theorem 2.6 Assume GRH and LI. Fix r > 3 and let A > 1 be a real number. If
ai, ..., ay are distinct integers with |a;| < A, and q is a large positive integer with
(g, a;) =1, then the race {q; a1, ..., a,} is extremely biased if and only if there exist
1 < j#k <rsuchthata;/a; equals —1 or a prime power.

Moreover, if this condition does not hold, then for any permutation o of the set
{1,...,r}

1

5(q; as (1), - -+ » Ao (r)) — p

lo
g4 if all the a; are squares (or non-squares) mod q,
<<AJ q

g~ \/2ro(h)

otherwise.

Since the functions > _; x;, >V, (sz. —1Dand Xy _; <, XXk are symmetric in
the variables x1, ..., x,, and [ x exp(—x2/2)dx = [ (x? — 1) exp(—x?/2)dx = 0,
we deduce that

Doy =D 2= D Bjxr)=0.
j=1 j=1

1<j<k<r

Therefore, in the case where all of the a; are squares (or all of them are non-squares)
modulo g we obtain the following corollary of Theorem 2.1:

Corollary 2.7 Assume GRH and LI. Fix r > 3 and let q be large. Then, for any
(at,...,ay) € Ap(q) such that all of the a; are squares (or all of them are non-
squares) modulo q, we have

11 1 c,B, B}
S(gian, ..., a)=—+— D ﬂ,-,k(r)Bq(a,-,ak>+0r(—+%+—‘g).
r N, i Ny = N N

Using this result along with an explicit construction of the residue classes ay, . . ., a,
modulo g, we prove a strong from of Theorem 1.4.

Theorem 2.8 Assume GRH and LI. Fix r > 3 and let q be large. Then there exist two
r-tuples (ay, . ..,a;), (by, ..., by) € A.(q), with all of the a; being squares and all
of the b; being non-squares modulo q, and a permutation o of the set {1, ..., r}, such
that

1 ca(r)
8(‘1§a17‘-',ar)Za(q;bl,-'-»br)<__—3
r! log’¢q

and

I )
8(q; ao(1ys - - -» Ao (r) = 8(q; bo(1y, - - -, bor) > = + —5—,
r!  log’¢q

for some constant c>(r) > 0 which depends only on r.
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1126 Y. Lamzouri

Remark Inthe proof of Theorem 2.8 we constructed the squares a; by choosinga; = 1,
a, = p]2 and a; = (plpz)zj for2 < j <r — 1, where p; # p are the smallest
primes that are coprime with g. The non-squares b; are simply constructed by taking
b; = ba; where b is any non-square modulo g. The primes p, p2 can be as large as
log ¢, which explains why only the order of magnitude 1/(log ¢)? is obtained, rather
than the 1/(log g) that we derived in Theorem 2.4. Indeed if —1 is a square modulo
q, or the primes p1, p» are bounded, then we can modify our construction so that the
term ¢ (r)/(log ¢)* can be replaced by c3(r)/log g in the statement of Theorem 2.8.

It is clear from Theorem 2.1 that in order to understand the behavior of
8(q; a1, ..., ar), we have to investigate the size of B, (a, b) for (a,b) € Ax(q).
Recall that B,(a, b) < ¢(g). On the other hand we shall prove that this bound is
attained if a + b = 0 mod ¢ (this is a consequence of Proposition 5.1 below), so that

max |Bg(a,b)| < ¢(q).
@bedrq) ! 1

An interesting question is then to determine the order of magnitude of | B (a, b)| for
a generic pair (a, b) € A>(q). We prove that on average | B, (a, b)| < logg.

Theorem 2.9 Assume GRH. If q is large, then

1
(1+o(1)logg < > Byla.b)| < (10+o(1)) logg.
2N (@.n)eArig)
In trying to quantify the biases for r-tuples (ay, ..., a;) € A (q), Feuerverger and

Martin [4] formulated the following conjecture:

Conjecture 2.10 (Feuerverger and Martin [4]) Given r > 2, there exists a linear form
F(xy,...,x;)onR" such that

F(Cy(a), ..., Cqylar)) > F(Cy(by), ..., Cq(b))
= 6(¢q;ar,...,ar) >68(q;b1,...,b),

for all races {q;ai,...,a;} and {q;by1,...,b:}. In this case Fyq, . . .. =
F(Cy(ar), ..., Cy(ay)) is called “a bias factor”.

This conjecture was motivated by some numerical computations along with the fact
that the special case r = 2 holds, as shown by the work of Rubinstein and Sarnak
(in this case one can check that Fy.,, o, = C4(a2) — C4(ay) is a bias factor). Using
an explicit construction which involves Burgess’s bound for the least quadratic non-
residue modulo a prime (see Chapter 12 of [9]), we prove that this conjecture does not
hold when r > 3.

Theorem 2.11 Assume GRH and LI. Let r > 3 and (ky,...,kr) € R'\{0}. If g is
large, then there exist two r-tuples (ay, ..., a,), (b1, ..., b)) € A-(q) such that

Z kiCylaj) > Z kjCy(bj) and 5(q; ay, ...,ar) <68(q;by,...,b).

I<j<r I<j<r
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Prime number races with three or more competitors 1127

In the other direction, combining Theorems 2.1 and 2.9 we show that Conjec-
ture 2.10 holds for almost all r-tuples (ay, ..., a;) € A, (q).

Theorem 2.12 Assume GRH and LI. Fix r > 3 and let q be large. Then there is a set
Q- (q) C Ay (q) with |2,(q)| = o(|Ar(q)]), such that for all r-tuples (ay, ..., ay),
(b1, ....br) € A (9)\Rr(q) we have

=D @j()Cqla)) > = D aj(r)Cy(bj)) = 8(qiar,....ar) > 8(q; b1, ... by).
j=1 j=1

The plan of the paper is as follows. In the next section we study properties of the
Fourier transform [iy.4,,....q,- These are then used to derive the asymptotic formula of
Theorem 2.1 which is proved in Sect. 4. In Sect. 5 we study the behavior of By (a, b)
on average and prove Theorems 2.9 and 2.12. In Sect. 6 we describe the signs and
extreme values of By (a, b), and use these to explicitly construct biased races and prove
Theorems 2.4, 2.8 and 2.11. In Sect. 7 we study g-extremely biased races and prove
Theorem 2.6. Lastly, in Sect. 8 we derive the Fiorilli and Martin asymptotic formula
for the densities in two-way races.

3 The Fourier transform ﬁq;al,...,ar

Assuming GRH and LI, Rubinstein and Sarnak obtained the following explicit formula
for the Fourier transform of (tg.q,,....q,

2 ‘Z;’:l X(aﬂfj‘

,
llq;al ..... a,(fl,u-,fr)=CXP i E Cq(aj)tj | | I I Jo
: /1 2
j=1 Z+VX

X#x0 ¥x>0
xmod g
3.1
r _ 00 _1\m 2m 12 .
for (11, ..., ) € R",where Jo(z) = >, _(—1)"(z/2)”" /m!* is the Bessel function

of order 0.

For a non-trivial character x modulo ¢, we let q; be the conductor of x, and x*
be the unique primitive character modulo q; which induces x. First we record some
standard formulas.

Lemma 3.1 Assume GRH. Let x be a non-trivial character modulo q. Then there
exists an absolute constant by such that

1 L', x*
> =logq} + re LX) x(=1)1log2 + by. (3.2)

R L(1, x*)
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Moreover, we have

log p

. o(q) logq—ZF if a=1modg,
Z x(a) logqx = rlg
xmodd —¢(q) w otherwise.

#(q/(g,a—1))
and
Ng = ¢(q)logg + O(¢(g) loglogg).

Proof The classical formula (3.2) can be derived from formulas (17) and (18) of
chapter 12 in [3]. Indeed since GRH is assumed, these formulas imply that

= logqy +2R6L(1,x*) +Re r

L'(, x*) (%
1
Yx 4 + y)% 2

wherea = 0if x(—1) = landa = 1if x(—1) = —1. Then (3.2) follows upon taking
bo =T'(1)/T'(1) — log2 and noting that

I'(1/2)/T(1/2) = ' (1)/T(1) — 2log 2.

The second formula corresponds to Proposition 3.3 of [5]. Furthermore, recall that

REDID It I e

X#X0 vy>0 4 + VX XFEX0 Vx 3T

since ZVX -0 1/(}1 + y)%) = Z)ﬁ>0 1/(4 + y2) which is clear from the relation
L(s, x) = L(s, %). On the other hand we have that

Zlogpf Z logpl log zl<<loglogq,

-1
rlg p p<(logq)? p rlg

using the trivial bound > g 1 < logg/log?2. Hence, the asymptotic for N, follows
upon combining this last estimate with the classical result of Littlewood [23] that
L'/L(1, x*) = O(loglog g), under GRH. O

For ¢t € R" we shall use the notations ||7|| and || for the Euclidean norm and the
maximum norm of ¢ respectively. Rubinstein and Sarnak [25] noted that /lq;a Loy (1)
is rapidly decreasing as ||¢|| — o0. The following result gives a quantitative statement
of this decay. More precisely we establish an exponentially decreasing upper bound
for fig.a,,....a, () Which depends on both 7 and g.
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Proposition 3.2 Assume GRH and LI. Fix an integer r > 2. Let q be a large positive
integer, and let 0 < € < 1/2 be a real number. Then, uniformly for all (ay, ..., a,) €
A (q) we have

|ig:ar,...a, (11, - .- )] < exp(=c3(r)@(@)]lt]]),

fort = (t1,...,t,) € R" with ||t]| > 400 and

|Agiar..a, (1, ... 1:)] < exp(—ca(r)e’¢(q) log q)
for e < ||t]| < 400, where c3(r) and c4(r) are positive constants that depend only
onr.

Proof We begin by proving the first inequality. For any non-trivial character x mod g
we define

2
Fooo =[] 4o | =

vy >0 \/%4‘)/)%

Then the explicit formula (3.1) implies that

,
qu;al ..... ar(t11~-~,lr)|= H F ZX(aj)tj » X
Jj=1

XFX0
xmod g

By Lemma 2.16 of [5] we know that there exists an absolute constant ¢ > 0 such that
|F(x,  )F (x, )| < e (3.3)

for x > 200. On the other hand note that | F (x, x)| < I since |Jo(x)| < 1.

Let M, be the set of non-trivial characters xymod ¢ such that Z;:l x(ajtj| >
[lz]1/2. We remark that x € M, if and only if ¥ € M,. Moreover, if x € M, and
1] = 400 then [ _, x (a;)t;| = 200, which implies

=

,
igiar.oa, 1ot < T 1F | D0 x(@pt
j=1

XEMy

= H F Zx(aj)lj x| F zx(aj)tj X
j=1

xeM, j=1

r
<exp(—c D | D x| | < exp (=5IMl1lIT).

XEMy | j=1
3.4)
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using (3.3) along with the fact that every character in M, appears once as x and once
as x in the product on the RHS of (3.4). Thus it remains only to prove a non-trivial
lower bound for |M,|. Let

2 2 2

r r r

S0 = 2 |2 x| = 2 |2 x| = |21
x#xo |Jj=1 xmodg | j=1 Jj=1
xmod g

2 2
=> D n D x@pxa) — (D | =e@ D 7Dt
j=1 j=1 j=1

j=1lk=1 xmod g
> (p(q) — 1) D17, (3.5)
j=1

r

which follows from the Cauchy-Schwarz inequality. Therefore, using that |>_ =1
2
xapt|* < (Z§:1 |z,-|) < r|I¢]2, we deduce

2 2

Soy = > D x@pt| + DD xat sﬂMﬂHtHH@thz.

xeM, |j=1 x#My |j=1

Hence, combining this estimate with (3.5) we obtain |M,| > ¢(gq)/(2r) if g is large
enough. This together with (3.4) yields the first part of the proposition.
Now assume that ¢ < [|¢]| < 400.If x € M, then2)Z;:1 X(aj)tj‘ > ||| > e.

-1/2 . . ..
We also note that € (}‘ + x2) / < 1, for any x € R. Hence, since Jy is a positive

decreasing function on [0, 1] and |Jo(2)| < Jo(1) for all z > 1, we get

2 ‘Z;zl X(aj)tj‘

[T I1 |% —
XEMy vy >0 4—1‘-1-)/)%
[111 ||+
XEMy v >0 21L+)/)%

Moreover, it follows from Lemma 2.8 of [5] that for |x| < 1 we have log Jo(x) =
— Zzi 1 ugnxz", where uy, are positive real numbers with uy = 1/4. This implies
that | Jo(x)| < exp(—x2 /4) for |x| < 1. Using this inequality we obtain

IA

|lg:ar,...a, (t1s - 10

IA

1
+v?

2
~ €
giar,a (1t Sexp | =0 >0 D7 5 (3.6)

XEMy vy >0 4
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Since L'/L(1, x*) = O(loglog q), then Lemma 3.1 gives

> Y s Y Y=g 3 loed; + 0@@ logloza).

XEMy vy >0 4 + J/X XeM vx 4 + VX XEMy
3.7

Noting that q; < ¢, and using Lemma 3.1 we derive

> loggl = D logq; — (6(q) — IMy])logq

XEM, xmod g

_ ?(@logg

> 5 + O(¢(q)loglogq).
r

The result then follows upon combining this estimate with Egs. (3.6) and (3.7). O

Our next result (which is a crucial ingredient to the proof of Theorem 2.1) shows
that fi,.4,,....4, can be approximated by a multivariate Gaussian in the range ||7|| <

o)V

Proposition 3.3 Assume GRH and LI. Fix an integer r > 2. Then, for any constant
A = A(r) > O there exists L(A) > O such that for L > L(A) andt = (t1,...,t) €
R" with ||t|| < A/logq, we have

) f Y _ o _1+ . <1+
Mq:a,....ar \/N—q»---,\/N—q = &Xp )

1< 1
_Ech(aj)Zt?_N_( > (Bq(aj,ak)+Cq(aj)cq(ak))tjtk)

1 1<j<k<r
1 -
Q4(t1,..., crp
+ Z Z —/agigs Demi(ti o 1)
m=0s=0 0<I<L Nq
2[>3-25—m

PLBLPE  C3
+0 + ,
LIN} ¢ (q)?

where Qg4 is a homogenous polynomial of degree 4 with bounded coefficients and
Ps.m.1 are homogenous polynomials of degree m + 21 4+ 4s whose coefficients are
bounded uniformly by a function of l. Moreover the constant in the O is absolute.

Proof For simplicity let us write fiy = fiq.q,
have

a,- From the explicit formula (3.1) we

,,,,,
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log /u ( oo ): i Zr:C (@t
q \/Vq’ ’\/ﬁq ijI q\*j’%J
Z‘Zﬁzlx(aj)tj‘

+ 3 S ogy | A2
X#X0 Vx>0 \/%"‘V;%\/Nq

xmod g

For |s| < 1 Lemma 2.8 of [5] states that

o0

log Jo(s) = — Z uznszn,

n=1

where uy, are positive real numbers with uy = 1/4 and un, < (5/ 12)2”. This implies
that for r = (#1, ..., t,) with ||¢t|| < A{/loggq we have

n t t
log fig | ——=. ... — Zc (aj)t]
VNg VNg Nq] 1

o t;
Uzp2 )Zj IX( /) J
DI D
n=1 4 x#xo0 vx>0
xmod g
The contribution of the term n = 1 to the RHS of (3.8) equals
& X Y X rapr@s
XEx0 v, =0 & T X 1<jk<r
Xmodq
I, 5 1
= i) - N Z B,(a;, a)t)ty. 3.9)
1<j<k<r
The term n = 2 contributes Q4(11, ..., 1)/ N, where

4
’25:1 X(aj)tj’
(G +7v)?

Q4(tl7--~7tr)::_1]?,£ Z Z

T x#x0 x>0
xmod g

1614 x(a;)x(ap)x aj)x (@)
= - N Z Z z . B " A Ljitjrljsljy-

2)\2
D A<ji o jasjasr x#x0 Vx>0 (4 TV )
xmod g
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Since
> 3
XFX0 Vx ~o ( Y
xmod g
then Q4(t1, . . ., t,) isahomogenous polynomial of degree 4 with bounded coefficients.

Similarly, the contribution of the terms n > 3 to the RHS of (3.8) is < ||¢| 16/ N; <
(log q)/¢(g)?. Hence, we obtain

. 1 1 1, i~
loguq(—,..., )=——(t1 +-- 4t Cylajt;
VN, VN 2 N Z;

1 O4(t1, ..., 1r)
—N— z By(aj, ap)tjt + Tr
9 1<j<k<r q
logg
+0, (¢(q)2)' (3.10)
Now, in our range of r we have
i r 2 " C3
exp | — C,(apt; | = Cylaj)i; +0,| —2 - ,

and exp(Qa (1, ..., 1)/Ng) = 1+ Qa(tr, ..., 1)/ Ny + O,(log* ¢/$(g)?). There-
fore, using that

I
= 2i<j<k=r Bq(aj, “k)tjfk)

1 °°( <j<ks
exp | = Z By(aj, ap)tjty =Z l!N[ll ,

9 1<j<k<r 1=0

along with the previous estimates and Eq. (3.10) we deduce that the quotient of

- 1 i 20 a2
g mm) and exp(—(#{ + - - - +¢7)/2) equals

m 1
L& O4(t1, ..
S>>t (S aen) (- 3 swans
s=0 m=0 [= 1<j<k=r
C3
+0,| —55 ) (3.11)
¢ (q)%

We collect the summands above according to D = m 425+ 2/ (which equals twice the
power of N,). Then, it is easy to check that the contribution of the terms 0 < D < 2
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to the main term of (3.11) equals

. 2
> Cylaji;
j=1

Oa(ty, ... 1)

1
N Z By(aj, ap)tity +

N,
q 1<j<k<r 4q

Let P (t1, ..., 1) be the homogenous polynomial of degree m + 2/ 4 4s defined

by

m

1 —m p—I s "
P, osty) = —m C" B 04t tp) zch(aj)r,»

l
X | — Z By(aj, ar)tjty

1<j<k<r

Then the contribution of the terms with D > 3 to (3.11) equals

1 2 m pl
ﬂp (¢ i)
m/2+l+9 x,m,l 1soeslyr).
m=0 s= >0 Nq
21>3—-2s—m

Notice that the coefficients of Py, ; are bounded uniformly by a function of / since r
is fixed and s, m < 2. On the other hand since C;, = q"(l) we get

CmBl r2[+mcmBl ||t||m+21+4s r2lBl ||l‘||2[
9 4 q 4 q
m/2+l+SPS’m’l(t1"”’tr) << m/2+l+s << [BN7
Ny ml!N, I'Ng

Now, Corollary 5.4 implies that B, < c¢(q) for some absolute constant ¢ > 0.
Therefore, in our range of 7, we have rqu [t |2/(qu) < 2r?A/1. This shows that for
a suitably large constant L(A) (which also depends on ) we have

1 2 Cm FZLB;”IHZL
ZZ ZZL: W Psmiti, ..., 1) < W,
R 21>3-2s—m
for all L > L(A), completing the proof. O

4 An asymptotic formula for the densities §(¢; a1, ..., a;)

The first step to prove Theorem 2.1 is to truncate the integral on the RHS of (1.1). To
this end we need to bound the tail of the distribution fiy;4,,....q,. Our idea consists in
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relating this tail to the Laplace transform of (g4, .,....q, using Chernoff’s bound. For
s = (s1,52,...,5) € R" we define

xeRr

if this integral converges. The same arguments as in the proof of Rubinstein and Sarnak
for the explicit formula (3.1) of ﬂq;al ay» Show under GRH and LI, that Ly.4, .. 4, (5)
exists for all s € R” and

,,,,,

21272y x(ai)sil

X | — |,

[T [1 o[22
X#x0 Vx>0 7TV
xmod g

where Iy(¢) := Zzio (t/ 2)2n /n 12 is the modified Bessel function of order 0. We prove

“.1)

Proposition 4.1 Assume GRH and LI. Fix an integer r > 2 and let q be a large
positive integer. Then for R > /¢ (q) log g we have

R? loglog g
ll«q;al,...,a,.(|x|oo>R)SCXP —m 1+0 W .

Proof First we note that

r r
Mq;al,‘..,a,qx'oo >R) < Zﬂq;al,‘..,a, (xj > R) + Zﬂq;al,...,a, (xj < —R).
j=1 j=1

We shall bound only 1t4:4,.,....q, (xj > R), since the corresponding bound for (ty:4,.....4,
(xj < —R) can be obtained similarly. Let s > 0. Then using (4.1) we get

SR

MKg;ay,..., ur(xj >R)<e esxjd,uq;a],.‘.,ar (X1, ... %)

2s
< e—sR—qu(aj) I -
- I I 02—
X#X0 Vx>0 7T Vy

xmod g
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Since Ip(s) < exp(s2 /4) for all s € R we obtain

a2 ce|s = 3L
x#xo ¥x>0 4 +v? XEx0 7,=0 4 T Vx
xmodg xmod g

2 1 log1
< exp (s ¢(q2) 0gq (1+0 ( olg ogq)))’
0gq

by Lemma 3.1. The result follows by taking s = R/(¢(g) log q) along with the fact
that C,(aj) < g€ forany € > 0. O

Let ®(x) := ¢=**/2 and denote by ®" the n-th derivative of ®. Then &) (x) =
—xe’xz/z, D (x) = (x2 — 1)e’x2/2, and more generally we know that & (x) =
(—D"H, (x)e’xz/ 2 where H, is the n-th Hermite polynomial. The last ingredients we
need in order to prove Theorem 2.1 are the following lemmas:

Lemma 4.2 Letny, ..., n, be fixed non-negative integers, and M be a large positive
number. Then for any (x1, ..., x,) € R", we have

r r
, . .2
PUGEIR SR e H t;lj Cb(tj)dt: (2n)r/2 H i Hnj (xj)e xj/2+0 (e—M2/4)'
litll<M J=1 j=1
Proof First, notice that
) r r
/ Nt T o ydt = )2 [ | w;xp),
teR" j=1 Jj=1

where

W(u) = "V (v)v dv.

7]

Since the Fourier transform of ® (u)/(27) is ®(v)/+/27, then using standard proper-
ties of the Fourier transform (see Appendix 3 of [21]), we deduce that ® (v)v"i /+/27

is the Fourier transform of %Cb("f )(v). Therefore the Fourier inversion formula
gives

W) = (=) ") () = i Hy ()™
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Finally, note that

.
[1¢/ ®ap|dt <exp (—M2/2) MM exp (—M2/4),

lgi>m 1=
if M is large enough, which completes the proof. O
Lemma 4.3 Let P,(t1,...,t) be a homogeneous polynomial of degree n, whose

coefficients are complex numbers uniformly bounded by a function of n. Let R be a
large positive number and M > log R be a real number. Then we have

2 2
. Pt
ol (X1t xr) exp (_%) Pu(ty, ..., t)dtdx| <, , 1.

X1>X2>>Xp ||t]|<M
X|oo <R

Proof Since the coefficients of P, (¢, ..., t,) are uniformly bounded by a function of
n, it is sufficient to show that the statement holds when P, (t1, ..., %) = 1/ ... 1",
where n; are non-negative integers with ny + - - - +n, = n. Using Lemma 4.2 we get

2 2
O (_tl * - Rl )z;“ A" dtdx
X|>X2>>Xp ||t|| <M
Ix[oo <R
2 2
X + e _|__x
=i"Qn)"? / Hnl(xl)...Hn,(xr)exp(—12r)dx+0R(1),

X]>X2> 0>y
[Xloo<R

4.2)

og?
since exp (—M 2/4) R« e‘# by our hypothesis on M. The lemma then follows
upon noting that

2 2
X _I_.+x
Hy, (x1) ... Hy, (x;) exp(—%)dxl ..dx,

X]>X2>>Xp
[X|oo>R

2
Lnr R"eR/2 = 0p(1),
and

2 2
X ++x
H,“(xl)...Hnr(x,)exp(—%)dxl cdxy Ly 1

X|>X2> > Xy

O
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Proof of Theorem 2.1 Let R := /N, logq. To lighten the notation in this proof we
write §, for 8(g; ai, ..., a,) and u, for py.q, ... 4, Then by Proposition 4.1 we obtain

8(]: / d“q(yls"'vyr)

V1=y2=>>Yr

_ log? ¢
= dig(y1,....yr) + O | exp T . “4.3)

yi=y2=>->Yyr
[Ylo=<R

Next, we apply the Fourier inversion formula to the measure j, to get

dﬂq(}’lw-wyr) = (27.[)_"

VISP > >y,
[ylo<R

X eOINT I [ (5, sy )dsdYy.

Y1=>Y2>>Yr scR"
[¥loo<R

Let A = A(r) > r be a suitably large constant. Then using Proposition 3.2 with
€:= A(Nq)"/za/logq we get

i (S1Y] 4S5, V) A
/ PASEY A'”)uq(sl,...,sr)als
seR"

(s . 1
= / e’(“y1+m+sryr)l$q (Sl» ey Sr)dS + O (ﬁ)
q

[1sl|<e

Hence we obtain

. 1
8g = Q2m)~" / / ¢TI (1, . sp)dsdy + O (q_A)

Y1>y2>..>Vr ||s||<e€

[¥loo <R
“4.4)

using that R"¢g 24 « ¢~4. Upon making the change of variables

tj:=/Nygsj, and x;:= i

’

5
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we infer from (4.4) that

- i ~ 1 1y
8g = Qm)™" / / el H’x’),uq (—, R )dtdx
SN, UN,

X1>X2>>Xr (1t11< A /Tog g
[xX|oo<logg litll= &4

‘o (in) . .5)

/2

Now we use the asymptotic expansion of /i, (thq_l ,...,t,Nq_l/z) proved in
Proposition 3.3. We take L = L(A) > 2r to be a suitably large constant. Then,
Lemma 4.3 shows that the contribution of the error term along with the terms corre-
sponding to the polynomials Q4 and P; ;, ; (in the asymptotic expansion of Proposi-

tion 3.3) to the integral on the RHS of (4.5) is

1 2 1 L 2
<, i_’_zz C(TBq (log‘I)qu ) i Cy By ﬁ
J2H+ L 32 27
Ny m=0s5=0 0<I<L Ncr/n ’ Nq N, q Nq
2[>3—-25s—m
4.6)

since B; < Ny /log g by Corollary 5.4. Now we shall compute the contribution of the
remaining terms in the asymptotic formula of /i, to the integral in (4.5). Appealing to
Lemma 4.2 along with the fact that exp(— (x% 4 —i—xrz) /2) is a continuous symmetric
function in x1, ..., x,, we obtain

2 2
| / <>p(_u)dtd

2
T =Xz At <A/logg

[X|oo<loggq
2 2
_ —r/2 _x1+"'+xr L
= (2m) / exp( — dx+ 0 p
X >X2>>Xp
[X[oo<logg
1 X4+ xf 1 1 1
=— - d ol—)=—-+0|—).
r@n) 2 4 exp( 2 *r (qA) nt (qA)
xeR"

Similarly, we infer from Lemma 4.2 that for 1 < j < r, we have

2 2
@m)™ / / tjei(tlxﬁmﬂ’“) exp (_u)dtdx

2
X1>X2>>Xr |1t <A/To
IX/oc <log ¢ [Itl|<Aylogq
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24 ... 2
=iQm)""? / X; exp(—%)dx
X|>X>> Xy

[X|oo<log g

1 1
+0 (q_A) =iaj(r)+ O (q—A), (4.8)

and

2 2
()" / / tjgei(zlx1+...+trx,-) exp (_M)dtdx

2
X1>X2>>Xr 1¢11 <A Jlog g
[x|oo <log g liell=< &4

1

For 1 < j < k <r we analogously obtain

2 2
) t N t
(Zn)_r / / tjtke’(’1x1+"'+’fx’) exp (—%)dtdx

X1>X2>>Xr | 1t1< A /To
ixloslogg lI=AVIcEd

1
= —Bjx(r)+ 0 (q—A). (4.10)

The theorem now follows upon combining Proposition 3.3 with the estimates (4.5)—
(4.10). O

In the remaining part of this section, we explicitly compute the constants «j (r) and
Bjk(r) for r = 3. To simplify the computations we prove the following identities

Lemma 4.4 Letr > 2. Then forany 1 < j <k <r we have
aj(r) = —a,11—j(r) and Bjk(r) = Bri1—k,r+1—j ().

Proof We prove only the identity for the «j (r) since the proof for the 8; x (r) is similar.
Recall that

2 DY 2
a;j(r) = Qm)~"? / X exp(—%)dn...d}cr.

X]>X2>>Xp
Upon making the change of variables yy = —x,41— for 1 < k < r, we deduce
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2 2
- yy+---+y
aj(r) =—Qm)~"? / Yrtl—j exp(—%)dyl...dyr

YIZy2>e>yy

= —0tr41-j(r).
O
Lemma 4.5 We have B12(2) = 0. Moreover, one has
3) = : 3)=0 3 = :

al - 4ﬁ1 a2 - ) a3 - 4\/;7

and
B12B) = r3®) = ——, Pia(®)=——
1203) =82303) = ——=, B1,33)=— )
473 23

Proof First we have

oo o0 o0

1 X7+ x3 1 2
P122) = — x1xpexp| — dxidxy; = — xoe 2dxy = 0.
2 2 2
—00 X2 —00
Now we deal with the case » = 3. Recall that
3
D= D BB =0. (4.11)
j=1 1<j<k<3
We begin by computing
1 x12 + x% + x%
a1(3) = W / X1 eXp(—f dxidxydxs.
X1>X2>X3

To this end, we integrate with respect to x first to get

1 5 y?
O[](3)=W eXpy —x —? dxdy

x>y

- / x? v dxdy
e | P 2 ’

X<Y

by making the change of variables X = —x and ¥ = —y. Hence, we deduce that

011(3)=—2(2 V72 / /exp(—xz—y?)dxdyz—4f.
)’ T
—00 —00
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On the other hand, Lemma 4.4 shows that «3(3) = —a(3), and this combined with
equation (4.11) leads to o3 (3) = 0. Furthermore, we have

2 2 2
X —|—x2+x3

1
B1,2(3) = G / X1Xx2 €Xp (—f)dxldxzdx&

X1>X2>X3
Performing the integration with respect to x first, then with respect to x, gives us

oo
2
3x3 1

1 _33
P = s [ =

—00

The remaining estimates follow upon using Lemma 4.4 to get 8> 3(3) = 81,2(3), and
then applying Eq. (4.11) to deduce that 81 3(3) = —281.2(3). O

5 The average order of | B, (a, b)|

In this section we prove upper and lower bounds (of the same order of magnitude) for
the first moment of | By (a, b)| over pairs of residue classes (a, b) € Az(g). To this
end, we begin by proving the following key proposition.

Proposition 5.1 Assume GRH. Let g be a large integer, and (a,b) € Ax(q). Put
x = (qlogq)*. Then we have

By(a,b) =4logq — ¢(q)ly(a,b)log2 — ¢(q)

q
A ((q,a—b))
q
((q,a—b))

A
I W

n<2xlogx
bn=a mod q
A(n) —n/x log p

—¢@) > — =@ X oy —

n<2xlogx p'llg 1<e<2logx

an=bmod g ap®=bmodq/p”

log p

@) >, D ——— + O(loglogq),

e+v—1 _
P'llg 1<e<2logx p =D

bp=amodgq/p"

where l;(a, b) = 1 ifa + b = Omod g and 0 otherwise.

Remark 5.1 This result implies that B, (a, b) < 0if |B,(a, b)| > Sloggq.

Although the major part of this proposition is proved in [5] (see Theorems 1.4 and
1.7 there), we chose to include the details of the proof for the sake of completeness.
The only new input is the following lemma which corresponds to the contribution of
the principal character xo mod g.
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Lemma 5.2 Let g be a large positive integer and y > q be a real number. Then

A
> 2 =11y _log y + O (loglog y).
n>1 n
(n,q)=1

Proof First note that

An) _,/y - logp log p
Z ——e SZZ 7 —Zp_1<<loglogq.

n>1 plg k=1 plg
(n,g)>1

Thus it suffices to evaluate
oo
> A
n
n=1

We split the above sum into three parts: n > ylog? y, yloglogy < n < ylog?y and
finally n < yloglog y. The contribution of the first part is

’

n>ylog?y n>ylog?y

< | =

which follows from the fact that e/ < n=2 for n > ylog® y. Now the contribution
of the second part is

3 Ay o D A(n) <1
n ~ logy n
yloglog y<n<ylog?y n<ylog?y

Finally using that 1 —e™" < ¢ forall > 0, we deduce that the contribution of the last
part equals

P S E D SR

n<yloglogy n<yloglogy n<yloglogy
= logy + O(loglog y),

which follows from the prime number theorem. O
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Proof of Proposition 5.1 Let (a, b) € Ay(q). First we infer from Lemma 3.1 that

g é 2
pan=y 3B s salixl)

X#X0 Vx>0 4 + VX x#xo Yx 4 + yX
xmodg xmod g
1 a b N
=5 > (x(5) +x(5))02a; — ¢@ly(a. by 10g2
XFX0
xmod g
a b L'(1, x*)
— — ) ) Re——=—= + O(1), 5.1
t 2 (X(b)”(a)) T TOW e-b
XFX0
xmod g

using the orthogonality relations for characters. In order to evaluate the first sum on
the RHS of (5.1) we use Lemma 3.1 which gives

1 . A ((q,aq—m)
= D (x(a/b) + x(b/a))logq} = —¢(q)————F-. (5.2)
2 X q

XFX0 ¢ ((q,a—h))

xmod g

Now we compute the sum over the L-values. First we record a standard approximation
formula for L'/L(1, x*) under GRH, which corresponds to Proposition 3.10 of [5]:

L(.x9 _ 5 xmAm (logq)
T = ;— +o(Sz ) (5.3)

for all y > 1. Inserting this estimate into the second sum on the RHS of (5.1), we
obtain

a b L'(1, x*) 4 ANEACYS)
S () Q) retirss =re = ()2 () Trss

XFX0 XFX0
xmodgq xmod g
(n) s ¢(q)logg
= Re> AWy S e ) + x G ) + 0 eLEL ).
n=1 XFX0 Y
xmod g
54

Let p be a prime number and e > 1 a positive integer. To evaluate the inner sum over
characters in the RHS of (5.4) we use Proposition 3.4 of [5] which states that

o (q) if ptqand ap®=>bmodg,
> x(a/byx*(p) ={ ¢g/p*) if p¥ | gand ap® =bmodq/p", (5.5)
xmod g 0 otherwise.
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Note that the condition ap® = b mod ¢ implies that p 1 g since (b, ¢) = 1. Therefore,
choosing y = (g log ¢)? in (5.4), and adding the contribution of the principal character
(which was evaluated in Lemma 5.2) we obtain from (5.5) that the RHS of (5.4) equals

D M T  SR

n=1 n>1
bn=a mod g an=bmod g

SN

P’llg ex1
ap®=bmodgq/p"

lo _r
—Zqzs( ) > jepe ¥ 1 4logg + O(oglogq).

p’lq ex1
bp°=amodq/p”

Moreover, if n > 2y log y, then e/ < 1/n. This implies that

> A(") EED DY logp -5 « > %« iz

n>2ylogy r'llg e>2logy n>2ylogy 4
bn=a mod g bp¢=amodq/p”

Notice that when p¥ || ¢ wehave ¢ (q/p*)=¢(q)/(p*~' (p—1)) since (p”, q/p*) =1.
Thus, using that 1 — e™" < 2¢ for all ¢ > 0, we obtain

lo _ro 1
P N e A T TP I A
p'llq p 1<e<2logy P qlogq vlg q
bp°=amodgq/p’
The proposition follows upon collecting the above estimates. O

Next, we establish the following lemma which, when combined with Proposi-
tion 5.1, yields By (a, b) < ¢(q).

Lemma 5.3 Let g be a large positive integer, (a,b) € Ay(q), and denote by s the
least positive residue of ab~'mod q. Put x = (qlog q)>. Then

2
RS C (C))
n )

n<2x log x q
bn=a mod g

Proof Since 1 —e™" < 2t forallt > 0, then

M A0 (1),
S

s q*
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On the other hand if n # s is a positive integer such thatn = smod g, thenn = s+ jgq
for some j > 1. Therefore, we have

An A(s 1 1 10 2
3 A oy _ ()<<10gq > <=1
n ' s+jq q q
n<2xlogx 1<j<qlogq
n=s modq

Corollary 5.4 For any (a, b) € Ay(q) we have
|Bg(a,b)| < ¢(q).
Proof First we note that A(s)/s < (logs)/s which is a decreasing function for s > 3.

Moreover, the term A(q/(g, a—b))/¢(q/(q, a—b)) is non-zero only when g /(g, a —
b) = p! for some prime p > 2 and [ > 1. In this case

A/Gq.a=b) _ logp _logp _
#(q/(g,a—b)) p~Yp—-1) " p—-17

Finally we have

log p log p
— < = — < L
Z Z pe+v71(p _ 1) %}: (p _ 1)2

p’llg 1<e<2logx
bp¢=amodq/p”

Thus by Lemma 5.3 and Proposition 5.1, the result follows. O
In the remaining part of this section, we prove Theorems 2.9 and 2.12.

Proof of Proposition 2.9 Surprisingly, the lower bound is much easier to establish
than the upper bound. Indeed we use only the definition of By (a, b) in this case.
The lower bound. Note that

> Baby= > > - > > @b+ xbja.

(@,b)eAr(q) X#x0 v2>0 1ty amodg btamodg
x mod g (a,¢)=1 (b,q)=1

Write s = ab~! mod g. When a is fixed and b varies over all reduced residue classes
distinct from a, s runs over all reduced residue classes different from 1. Then, using
the orthogonality relations for characters we obtain

> DL a/b)+ x(b/a) = —26(q).
amodg b#amodgq
(a,9)=1 (b,q)=1
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Therefore, since |A2(q)| = ¢(q)* — ¢ (q), and N, = ¢ (g)(logg + O (loglogq)) we
deduce that

> Byla,b)=logq + O(loglogq).

1 1
——— > [Bya,b)|=~
|¢42(‘])| I.Az(q)| (a,b)eAs(q)

(a.b)eAs(q)

The upper bound. We use Proposition 5.1. First, remark that Z( ab)eAr(q) ly(a,b)
< ¢(g), which implies that the contribution of this sum to the upper bound in Theo-
rem2.9is<K 1.Take 1 <a,b <g—1.Letd = (q,a—b) and write a —b = ds. Then
—q/d <s < q/dand (s, q/d) = 1.On the other hand, for any choice of d and s satis-
fying these conditions there are at most ¢ (¢) pairs (a, b) suchthat 1 <a #b <g—1,
a and b are coprime to ¢ and a — b = ds. Thus we obtain

A(< = b>) Alg/d)
2, ((:a ) =0 >Z¢<Z/> 2

(@b)eAsq) ¢ —q/d<s=<q/d
(s.q/d)=1
=2¢(q) D_ Alg/d) =2¢(q)logq. (5.6)
dlg

Let x = (¢ logg)?. Then

Am) _,/. An) _, ),
>3 Smeth= ¥ SEerh ¥

(a,b)eAz2(q) n=2xlogx n=<2xlogx (a,b)eAx(q)
n=ab~' modgq (n,g)=1 ab~'=n mod g
An
<oty Y Ee
n
n<2xlogx

(n,9)=1
< 2¢(g)logg + O (¢(q) loglogq),

which follows from Lemma 5.2. Finally, using an analogous argument we deduce that

S Y Y 1)_¢<q>22 ;< oG).

(a,b)eAr(q) p’llg  1<e<2logx plg e=l
ap®=b modgq/p"

which completes the proof. O

Proof of Proposition 2.12 First, notice that | A, (q)| = ¢(q)" + O, (#(q)" ') . Let S,
be the set of pairs (a, b) € Az(g) such that |B,(a, b)| = /¢ (gq). Then Theorem 2.9
shows that

1SV8(@) < D Byla.b)| < p(q)* logg.
(a,b)eAz(q)
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which gives |S,| <« ¢ (q)**logg. Now define ,(g) to be the set of r-tuples
(a1, ...,a;) € Ay(q) such that (a;,a;) € S; forsome 1 < i # j < r. Then
12,(9)] <r ¢(g)"~'/?1ogq. On the other hand, if (a1, ..., a,) € A-(¢)\ Q(g) then
|By(ai,aj)| < /¢(q) forall 1 < i < j < r.Hence, in this case, we infer from
Theorem 2.1 that

1

1
S(q;al,...,ar)zﬁ r Z aj(r)Cy (aj)—i-O(\/N—l—qu).
' 9 1<j<r q

Since the C,(a;) are integers, the theorem follows upon noting that

D aj(Cylap) #0 = | D a;j(NCylaj)| > 1

l<j=r I<j=r

6 Extreme values of B, (a, b) and explicit constructions

Throughout this section we take the residues a@; modulo ¢ so that |a;| < g/2. The
proofs of Theorems 2.4, 2.8 and 2.11 are based on explicit constructions of the a;. Our
strategy consists in choosing these residue classes in such a way to make exactly one
of the terms B, (a;, a;) large (using Proposition 6.1 below) and all the others small.
Moreover, since this term must be negative (see Remark 5.1), we use Lemma 6.3
below to control the sign of its contribution to the asymptotic formula of the densities
8(q;ai, ...,ar). When |a| and |b| are relatively small compared to ¢, we can precisely
understand in which cases By (a, b) gets large. Let us define the real valued function

Ax) .
Aoy = TxEN 6.1)

0 otherwise.

Proposition 6.1 Let g be a large integer and a, b be distinct integers coprime to q
such that 1 < |a|, |b| < q/2.

(I) If a and b have different signs, then

By(a.b) = —¢(@)l(a. b)log2 + O ((al + b)) log> q).

where l(a, b) = 1 if a = —b, and equals 0 otherwise.
(D) If a and b have the same sign, then

max(|al, |b|)

By(a,b) = —¢(q) Ao (m

)+ 0 ((lal + b log* q).

An important ingredient to the proof of this result is the following lemma.

@ Springer



Prime number races with three or more competitors 1149

Lemma 6.2 Let g be a large integer and a, b be distinct integers coprime to q such
that 1 < |a|, |b| < q/2. Then

log p (lal + b)) log?

Z Z pe+u—1(p _ 1) < q :
p'llg 1<e<Slogq

ap®=bmod q/p"

Proof First note that ap® — b can not vanish since p|g and (ab, g) = 1. This implies
that when ¢/ p" divides ap® — b, we must have ¢/p" < |a|p® + |b|, so that p**V >
q/(la| 4 |b]). Therefore the sum we are seeking to bound is

al + b)) lo lo al + |b]) log?
<<(|| b)) ngp:gf«(ll b)) g

1 rlg p 1

O

Proof of Proposition 6.4 The proofrelies on Proposition 5.1. Since |a|, |b| < ¢ /2then
a + b = 0mod g implies that a = —b. Moreover, notice that (g, a — b) < |a| + |b|,
which gives

q

Aﬁﬁﬁﬂ (lal + 1b]) log? q
; <

¢ ((q,a—b)) 1

using the standard estimate ¢ (q) > ¢/logg. Combining this bound with Proposi-
tion 5.1 and Lemmas 5.3 and 6.2 we obtain

s

A(s1) L A(s2)

&wm=—ww@wmmy+ )+00m+wm%%)

6.2)

S1

where 51 and s> denote the least positive residues of ba~' and ab~! modulo ¢, respec-
tively.

Let us first prove part I. Since a and b have different signs, then sja # b and
s2b # a. On the other hand we have that ¢ divides both sja — b and s2b — a. This
implies that ¢ < s;(|a| + |b|) fori = 1, 2, and thus s; > ¢/(]a| + |b]). Hence we get

A(s A bl|) lo
(1)Jr (s2) « (lal + 16]) g4
S1 52 q

which, in view of Eq. (6.2), gives the first part of the Proposition.

Now, if a and b have the same sign, then [(a, b) = 0, and |a| # |b|. Without any
loss of generality we may assume that |a| < |b|. Then sob # a, which as before
implies that A(sy)/s2 < (la| + |b|)(log q)/q. Furthermore, if a|b then s; = |b|/|a|;
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while if a 1 b then s; > ¢/(la| + |b|), and thus A(s1)/s1 < (la| + |b|)(logq)/q in
this case. Therefore, we obtain

A(sy) A (|b_|) ‘o ((Ial + |b|)logq)

s |al q

Hence, part II follows upon combining these estimates with Eq. (6.2). O
Our next result determines the signs of some of the integrals 8; i (r).
Lemma 6.3 Forr > 3 we have f1 ,(r) < 0and B,—1,,(r) > 0.

Proof First we have

2 2
Xyt +x
Q) By, (r) = / Xr_1Xy €Xp (—%)dm L dx,

X]>X2>>Xy

2 2
X ++x
— / exp(_%)

X|>>Xp)

Xr—2 Xr—1

2 2
_4=1 _ %
X / Xp_1e” 2 / xre” 2dxydxy—_1...dx

—00 —00

2 2
X ++x
_ / exp(_%)

X1>>Xp2

Xr—2
2
X Xp_1e r=ldx,_1...dx;
—0Q
1 Xp4e a7 g 43x]
= — exp| — ! r=3 "2 Vdx, 5 ...dx; >0.
2 2
X|>>Xp_2

similarly we get

2 ... 2
(Zn)’/zﬂl,r(r) = / X1Xy exp(—%)dn .odx,

X[ >X2> e >Xp

/ ( x§+-~-+x§_1)7° 7
= expl —————— xie 2
X2

X2> 0 >Xp—]

Xr—1 )

_X
X xre” 2dxidx,dx,_q...dxp
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[ (zx§+x§---+x3_2+zxz_1)
=— expl — 7

X|>>Xp)

der—l .. .dxz < 0.

O
Before proving Theorems 2.4, 2.8 and 2.11, let us first define some notation. Let g
be a large positive integer. Define p to be the largest prime divisor of ¢, and denote
by po the least non-quadratic residue modulo p (if p = 2 take pp = 3). Then
Burgess’s bound on short character sums (see [9]) implies that pg < pl/ @verte <
g'/*. Moreover note that py is a prime and is also a non-square modulo ¢. Furthermore
we shall denote by p; < p» the smallest prime numbers such that p; # po for
i =1,2,and (p1p2,q) = 1. Then one has p; < p> < 2loggq, in view of the fact that

[1,<. p = ¢=+°®) which follows from the prime number theorem.

Proof of Proposition 2.4 The first part that |6(q; a1, ...,a;) — 1/r!] & 1/loggq
follows from combining Theorem 2.1 with Corollary 5.4 and the fact that |Cy | = q?(l).
Concerning the second part we first take a; = 1,4, = —l and a; = (p1p2)? for

2 < j <r—1 Then |a;| < (210gq)4(”1) forall 1 < j < r. Using part II of
Proposition 6.2 we obtain

By(aj, a) < (logg)*, foralll<j<k<r—1,
since p1 p2lay/a;j in this case. Furthermore, part I of the same proposition implies that
By(aj,ar) K (10gq)4r forall2 < j<r—1,
and
By(ar,a,) = ~¢(g)log2 + O (log’ ).

Therefore by Theorem 2.1 and Lemma 6.3 we deduce that

5(Q;a1,.,.,a,):i+w+oe( 1 )

r! Ny P (q)1/>=<
1 1B1r(r)]log?2
r! 2logqg

Furthermore taking by = a,_1, b,—1 = a1 and b; = a; for all other values of j, we
obtain by Lemma 6.3 that

1 Br-1 r(r)Bq(br—lv by) 1
8(q; b1, ....by) = — . Oc| ———
(q 1 ) V! + Nq + € ¢(q)1/2_€

- l _ |ﬁr71,r(r)| log2
r! 2logg

completing the proof. O
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Proof of Proposition 2.8 We need only to construct the squares a; modulo g, since in
this case 6(q; bay, ..., ba,) = é(q; ay, ..., a,) for any residue class b modulo g by
Theorem 2 of Feuerverger and Martin [4]. Thus it suffices to take b; = ba; for any
non-square b modulo ¢, to get the analogous result for non-squares.

Leta; = l,a, = p}anda; = (pipp)¥ for2 < j < r — 1. Thena; <
(2logg)*"=D forall 1 < j < r. Moreover for | < j < k < r — 1 notice that
pi1p2lax/a;. Therefore part II of Proposition 6.1 gives that

By(aj, ar) < (logq)*, forl<j<k<r—1,
and
By(aj,a,) < (logq)™, for2<j<r—1,
since ppalaj/a, in this case. Finally, since a, /a; = p%, we have

log pi

By(ar.ay) = —p(q)——
1

Igj o ((log q)“’).

Thus, combining these estimates with Corollary 2.7 and Lemma 6.3 we deduce

1 B s 1 4r 1
5wﬂwnﬂ»=—+&“”qwaﬁ+0(mw))>— P10
" Ny o@ )7 Slogy
(6.3)
if g is sufficiently large. Furthermore, let o be the permutation on the set {1, ..., r}

definedbyo (1) =r —1,0(r — 1) = 1,and o (j) = j for all other values of j. Then
using Lemma 6.3 we obtain similarly to (6.3) that

1 Br1,(r)B,(1, p?) (log g)*
8(q; ao(1y, - -5 o)) = — + r—Lr q V.o 2q

r! Ny ¢(q)
1 -
JL Ao 6
r! S5log’ g
if ¢ is sufficiently large, which completes the proof. O

Proof of Proposition 2.11 The main idea of the proof relies on the fact (proved in
part IT of Proposition 6.1) that when a, b > 0 and a, b are small compared to g, the
quantity By (a, b) is small unless max(a, b)/ min(a, b) equals a prime power. Since
(k15 ..., k) #(0,...,0) then x; # 0 forsome [ € [1, r].

Casel:«x, ZQork; #0.

We handle only the case «, # 0, since the treatment of the case k1 # 0 follows
simply by switching a; with a,, and b with b, in every construction we make
below. Assume first that «, > 0. In this case take a1 = 1, a; = po(plpz)zj
for2 < j<r—1landa = (plpz)z. Then a; and a, are squares and a; is a
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non-square modulo ¢ for all 2 < j < r — 1. Moreover choose b; = a; for all
1 < j <r—1andb, = pg.In this case b; is the only square among the b;
modulo g. Since C4(1) > —1 we get that

D kjCqlap) = D kjCqb)) =k, Cylay) — i,Cq(br) = i (Cy(1) + 1) > 0.
j=1 j=1

In the other direction, note that |a;| < ¢'/4(2logg)*" = forall 1 < j < r, and
that py p; divides max(a;, ar)/ min(a;, a) for all 1 < j < k < r. Therefore,
upon using part II of Proposition 6.1 we deduce that

1B, (a), ap)| < q"*(logg)*™ foralll < j<k<r
Hence by Theorem 2.1 we obtain

1 1
8(q,a1,,ar)=;+06 (W) (65)

Similarly, part II of Proposition 6.1 gives that [ B, (b}, br)| < g 174 (log ¢)* for all
{j,k} #{1,r}and

lo
By(b1, by) = ~p(@) =" + 0 (¢ *og )" ) .
pPo

Thus using Theorem 2.1 along with Lemma 6.3 and equation (6.5) we get

awqum=l+ﬂﬁﬁﬁﬂﬂ+@( : )

r! Ny b(q)'/?>e
L [B1r(r)]log po )

> —+ ————— > 48(q;ay, ..., ar).
r! 2pologg

Now suppose that «, < 0. In this case we choose a; = 1 and a; = po (p1p2)*
forall 2 < j <r (so that ay is the only square among the a;); and b; = a; for all
l<j<r—1,and b, = p% (in this case both b and b, are squares modulo g).
Then similarly to the case k, > 0, one has

D kiCqlaj) = D kjCqbj) = =k, (14 Cy(1)) >0,

=1 j=I

1 1
d(q;ai,...,ar) = ﬁ‘l_OE (W)
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and
. _ 1 ﬁl,r(r)Bq(blabr) 1
3(q; bi,....b) = ; + N—q + O —d)(q)l/Z—é
1 1B1,r()llog pi _
> =4+ ———>4qa,...,a),

r! 2pilogq

using Theorem 2.1, part II of Proposition 6.1 and Lemma 6.3.

Case2:x; ZOforsome2 <[ <r —1.

As before assume first that k; > 0. For the a; we choose a; = 1,a; = (plpg)z,
anda; = po(p1p2)4j for2 < j #1 < r;and for the b; we take b; = po(plpz)‘”,
b, = po and b; = a; for all other values of j. Then, an analogous argument to
Case 1 gives that

r r
D kiCqlaj) = D kjCqb)) = ki (Cy(1)+ 1) > 0, and 8(q: by, ... by)
j=1 j=1

> S(q;ala”'aar)7

if g is larg_e. Finally if x; < 0, we choose a; = 1, a, = (p1p2)4 and a; =
po(pip)¥ for2 < j <r—1;and by = (p1p2)*, b, = pf and b; = a; for all
other values for j, to deduce the desired conclusion.

[m}

7 q-Extremely biased races

The idea behind the proof of Theorem 2.6 is to observe that when the a; are
small comparatively to ¢, the term B, (a;, a;) have a large contribution to the den-
sity 8(¢; a1, ...,ay) if and only if @; = —a; or a; and a; have the same sign
and max(|a;|, |a;|)/ min(|a;|, la;|) equals a prime power (this is proved in Propo-
sition 6.1). The first step is to reduce to the case r = 3 (which is easier to deal with)
using the following lemma.

Lemma 7.1 Let r > 3 be a fixed integer, q be a large positive integer and

(ai,...,ay) € Ar(q). If there exist 1 < i} < ip < i3 < r such that the race
{q; ai,, aiy, aiy} is g-extremely biased, then the race {q;ay, ..., a,} is g-extremely
biased.

Proof Suppose that there exist 1 < iy < i» < i3 < r with the property that the
race {q; a;,, ai,, ai;} is g-extremely biased. Then, for some permutation v of the set
{i1, i2, i3} we have |8(g; avy), Avin), Aviy)) — 1/61 > 1/loggq. Let ji = v(i;), and
define S to be set of all permutations o of {1, ..., r}suchthato (1) > o (j2) > o (j3).
Note that under GRH and LI it follows from the work of Rubinstein and Sarnak [25] that
the logarithmic density of the set of real numbers x > 2 with7 (x; g, a;) = 7 (x; g, a;)

is 0. Using this fact along with the definition of the densities 6 (¢; ay, . . ., ;) we obtain
8(q;aj,ajp,aj;) = ZS(Q; Ao (lys -+ > Ao (r))- (7.1
oeS
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Now, a simple combinatorial argument shows that |S| = r!/3!. Hence we obtain from
(7.1) that

1
8(q; ag(1ys - > Ao(r)) — —

=2

1 1
— < ‘5(% Aji,ajy,aj;) — 5

!
log g = r!
1
L Max (8(q; dg(1)s - -+ Ao (r) = = |
oges r!
which implies that the race {g; ai, ..., a,} is g-extremely biased. O

The next step is to investigate the main contribution to B, (a, b) when a, b > 0 are
relatively small compared to ¢ and max(a, b)/ min(a, b) equals a prime power. To
this end we establish some properties of the function Ag(x) defined in (6.1).

Lemma 7.2 The maximum of Ao(x) over R equals (log3)/3. Moreover, if n is a
positive integer with Ao(n) # 0, then Ao(m) = Ao(n) implies that m = n.

Proof We know that Ag(x) # 0 if and only if x = p’ for some prime p and a positive
integer /. In this case Ag(x) = (log p)/p' < Ao(p). The first part follows upon noting
that the function (log x)/x is decreasing for x > 3 and (log3)/3 > (log?2)/2.

If Aog(m) = Aog(n) # 0, then there exist primes pj, p> and positive integers ey, €3
suceh that n = p{', m = p3* and (log p1)/p]" = (log p2)/p5>. This implies that

el
pfz = pg !, from which one can deduce that p; = p; and thus e; = e;. O

Lemma 7.3 Let ay, ay and a3 be distinct positive real numbers. Define

max(aj, az) max(ay, as) max(ai, az)
=, > 2= T > and X3 - -
min(ai, az) min(az, az) min(ay, az)

If one of the values Ao(X1), Ao(X2) and Ao(X3) is non-zero, then there exists a
permutation o of the set {1, 2, 3} such that

Ao(Xo1)) + Ao(Xo2) —2M0(X63)) # 0.

Proof Assume without loss of generality that a; < ay < a3. In this case X1 = az/ay,
X> = az/ay and X3 = az/a;. Suppose that for all permutations o of the set {1, 2, 3}
we have Ag(Xo (1)) + Ao(Xo2)) — 2A0(X63)) = 0. Then we must have Ag(X1) =
Ao(X2) = Ao(X3). Furthermore since this value is non-zero we get by Lemma 7.2
that X1 = X, = X3. However this can not hold since X3 # X by our hypothesis on
the a;. O

Proof of Proposition 2.6 Assume First that neither i) nor ii) hold. In this case Proposi-
tion 6.1 implies that B, (a;, ak) = O (log2 q),forall 1 < j <k <r.Inserting this
estimate in Corollary 2.7 in the case where the a; are all squares (or all non-squares)
modulo ¢, gives |6(q; a; ..., a,) — 1/r!| K4, (logq)/q. Now if this is not the case
then Theorem 2.1 implies that |8(q; a; . .., a,) — 1/r!] K, ¢~"/>*€. Thus in both
cases the race {q; ay, ..., a,} is not g-extremely biased.
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Next, let us consider the case where a; = —ay = a forsome 1 < j < k < r. Since
r > 3, then there exists b € {aj, ..., a,}suchthatb # aand b # —a. By Lemma 7.1
it suffices to prove that the race {¢; a, —a, b} is g-extremely biased. Without any loss of
generality we may assume that a and b have the same sign (otherwise simply switch a
and —a). Applying Proposition 6.1 we obtain B, (a, —a) = —¢(q) log2+04 (log? q),
By (b, —a) = Oy (log2 q) (since b and —a have different signs and b — a # 0) and

max(|al, |b])

log 3
B,(a.b) = —¢(q) Ao ( ) + 0allog?q) > —%qﬂq) + 04(log? q),

min(lal, [b])

which follows from Lemma 7.2. Inserting these estimates in Corollary 2.3, and
recalling that N, ~ ¢(¢g) logq and |Cy(a)| = q°WD, we get

1 2log2—(log3)/3 1
S(Q;a7ba _a)z _+ Og (Og )/ 3
6 873 logg

if g is large enough, so that the race {q; a, —a, b} is g-extremely biased.

Now, suppose that a; # —aj forall 1 <i < j < r, and that there exist by, by €
{ai,...,a,} such that b = pkb2 for some prime p, and a positive integer k. In this
case part II of Proposition 6.1 yields

1
By(b.b2) = ~$(a) = 1+ 04log’ ). (1.2)

Since r > 3, then there exists b3 € {ay, ..., a,} with b3 # b; fori = 1, 2. First if b3
and b have different signs, then part I of Proposition 6.1 implies that

B, (b1, b3), By(ba, b3) <4 log®q. (7.3)

Therefore, inserting the estimates (7.2) and (7.3) in Corollary 2.3 gives

1 lo
8(q: b1, b, b3) = — £r

- (1 1)),
6 amvapaogg

and thus the race {q; b1, by, b3} is g-extremely biased. Hence, it remains only to
handle the case where all the b; have the same sign. Let us denote by S3 the set of all
permutations of {1, 2, 3}. Since |b1], |b2| and |b3| are distinct by our hypothesis, and
Ao(|b1/1b2]) # 0O, then Lemma 7.3 shows that there exists o € S3 such that

Ao(Xo 1) + Ao (Xo2) —2A0(Xs3)) # 0,

where

Wil _ oy _max(baldbsh o max(bi. [bs])

1= = > 2= T o L L an 3= T L
Lol ~ P min(|b2]|, |b3]) min(|by], |b3])
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Therefore, upon using part II of Proposition 6.1 along with Corollary 2.3, we deduce
that

1 [Ao(Xo(1) + Ao(Xo2) — 280(Xo(3)]
max |8(q; buiy, bv), bv) — = > o) AL o®)
VES3 6 Iqu

which implies that the race {q; b1, by, b3} is g-extremely biased. Thus, appealing to
Lemma 7.1 the result follows. O

8 Another proof for the asymptotic in two-way races

In this section we derive Fiorilli and Martin [5] asymptotic formula for the densities in
the case r = 2, using a slight modification of the method used to establish Theorem 2.1.
In the version presented below, our main concern is to obtain the main term of (2.3)
without giving much attention to the error term, in order to keep the exposition simple.
Nonetheless, our approach would give an asymptotic expansion for §(g; a1, az) with
little extra work, if one allows more terms in the asymptotic series of the Fourier
transform [i4.4, 4, in Lemma 8.1 below. Indeed we shall establish that

_ 2 2
S(Cl;al,az)=l—M+0(%), 8.1)
q E)

2 V21 Vy(ay, az)

for (a1, az) € Az(g). We begin by proving the analogue of Proposition 3.3

Lemma 8.1 Fort = (11, 12) € R2 with ||t]| < N,'* we have

| 1+ By(ar,a2)

~ 1 5]
Mg.ay,aa\ —F7—=—=> —7=—=— | = €Xp - 112 Fq;al,az (1, 1),
( /N, ,/Nq) ( 2 Ng )

where

1
Fq;al,az(tlv n)=1+ _(Cq(al)t] + Cq(a2)t2) +0 (

VNg
1/4

Proof We follow closely the proof of Proposition 3.3. Indeed, for |[¢|| < N,"" the

|l#]1* N ||t||2cq(1>2)
Nq Nq

explicit formula (3.1) implies that log (1.4, 4, (thq_ 12 0Ny Y 2) equals

1
ﬁ(@(a])mc‘,(az)rz)—N— > >

9 x#x0 vx>0
x modgq

g Bjaa) (||t||4)

Ix (a)t1 + x (@)t +0 (||f||4)

3—;+V§ Ny

= ’—N<cq (@t + Cy(at) — v,

v Vg 2 Ng
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Thus, the lemma follows upon noting that

VNg

. 2C 1 2
=1+ l—(Cq(a1)t1 + Cy(a)t2) + O (M) .

/N, N,

exp(l—(cq (ann +Cy (az)tz))

m}

Our next result is an analogue of Lemma 4.2 in the case of a bivariate normal
distribution.

Lemma 8.2 Let p be a real number such that |p| < 1/2, n1, ny are fixed non-negative
integers, and M a large positive number. Then

2., 2
. tr+ 15+ 2pH 1
e’(’“”“zmt]"‘t;2 exp (——1 2 5 dtidty
[ltll=M

1 amtme, (x, M?
_ p(X1,x2) +0 (exp (__))

jnitn axy' x5’ 8

where

2 1
D,(x1,x2) = z exp (- 3 (X12 +X% — 2,0)(1)62)).
1 —p2 2(1 = p*)

Proof First, notice that t12 + t22 +2pt1ty > (z‘l2 + t22) /2 which follows from the fact that
[t1] < (tl2 + t22)/ 2. This implies that the integral we are seeking to estimate equals

2 2 2
. tr 4ty + 2ptyt M
/ e:(t1x1+tzx2)t1"1t£lz exp (—%)dﬁdfz +0 (exp <_?)) .

teR?

Moreover, since the last integral is absolutely and uniformly convergent for (x, x2) €
R2, we get that

2 2 ni+n
101 H2) 1 _tl +15+ 20t dtrdt — 1 9mHm2d,(x1, x2)
e 1 I~ exp _— ndt = - Ao 72 s
2 jmtn2 dx;'dx,

teR?

where

2 2
: 1415 + 2ptt
®,(x1, x2) = / o (t1x1+12x2) exp(—%)dlldtz.

teR?
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N 1=p2 . .. .
On the other hand, note that 57— Pplx1, x2) is the characteristic function of the
bivariate normal distribution whose density is

J1 = p2 ( t12+t22+2,0t1t2)
exp( — )

21 2

ft, )=

Therefore, we obtain that

J1=p2

e (i + x5 — prpcz)) :

@, (x1, x2) = exp (—m

which completes the proof. O

We are now ready to establish (8.1). We begin by following the proof of Theorem 2.1.
Write ity = [4g:q),4, and let R = /N, log q. Then Proposition 4.1 yields

log?
8(g; a1, a) = / dig(y1,y2) + O (eXp (— foq)) .

—R<y)<y1<R

Applying the Fourier inversion formula to the measure i, gives that

1 o
[ sy

—R<yr<y1<RseR?

2
+0 (exp (—lofoq)) . (8.2)

Moreover, using Proposition 3.2 with € =logg N, 172 gives

8(q; a1, ax) =

/ iGsy1+s232) 451, s2)dS—/ el ity ¢ (81, 82)ds

seR? [Isll<e
+0 (exp (—c log2 q)) ,

for some constant ¢ > 0. Inserting this estimate in (8.2), and making the change of
variables t; = \/Nysjand x; = y;//Ny for j = 1, 2, we infer from Lemma 8.1 that

1 . R 41
- i(t1x1+12x2)
(22 / |, (F f)dtd

—logg<xy<xi<loggq ||t||<logg

+0 (exp( log¥/2 ¢ ))

2 2
oy Gt G +O(M) 8.3)

Vg VN Ng

8(q;ay,ax) =
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where
— 1 ei([1x1+t2x2)
(2m)?
—logg<xy<xj<logq ||t||<logg
2 2
4t B, (ai, ap)
X exp —1 2 _ 4 titr )dtdx,
2 N,
and

1 .
R (t1x1+0x2) . .
li= (2m)? / / Ty

—log g<xy<xj<logq ||t||<logg

2 2

t+t B,(ay,a

X exp - 2 _ q(a1 2)t1t2 dtdx,
2 Ny

for j = 1, 2. We shall first evaluate Iy. Let p = B, (a1, az)/N,. Then Corollary 5.4
implies that |p| < 1/2 for g large. Hence Lemma 8.2 yields

1

1
I —p2 / P (_2<1 )

—log g<xa<xj<logg
1 2
+0 (exp (— Oigoq)) .

Now the integral on the RHS of the last estimate equals

Iy = ()cl2 + x% — 2,ox1x2)) dxidxy

ex (x +x2 prlxz)) dxidx)
zm/l_ / p( 2(1 20—p7) 1T

X1>x2

1 2
+0 (exp (— Oigoq)) .

Therefore, using that the integrand is symmetric in x; and x», along with the fact that

()c12 + x% — 2px1xz)) dxidxy; =1,

znﬁ_pzééexp( 21— p2)

we deduce that

1 log? g
Ip=-+4+0 - ) 8.4
0 2+ (eXp( 0 )) (8.4)
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Using similar ideas along with Lemma 8.2 gives

1 I, (x1, x2) log? ¢
I = L dxid 0 —
L= o / oy, nan T (CXP( 10

X1>X2

o0
1 log? ¢
= —m / CIDP(xg,xz)dxz—i—O(exp (— 0 ))

Furthermore, one has
o0 o0
[ eromir= 2 oo (5 (755)) 0= 715
, = — exp| —=— [ —— =
ply,y)ay 2 p ACEY y =,
—0Q —0Q

Note that 2(1 — p) = V, (a1, a2)/N,. Thus, upon combining the above estimates we
get

VNg log? ¢
N . NG — . 8.5
= e (eXp( 10 )) )

Similarly one obtains
VN, log?
2=—4+o(exp(_ o8 Q)) (8.6)
i\/2nVy(ar, az)

Finally, inserting the estimates (8.4)—(8.6) into Eq. (8.3), and using the fact that
Vy(a1, az) ~ 2N, give the desired result.
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