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Abstract Let q ≥ 3 and 2 ≤ r ≤ φ(q) be positive integers, and a1, . . . , ar be distinct
reduced residue classes modulo q. Rubinstein and Sarnak defined δ(q; a1, . . . , ar )

to be the logarithmic density of the set of real numbers x such that π(x; q, a1) >

π(x; q, a2) > · · · > π(x; q, ar ). In this paper, we establish an asymptotic formula
for δ(q; a1, . . . , ar ) when r ≥ 3 is fixed and q is large. Several applications concerning
these prime number races are then deduced. First, comparing with a recent work of
Fiorilli and Martin on the case r = 2, we show that these densities behave differently
when r ≥ 3. Another surprising consequence of our results is that, unlike two-way
races, biases do appear in races involving three or more squares (or non-squares)
to large moduli. Furthermore, we establish a partial result towards a conjecture of
Rubinstein and Sarnak on biased races, and disprove a recent conjecture of Feuerverger
and Martin concerning bias factors. Lastly, we use our method to derive the Fiorilli
and Martin asymptotic formula for the densities when r = 2.
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1 Introduction

In 1853 Chebyshev observed that primes congruent to 3 modulo 4 seem to predominate
over those congruent to 1 modulo 4. In general, if a is a non-square modulo q and b is
a square modulo q then π(x; q, a) has a strong tendency to be larger than π(x; q, b),
where π(x; q, a) denotes the number of primes less than x that are congruent to a
modulo q. This general phenomenon is known as “Chebyshev’s bias”. This bias might
appear unexpected in view of the prime number theorem for arithmetic progressions
which states that limx→∞ π(x; q, a)/π(x; q, b) = 1, for any a and b that are coprime
to q. However, this asymptotic result does not give us any information on the difference
π(x; q, a)−π(x; q, b). In 1914, Littlewood [23] proved that the quantities π(x; 4, 3)−
π(x; 4, 1) and π(x; 3, 2) − π(x; 3, 1) change sign infinitely often. Similar results to
other moduli were subsequently derived by Knapowski and Turán [10–17], under
some hypotheses on the zeros of Dirichlet L-functions.

A generalization of Chebyshev’s question is the so-called “Shanks and Rényi prime
number race” which is colorfully described by Knapowski and Turán in [10–17]. Let
q ≥ 3 and 2 ≤ r ≤ φ(q) be positive integers, and denote by Ar (q) the set of ordered
r -tuples of distinct residue classes (a1, a2, . . . , ar ) modulo q which are coprime to q.
For (a1, a2, . . . , ar ) ∈ Ar (q), consider a game with r players called “1” through “r”,
where at time x , the player “ j” has a score of π(x; q, a j ). Will all r ! orderings of the
players occur for infinitely many integers x?

It is generally believed that the answer to this question is yes for all q and all
(a1, a2, . . . , ar ) ∈ Ar (q). This problem has been extensively studied by many authors,
including Knapowski and Turán [10–17], Bays and Hudson [1] and [2], Kaczorowski
[18,19] and [20], Feuerverger and Martin [4], Martin [24], Ford and Konyagin [6]
and [7], Fiorilli and Martin [5], and the author [22]. For a complete history of this
subject, one can refer to the delightful articles of Granville and Martin [8], and Ford
and Konyagin [7].

In their fundamental work of 1994, Rubinstein and Sarnak [25] solved the Shanks
and Rényi prime race problem assuming the Generalized Riemann Hypothesis GRH
and the Linear Independence Hypothesis LI (which is the assumption that the non-
negative imaginary parts of the zeros of all Dirichlet L-functions attached to primitive
characters modulo q are linearly independent over the rationals). For (a1, a2, . . . , ar ) ∈
Ar (q), let Pq;a1,...,ar be the set of real numbers x ≥ 2 such that
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π(x; q, a1) > π(x; q, a2) > · · · > π(x; q, ar ).

Rubinstein and Sarnak showed, assuming GRH and LI, that for any (a1, . . . , ar ) ∈
Ar (q) the logarithmic density of Pq;a1,...,ar defined by

δ(q; a1, . . . , ar ) := lim
x→∞

1

log x

∫

t∈Pq;a1,...,ar ∩[2,x]

dt

t
,

exists and is positive. In fact this is corollary of a stronger result they proved, that there
exists an absolutely continuous measure μq;a1,...,ar such that

δ(q; a1, . . . , ar ) =
∫

x1>x2>···>xr

dμq;a1,...,ar (x1, . . . , xr ). (1.1)

All the results we obtain in this paper are conditional on the same two hypotheses
(namely GRH and LI) as the work of Rubinstein and Sarnak. In [6], Ford and Konyagin
showed that assumptions on the locations of the zeros of Dirichlet L-functions are
indeed necessary in order to obtain results on prime number races with three or more
competitors.

In the case of a race between two residue classes a and b modulo q, Rubinstein
and Sarnak proved that δ(q; a, b) = δ(q; b, a) = 1/2 if a and b are both squares or
both non-squares modulo q, and otherwise δ(q; a, b) > 1/2 if a is a non-square and
b is a square modulo q (note that δ(q; b, a) = 1 − δ(q; a, b)). They also showed that
δ(q; a, b) → 1/2 as q → ∞, uniformly for all distinct reduced residue classes a, b
modulo q. In fact, they proved that in general all biases disappear when q → ∞. Let

�r (q) := max
(a1,a2,...,ar )∈Ar (q)

∣∣∣∣δ(q; a1, . . . , ar ) − 1

r !
∣∣∣∣ .

Then for any fixed r ≥ 2, Rubinstein and Sarnak showed, assuming GRH and LI, that

�r (q) → 0 as q → ∞. (1.2)

In the case r = 2, Fiorilli and Martin [5] have recently established an asymptotic
expansion for δ(q; a, b) − 1/2 when a is a non-square and b is a square modulo q,
conditionally on GRH and LI. A corollary of their results is that for q large

�2(q) = 1

q1/2+o(1)
.

A surprising consequence of our results is that �r (q) behaves in a completely different
way when r ≥ 3.
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Theorem 1.1 Assume GRH and LI. Let r ≥ 3 be a fixed integer. If q is large, then

�r (q) �r
1

log q
.

Recall that a bias occurs in a two-way race {q; a1, a2} if and only if one of the residue
classes a1 and a2 is a square and the other is a non-square modulo q. An interesting
problem is then to determine when these biases appear for general races {q; a1, . . . , ar }
with r ≥ 3. To make things clear we need to precisely define the notions of “biased”
and “unbiased” races. Although Rubinstein and Sarnak called a race {q; a1, . . . , ar }
unbiased if the density function associated to the measure μq;a1,...,ar is symmetric, we
believe that a more appropriate definition is the following

Definition 1.2 Let (a1, . . . , ar ) ∈ Ar (q). The race {q; a1, . . . , ar } is said to be unbi-
ased if for every permutation σ of the set {1, 2, . . . , r} we have

δ(q; aσ(1), . . . , aσ(r)) = δ(q; a1, . . . , ar ) = 1

r ! .

Furthermore, a race is said to be biased if this condition does not hold.

First, observe that if the race {q; a1, . . . , ar } is unbiased then the races
{q; ai1 , . . . , ais } are unbiased for any subset {i1, . . . , is} of {1, . . . , r}. In view of
the results of Rubinstein and Sarnak on two-way races, this clearly shows that a race
{q; a1, . . . , ar } is biased if there are 1 ≤ i 	= j ≤ r such that ai is a square and
a j is a non-square modulo q. Furthermore, it is obvious from (1.1) that the race
{q; a1, . . . , ar } is unbiased if the density function of μq;a1,...,ar is symmetric. Rubin-
stein and Sarnak investigated the Fourier transform of μq;a1,...,ar for r ≥ 3, and showed
that the only case when this distribution is symmetric occurs when r = 3 and

a2 ≡ a1ρ mod q, a3 ≡ a1ρ
2 mod q, (1.3)

for someρ 	= 1 withρ3 ≡ 1 mod q.However, this result still leaves open the possibility
that unbiased races not satisfying assumption (1.3) might exist (since, for example,
a function can be positive half of the time without being symmetric). Nonetheless,
Rubinstein and Sarnak conjectured that the only case when a race involving three or
more competitors is unbiased corresponds to (1.3).

Conjecture 1.3 (Rubinstein and Sarnak [25]) When r ≥ 3, the race {q; a1, . . . , ar } is
unbiased if and only if r = 3 and the residue classes a1, a2, and a3 satisfy assumption
(1.3).

Feuerverger and Martin [4] were the first to exhibit explicit examples of biased races
with three competitors, where the residue classes are either squares or non-squares
not satisfying assumption (1.3). For example they showed, under GRH and LI, that
the races {8; 3, 5, 7} and {12; 5, 7, 11} are biased. However, all the examples they
considered satisfy r ≤ 4 and q ≤ 12, thus leaving open the problem of determining
the existence of biased races of this type for any q > 12 and 3 ≤ r ≤ φ(q). We
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answered this question for any fixed r ≥ 3 if q is large enough. Indeed we show that
unlike two-way races, biases do appear in races involving three or more squares (or
non-squares) modulo q, if q is sufficiently large.

Theorem 1.4 Assume GRH and LI. Given r ≥ 3, there exists a positive number q0(r)

such that for any q ≥ q0(r) there are two r-tuples (a1, . . . , ar ), (b1, . . . , br ) ∈ Ar (q),
with all of the ai being squares and all of the bi being non-squares modulo q, and
such that both the races {q; a1, . . . , ar } and {q; b1, . . . , br } are biased.

For distinct non-zero integers a1, . . . , ar , we define Qa1,...,ar to be the set of positive
integers q such that a1, . . . , ar are distinct modulo q, and (q, ai ) = 1 for all 1 ≤ i ≤ r .
When r = 3, assumption (1.3) implies that a2

1 ≡ a2a3mod q, a2
2 ≡ a1a3mod q,

and a2
3 ≡ a1a2mod q. Hence if q > 2 max(|ai |2) then these congruences become

identities. However, since the ai are assumed to be distinct these equalities can not
hold. This leads to a weak form of Conjecture 1.3:

Conjecture 1.5 Let r ≥ 3 and a1, . . . , ar be distinct non-zero integers. Then for all
positive integers q ∈ Qa1,...,ar such that q > 2 max(|ai |2), the race {q; a1, . . . , ar } is
biased.

We prove the following partial result towards this conjecture, which follows from
Theorem 2.6 below.

Theorem 1.6 Assume GRH and LI. Let r ≥ 3 and a1, . . . , ar be distinct non-zero
integers such that a j/ak equal −1 or a prime power, for some 1 ≤ j 	= k ≤ r . Then
for all but finitely many integers q ∈ Qa1,...,ar , the race {q; a1, . . . , ar } is biased.

To establish these results, we prove an asymptotic formula for δ(q; a1, . . . , ar ) valid
for large q, and then we investigate the behavior of its first few terms. Our approach is
different from the one used by Fiorilli and Martin [5] in the case r = 2. Their method
relies on using a certain symmetry of the measure μq;a1,a2 (which is a measure on
R

2) to reduce the RHS of (1.1) to a one dimensional integral over a related measure
ρq on R. This symmetry could be used to reduce the measure μq;a1,...,ar in the case
r ≥ 3 to a measure on R

r−1, as is done in [4]. However, this does not help in this case,
and one might as well deal with the original measure on R

r . Instead, our approach
relies on studying the measure μq;a1,...,ar by carefully analyzing its Fourier transform
μ̂q;a1,...,ar . In particular, we will exploit the fact that μ̂q;a1,...,ar can be approximated
by the Fourier transform of a multivariate Gaussian at small arguments, when q → ∞.

In the next section we shall discuss these results in details. In particular we shall
describe the asymptotic formula we prove for the densities δ(q; a1, . . . , ar ) and deduce
further consequences.

2 Detailed statement of results

For a non-principal Dirichlet character χ modulo q, we denote by {γχ } the multiset
of imaginary parts of the non-trivial zeros of L(s, χ). Let χ0 denote the principal
character modulo q and define S = ⋃

χ 	=χ0mod q{γχ }. Moreover, let {U (γχ )}γχ∈S be
a multiset of independent random variables uniformly distributed on the unit circle.
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Rubinstein and Sarnak established, under GRH and LI, that the distribution μq;a1,...,ar

is the probability measure corresponding to the random vector

Xq;a1,...,ar = (X (q, a1), . . . , X (q, ar )),

where

X (q, a) = −Cq(a) +
∑

χ 	=χ0
χmod q

∑
γχ>0

2Re(χ(a)U (γχ ))√
1
4 + γ 2

χ

,

and

Cq(a) := −1 +
∑

b2≡a mod q
1≤b≤q

1. (2.1)

Note that for (a, q) = 1 the function Cq(a) takes only two values: Cq(a) = −1 if a is
a non-square modulo q, and Cq(a) = Cq(1) if a is a square modulo q. Furthermore,
an elementary argument shows that Cq(a) ≤ d(q) �ε qε for any ε > 0, where
d(q) = ∑

m|q 1 is the usual divisor function.
The covariance matrix of a random vector Z = (Z1, . . . , Zn) is the n × n matrix

whose ( j, k) entry is Cov(Z j , Zk) = E

((
Z j − E(Z j )

)(
Zk − E(Zk)

))
, where E(Y )

denotes the expectation of the random variable Y . Let Covq;a1,...,ar be the covariance
matrix of the random vector Xq;a1,...,ar . A straightforward computation shows that the
entries of Covq;a1,...,ar are

Covq;a1,...,ar ( j, k) =
{

Nq if j = k

Bq(a j , ak) if j 	= k,

where

Nq := 2
∑

χ 	=χ0
χmod q

∑
γχ>0

1
1
4 + γ 2

χ

, and Bq(a, b) :=
∑

χ 	=χ0
χmod q

∑
γχ>0

χ
( b

a

) + χ
( a

b

)
1
4 + γ 2

χ

. (2.2)

We shall later prove (see Lemma 3.1 and Corollary 5.4 below) that

Nq ∼ φ(q) log q, and Bq(a, b) � φ(q),

uniformly for all pairs (a, b) of distinct reduced residue classes modulo q.
In the case r = 2, Fiorilli and Martin [5] established, under GRH and LI, that

δ(q; a1, a2) = 1

2
− Cq(a1) − Cq(a2)√

2πVq(a1, a2)
+ O

(
Cq(1)3

Vq(a1, a2)3/2

)
, (2.3)
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where Vq(a1, a2) = 2Nq − 2Bq(a1, a2). In Sect. 8 we shall derive this asymptotic
using a slight modification of our method.

Before stating our results, let us define some notation which shall be used throughout
this paper. Let

Cq = Cq(a1, . . . , ar ) := max
1≤ j≤q

|Cq(a j )|, and Bq = Bq(a1, . . . , ar )

:= max
1≤ j<k≤r

|Bq(a j , ak)|.

Moreover for 1 ≤ j 	= k ≤ r , we define the following integrals which shall appear in
the asymptotic formula of δ(q; a1, . . . , ar )

α j (r) := (2π)−r/2
∫

x1>x2>...>xr

x j exp

(
− x2

1 + . . . + x2
r

2

)
dx1 . . . dxr ,

λ j (r) := (2π)−r/2
∫

x1>x2>...>xr

(x2
j − 1) exp

(
− x2

1 + . . . + x2
r

2

)
dx1 . . . dxr ,

and

β j,k(r) := (2π)−r/2
∫

x1>x2>···>xr

x j xk exp

(
− x2

1 + · · · + x2
r

2

)
dx1 . . . dxr .

Theorem 2.1 Assume GRH and LI. Fix an integer r ≥ 2. If q is a large positive
integer and (a1, . . . , ar ) ∈ Ar (q), then

δ(q; a1, . . . , ar ) = 1

r ! − 1√
Nq

∑
1≤ j≤r

α j (r)Cq(a j ) + 1

Nq

∑
1≤ j<k≤r

β j,k(r)Bq(a j , ak)

+ 1

2Nq

⎛
⎝ ∑

1≤ j≤r

λ j (r)Cq(a j )
2+2

∑
1≤ j<k≤r

β j,k(r)Cq(a j )Cq(ak)

⎞
⎠

+Or

(
1

Nq
+ Cq Bq

N 3/2
q

+ B2
q

N 2
q

)
.

As a corollary we obtain

Corollary 2.2 Under the same assumptions of Theorem 2.1 we have

δ(q; a1, . . . , ar ) = 1

r ! − 1√
Nq

∑
1≤ j≤r

α j (r)Cq(a j ) + 1

Nq

∑
1≤ j<k≤r

β j,k(r)Bq(a j , ak)

+Or

(
C2

q

Nq
+ B2

q

N 2
q

)
.
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In particular, we get for r = 3 that

Corollary 2.3 Under the same assumptions of Theorem 2.1 we have

δ(q; a1, a2, a3) = 1

6
+ 1

4
√

π Nq
(Cq(a3) − Cq(a1))

+ 1

4π
√

3Nq
(Bq(a1, a2) + Bq(a2, a3) − 2Bq(a1, a3))

+O

(
C2

q

Nq
+ B2

q

N 2
q

)
.

Remark The main difference between the cases r = 2 and r ≥ 3 lies in the fact
that β1,2(2) = 0, which implies that the terms involving Bq(a j , ak) are missing in
the case r = 2. Indeed, we shall later prove that the contribution of these terms can
be �r 1/ log q. This explains the surprising behavior of �r (q) when r ≥ 3, since
Cq(a)/

√
Nq = q−1/2+o(1). Note that our asymptotic formula is not accurate in the

case r = 2 since the error term may exceed the main term. We shall slightly modify
the argument of the proof to handle this case in Sect. 8.

Investigating the terms Bq(a j , ak) and using the fact that Bq � φ(q), we prove
the following result, which is a stronger form of Theorem 1.1.

Theorem 2.4 Assume GRH and LI. Fix r ≥ 3 and let q be large. Then for all
(a1, . . . , ar ) ∈ Ar (q) we have

∣∣∣∣δ(q; a1, . . . , ar ) − 1

r !
∣∣∣∣ �r

1

log q
.

Moreover there exist residue classes (b1, . . . , br ), (d1, . . . , dr ) ∈ Ar (q) such that

δ(q; b1, . . . , br ) >
1

r ! + c1(r)

log q
and δ(q; d1, . . . , dr ) <

1

r ! − c1(r)

log q
,

for some constant c1(r) > 0 which depends only on r.

This result implies that for some residue classes a1, . . . , ar modulo q the distance
|δ(q; a1, . . . , ar )− 1/r !| can be �r 1/ log q. An interesting question is then to inves-
tigate for which residue classes modulo q does this extreme bias occur. To this end let
us make the following definition.

Definition 2.5 Fix r ≥ 3 and let q be large. We call a race {q; a1, . . . , ar } “q-extremely
biased” if for some permutation σ of the set {1, . . . , r} we have

∣∣∣∣δ(q; aσ(1), . . . , aσ(r)) − 1

r !
∣∣∣∣ �r

1

log q
.

We can completely characterize q-extremely biased races {q; a1, . . . , ar } when the
residue classes a1, . . . , ar are bounded and q is large.
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Theorem 2.6 Assume GRH and LI. Fix r ≥ 3 and let A ≥ 1 be a real number. If
a1, . . . , ar are distinct integers with |ai | ≤ A, and q is a large positive integer with
(q, ai ) = 1, then the race {q; a1, . . . , ar } is extremely biased if and only if there exist
1 ≤ j 	= k ≤ r such that a j/ak equals −1 or a prime power.

Moreover, if this condition does not hold, then for any permutation σ of the set
{1, . . . , r}

δ(q; aσ(1), . . . , aσ(r)) − 1

r !

�A,r

⎧⎨
⎩

log q

q
if all the ai are squares (or non-squares) mod q,

q−1/2+o(1) otherwise.

Since the functions
∑r

j=1 x j ,
∑r

j=1(x2
j −1) and

∑
1≤ j<k≤r x j xk are symmetric in

the variables x1, . . . , xr , and
∫
R

x exp(−x2/2)dx = ∫
R
(x2 − 1) exp(−x2/2)dx = 0,

we deduce that

r∑
j=1

α j (r) =
r∑

j=1

λ j (r) =
∑

1≤ j<k≤r

β j,k(r) = 0.

Therefore, in the case where all of the ai are squares (or all of them are non-squares)
modulo q we obtain the following corollary of Theorem 2.1:

Corollary 2.7 Assume GRH and LI. Fix r ≥ 3 and let q be large. Then, for any
(a1, . . . , ar ) ∈ Ar (q) such that all of the ai are squares (or all of them are non-
squares) modulo q, we have

δ(q; a1, . . . , ar )= 1

r ! +
1

Nq

∑
1≤ j<k≤r

β j,k(r)Bq(a j , ak)+Or

(
1

Nq
+ Cq Bq

N 3/2
q

+ B2
q

N 2
q

)
.

Using this result along with an explicit construction of the residue classes a1, . . . , ar

modulo q, we prove a strong from of Theorem 1.4.

Theorem 2.8 Assume GRH and LI. Fix r ≥ 3 and let q be large. Then there exist two
r-tuples (a1, . . . , ar ), (b1, . . . , br ) ∈ Ar (q), with all of the ai being squares and all
of the bi being non-squares modulo q, and a permutation σ of the set {1, . . . , r}, such
that

δ(q; a1, . . . , ar ) = δ(q; b1, . . . , br ) <
1

r ! − c2(r)

log3 q

and

δ(q; aσ(1), . . . , aσ(r)) = δ(q; bσ(1), . . . , bσ(r)) >
1

r ! + c2(r)

log3 q
,

for some constant c2(r) > 0 which depends only on r.
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Remark In the proof of Theorem 2.8 we constructed the squares ai by choosing a1 = 1,
ar = p2

1 and a j = (p1 p2)
2 j for 2 ≤ j ≤ r − 1, where p1 	= p2 are the smallest

primes that are coprime with q. The non-squares bi are simply constructed by taking
bi = bai where b is any non-square modulo q. The primes p1, p2 can be as large as
log q, which explains why only the order of magnitude 1/(log q)3 is obtained, rather
than the 1/(log q) that we derived in Theorem 2.4. Indeed if −1 is a square modulo
q, or the primes p1, p2 are bounded, then we can modify our construction so that the
term c2(r)/(log q)3 can be replaced by c2(r)/ log q in the statement of Theorem 2.8.

It is clear from Theorem 2.1 that in order to understand the behavior of
δ(q; a1, . . . , ar ), we have to investigate the size of Bq(a, b) for (a, b) ∈ A2(q).

Recall that Bq(a, b) � φ(q). On the other hand we shall prove that this bound is
attained if a + b ≡ 0 mod q (this is a consequence of Proposition 5.1 below), so that

max
(a,b)∈A2(q)

|Bq(a, b)| � φ(q).

An interesting question is then to determine the order of magnitude of |Bq(a, b)| for
a generic pair (a, b) ∈ A2(q). We prove that on average |Bq(a, b)| � log q.

Theorem 2.9 Assume GRH. If q is large, then

(1 + o(1)) log q ≤ 1

|A2(q)|
∑

(a,b)∈A2(q)

|Bq(a, b)| ≤ (10 + o(1)) log q.

In trying to quantify the biases for r -tuples (a1, . . . , ar ) ∈ Ar (q), Feuerverger and
Martin [4] formulated the following conjecture:

Conjecture 2.10 (Feuerverger and Martin [4]) Given r ≥ 2, there exists a linear form
F(x1, . . . , xr ) on R

r such that

F(Cq(a1), . . . , Cq(ar )) > F(Cq(b1), . . . , Cq(br ))

�⇒ δ(q; a1, . . . , ar ) > δ(q; b1, . . . , br ),

for all races {q; a1, . . . , ar } and {q; b1, . . . , br }. In this case Fq;a1,...,ar =
F(Cq(a1), . . . , Cq(ar )) is called “a bias factor”.

This conjecture was motivated by some numerical computations along with the fact
that the special case r = 2 holds, as shown by the work of Rubinstein and Sarnak
(in this case one can check that Fq;a1,a2 = Cq(a2) − Cq(a1) is a bias factor). Using
an explicit construction which involves Burgess’s bound for the least quadratic non-
residue modulo a prime (see Chapter 12 of [9]), we prove that this conjecture does not
hold when r ≥ 3.

Theorem 2.11 Assume GRH and LI. Let r ≥ 3 and (κ1, . . . , κr ) ∈ R
r\{0}. If q is

large, then there exist two r-tuples (a1, . . . , ar ), (b1, . . . , br ) ∈ Ar (q) such that

∑
1≤ j≤r

κ j Cq(a j ) >
∑

1≤ j≤r

κ j Cq(b j ) and δ(q; a1, . . . , ar ) < δ(q; b1, . . . , br ).

123



Prime number races with three or more competitors 1127

In the other direction, combining Theorems 2.1 and 2.9 we show that Conjec-
ture 2.10 holds for almost all r -tuples (a1, . . . , ar ) ∈ Ar (q).

Theorem 2.12 Assume GRH and LI. Fix r ≥ 3 and let q be large. Then there is a set
�r (q) ⊂ Ar (q) with |�r (q)| = o(|Ar (q)|), such that for all r-tuples (a1, . . . , ar ),
(b1, . . . , br ) ∈ Ar (q)\�r (q) we have

−
r∑

j=1

α j (r)Cq(a j ) > −
r∑

j=1

α j (r)Cq(b j ) �⇒ δ(q; a1, . . . , ar ) > δ(q; b1, . . . , br ).

The plan of the paper is as follows. In the next section we study properties of the
Fourier transform μ̂q;a1,...,ar . These are then used to derive the asymptotic formula of
Theorem 2.1 which is proved in Sect. 4. In Sect. 5 we study the behavior of Bq(a, b)

on average and prove Theorems 2.9 and 2.12. In Sect. 6 we describe the signs and
extreme values of Bq(a, b), and use these to explicitly construct biased races and prove
Theorems 2.4, 2.8 and 2.11. In Sect. 7 we study q-extremely biased races and prove
Theorem 2.6. Lastly, in Sect. 8 we derive the Fiorilli and Martin asymptotic formula
for the densities in two-way races.

3 The Fourier transform μ̂q;a1,...,ar

Assuming GRH and LI, Rubinstein and Sarnak obtained the following explicit formula
for the Fourier transform of μq;a1,...,ar

μ̂q;a1,...,ar (t1, . . . , tr )=exp

⎛
⎝i

r∑
j=1

Cq(a j )t j

⎞
⎠ ∏

χ 	=χ0
χmod q

∏
γχ>0

J0

⎛
⎝2

∣∣∣∑r
j=1 χ(a j )t j

∣∣∣√
1
4 + γ 2

χ

⎞
⎠

(3.1)

for (t1, . . . , tr ) ∈ R
r , where J0(z) = ∑∞

m=0(−1)m(z/2)2m/m!2 is the Bessel function
of order 0.

For a non-trivial character χ modulo q, we let q∗
χ be the conductor of χ , and χ∗

be the unique primitive character modulo q∗
χ which induces χ . First we record some

standard formulas.

Lemma 3.1 Assume GRH. Let χ be a non-trivial character modulo q. Then there
exists an absolute constant b0 such that

∑
γχ

1
1
4 + γ 2

χ

= log q∗
χ + 2Re

L ′(1, χ∗)
L(1, χ∗)

− χ(−1) log 2 + b0. (3.2)
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Moreover, we have

∑
χ mod q

χ(a) log q∗
χ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(q)

⎛
⎝log q −

∑
p|q

log p

p − 1

⎞
⎠ if a ≡ 1 mod q,

−φ(q)
�(q/(q, a − 1))

φ(q/(q, a − 1))
otherwise.

and

Nq = φ(q) log q + O(φ(q) log log q).

Proof The classical formula (3.2) can be derived from formulas (17) and (18) of
chapter 12 in [3]. Indeed since GRH is assumed, these formulas imply that

∑
γχ

1
1
4 + γ 2

χ

= log q∗
χ + 2Re

L ′(1, χ∗)
L(1, χ∗)

+ Re
�′ ( 1

2 + 1
2 a

)
�

( 1
2 + 1

2 a
) ,

where a = 0 if χ(−1) = 1 and a = 1 if χ(−1) = −1. Then (3.2) follows upon taking
b0 = �′(1)/�(1) − log 2 and noting that

�′(1/2)/�(1/2) = �′(1)/�(1) − 2 log 2.

The second formula corresponds to Proposition 3.3 of [5]. Furthermore, recall that

Nq = 2
∑

χ 	=χ0

∑
γχ>0

1
1
4 + γ 2

χ

=
∑

χ 	=χ0

∑
γχ

1
1
4 + γ 2

χ

,

since
∑

γχ<0 1/( 1
4 + γ 2

χ ) = ∑
γχ>0 1/( 1

4 + γ 2
χ ), which is clear from the relation

L(s, χ) = L(s, χ). On the other hand we have that

∑
p|q

log p

p − 1
≤

∑
p≤(log q)2

log p

p − 1
+ 1

log q

∑
p|q

1 � log log q,

using the trivial bound
∑

p|q 1 ≤ log q/ log 2. Hence, the asymptotic for Nq follows
upon combining this last estimate with the classical result of Littlewood [23] that
L ′/L(1, χ∗) = O(log log q), under GRH. ��

For t ∈ R
n we shall use the notations ||t || and |t |∞ for the Euclidean norm and the

maximum norm of t respectively. Rubinstein and Sarnak [25] noted that μ̂q;a1,...,ar (t)
is rapidly decreasing as ||t || → ∞. The following result gives a quantitative statement
of this decay. More precisely we establish an exponentially decreasing upper bound
for μ̂q;a1,...,ar (t) which depends on both t and q.

123



Prime number races with three or more competitors 1129

Proposition 3.2 Assume GRH and LI. Fix an integer r ≥ 2. Let q be a large positive
integer, and let 0 < ε < 1/2 be a real number. Then, uniformly for all (a1, . . . , ar ) ∈
Ar (q) we have

|μ̂q;a1,...,ar (t1, . . . , tr )| ≤ exp(−c3(r)φ(q)||t ||),
for t = (t1, . . . , tr ) ∈ R

r with ||t || ≥ 400 and

|μ̂q;a1,...,ar (t1, . . . , tr )| ≤ exp(−c4(r)ε2φ(q) log q)

for ε ≤ ||t || ≤ 400, where c3(r) and c4(r) are positive constants that depend only
on r.

Proof We begin by proving the first inequality. For any non-trivial character χ mod q
we define

F(x, χ) =
∏

γχ>0

J0

⎛
⎝ 2x√

1
4 + γ 2

χ

⎞
⎠ .

Then the explicit formula (3.1) implies that

|μ̂q;a1,...,ar (t1, . . . , tr )| =
∏

χ 	=χ0
χmod q

∣∣∣∣∣∣F
⎛
⎝

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣ , χ
⎞
⎠

∣∣∣∣∣∣ .

By Lemma 2.16 of [5] we know that there exists an absolute constant c > 0 such that

|F(x, χ)F(x, χ)| ≤ e−cx (3.3)

for x ≥ 200. On the other hand note that |F(x, χ)| ≤ 1 since |J0(x)| ≤ 1.

Let Mq be the set of non-trivial characters χmod q such that
∣∣∣∑r

j=1 χ(a j )t j

∣∣∣ ≥
||t ||/2. We remark that χ ∈ Mq if and only if χ ∈ Mq . Moreover, if χ ∈ Mq and

||t || ≥ 400 then
∣∣∣∑r

j=1 χ(a j )t j

∣∣∣ ≥ 200, which implies

|μ̂q;a1,...,ar (t1, . . . , tr )|2 ≤
∏

χ∈Mq

∣∣∣∣∣∣F
⎛
⎝

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣ , χ
⎞
⎠

∣∣∣∣∣∣
2

=
∏

χ∈Mq

∣∣∣∣∣∣F
⎛
⎝

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣ , χ
⎞
⎠ F

⎛
⎝

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣ , χ
⎞
⎠

∣∣∣∣∣∣

≤ exp

⎛
⎝−c

∑
χ∈Mq

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣

⎞
⎠ ≤ exp

(
− c

2
|Mq |||t ||

)
,

(3.4)
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using (3.3) along with the fact that every character in Mq appears once as χ and once
as χ in the product on the RHS of (3.4). Thus it remains only to prove a non-trivial
lower bound for |Mq |. Let

S(t) =
∑

χ 	=χ0
χmod q

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣
2

=
∑

χmod q

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣
2

−
⎛
⎝ r∑

j=1

t j

⎞
⎠

2

=
r∑

j=1

r∑
k=1

t j tk
∑

χmod q

χ(a j )χ(ak) −
⎛
⎝ r∑

j=1

t j

⎞
⎠

2

= φ(q)

r∑
j=1

t2
j −

⎛
⎝ r∑

j=1

t j

⎞
⎠

2

≥ (φ(q) − r)

r∑
j=1

t2
j , (3.5)

which follows from the Cauchy–Schwarz inequality. Therefore, using that
∣∣∣∑r

j=1

χ(a j )t j
∣∣2 ≤

(∑r
j=1 |t j |

)2 ≤ r ||t ||2, we deduce

S(t) =
∑

χ∈Mq

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣
2

+
∑

χ /∈Mq

∣∣∣∣∣∣
r∑

j=1

χ(a j )t j

∣∣∣∣∣∣
2

≤ r |Mq |||t ||2 + φ(q)

4
||t ||2.

Hence, combining this estimate with (3.5) we obtain |Mq | ≥ φ(q)/(2r) if q is large
enough. This together with (3.4) yields the first part of the proposition.

Now assume that ε ≤ ||t || ≤ 400. If χ ∈ Mq then 2
∣∣∣∑r

j=1 χ(a j )t j

∣∣∣ ≥ ||t || ≥ ε.

We also note that ε
( 1

4 + x2
)−1/2 ≤ 1, for any x ∈ R. Hence, since J0 is a positive

decreasing function on [0, 1] and |J0(z)| ≤ J0(1) for all z ≥ 1, we get

|μ̂q;a1,...,ar (t1, . . . , tr )| ≤
∏

χ∈Mq

∏
γχ>0

∣∣∣∣∣∣J0

⎛
⎝2

∣∣∣∑r
j=1 χ(a j )t j

∣∣∣√
1
4 + γ 2

χ

⎞
⎠

∣∣∣∣∣∣

≤
∏

χ∈Mq

∏
γχ>0

∣∣∣∣∣∣J0

⎛
⎝ ε√

1
4 + γ 2

χ

⎞
⎠

∣∣∣∣∣∣ .

Moreover, it follows from Lemma 2.8 of [5] that for |x | ≤ 1 we have log J0(x) =
−∑∞

n=1 u2n x2n, where u2n are positive real numbers with u2 = 1/4. This implies
that |J0(x)| ≤ exp(−x2/4) for |x | ≤ 1. Using this inequality we obtain

|μ̂q;a1,...,ar (t1, . . . , tr )| ≤ exp

⎛
⎝−ε2

4

∑
χ∈Mq

∑
γχ>0

1
1
4 + γ 2

χ

⎞
⎠ . (3.6)
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Since L ′/L(1, χ∗) = O(log log q), then Lemma 3.1 gives

∑
χ∈Mq

∑
γχ>0

1
1
4 + γ 2

χ

= 1

2

∑
χ∈Mq

∑
γχ

1
1
4 + γ 2

χ

= 1

2

∑
χ∈Mq

log q∗
χ + O(φ(q) log log q).

(3.7)

Noting that q∗
χ ≤ q, and using Lemma 3.1 we derive

∑
χ∈Mq

log q∗
χ ≥

∑
χmod q

log q∗
χ − (φ(q) − |Mq |) log q

≥ φ(q) log q

2r
+ O(φ(q) log log q).

The result then follows upon combining this estimate with Eqs. (3.6) and (3.7). ��
Our next result (which is a crucial ingredient to the proof of Theorem 2.1) shows

that μ̂q;a1,...,ar can be approximated by a multivariate Gaussian in the range ||t || �
φ(q)−1/2.

Proposition 3.3 Assume GRH and LI. Fix an integer r ≥ 2. Then, for any constant
A = A(r) > 0 there exists L(A) > 0 such that for L ≥ L(A) and t = (t1, . . . , tr ) ∈
R

r with ||t || ≤ A
√

log q, we have

μ̂q;a1,...,ar

(
t1√
Nq

, . . . ,
tr√
Nq

)
= exp

(
− t2

1 + · · · + t2
r

2

) (
1 + i√

Nq

r∑
j=1

Cq(a j )t j

− 1

2Nq

r∑
j=1

Cq(a j )
2t2

j − 1

Nq

( ∑
1≤ j<k≤r

(Bq(a j , ak) + Cq(a j )Cq(ak))t j tk

)

+ Q4(t1, . . . , tr )

Nq
+

1∑
m=0

2∑
s=0

∑
0≤l≤L

2l≥3−2s−m

Cm
q Bl

q

N m/2+l+s
q

Ps,m,l(t1, . . . , tr )

+O

(
r2L BL

q ||t ||2L

L!N L
q

+ C3
q

φ(q)3/2

))
,

where Q4 is a homogenous polynomial of degree 4 with bounded coefficients and
Ps,m,l are homogenous polynomials of degree m + 2l + 4s whose coefficients are
bounded uniformly by a function of l. Moreover the constant in the O is absolute.

Proof For simplicity let us write μ̂q = μ̂q;a1,...,ar . From the explicit formula (3.1) we
have
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log μ̂q

(
t1√
Nq

, . . . ,
tr√
Nq

)
= i√

Nq

r∑
j=1

Cq(a j )t j

+
∑

χ 	=χ0
χmod q

∑
γχ>0

log J0

⎛
⎝2

∣∣∣∑r
j=1 χ(a j )t j

∣∣∣√
1
4 + γ 2

χ

√
Nq

⎞
⎠ .

For |s| ≤ 1 Lemma 2.8 of [5] states that

log J0(s) = −
∞∑

n=1

u2ns2n,

where u2n are positive real numbers with u2 = 1/4 and u2n � (5/12)2n . This implies
that for t = (t1, . . . , tr ) with ||t || ≤ A

√
log q we have

log μ̂q

(
t1√
Nq

, . . . ,
tr√
Nq

)
= i√

Nq

r∑
j=1

Cq(a j )t j

−
∞∑

n=1

u2n22n

N n
q

∑
χ 	=χ0
χmod q

∑
γχ>0

∣∣∣∑r
j=1 χ(a j )t j

∣∣∣2n

( 1
4 + γ 2

χ )n
. (3.8)

The contribution of the term n = 1 to the RHS of (3.8) equals

− 1

Nq

∑
χ 	=χ0
χmod q

∑
γχ>0

1
1
4 + γ 2

χ

∑
1≤ j,k≤r

χ(a j )χ(ak)t j tk

= −1

2
(t2

1 + · · · + t2
r ) − 1

Nq

∑
1≤ j<k≤r

Bq(a j , ak)t j tk . (3.9)

The term n = 2 contributes Q4(t1, . . . , tr )/Nq where

Q4(t1, . . . , tr ) : = −16u4

Nq

∑
χ 	=χ0
χmod q

∑
γχ>0

∣∣∣∑r
j=1 χ(a j )t j

∣∣∣4

( 1
4 + γ 2

χ )2

= −16u4

Nq

∑
1≤ j1, j2, j3, j4≤r

∑
χ 	=χ0
χmod q

∑
γχ>0

χ(a j1)χ(a j2)χ(a j3)χ(a j4)

( 1
4 + γ 2

χ )2
t j1 t j2 t j3 t j4 .
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Since

∑
χ 	=χ0
χmod q

∑
γχ>0

1

( 1
4 + γ 2

χ )2
≤ 2Nq ,

then Q4(t1, . . . , tr ) is a homogenous polynomial of degree 4 with bounded coefficients.
Similarly, the contribution of the terms n ≥ 3 to the RHS of (3.8) is � ||t ||6/N 2

q �r

(log q)/φ(q)2. Hence, we obtain

log μ̂q

(
t1√
Nq

, . . . ,
tr√
Nq

)
= −1

2
(t2

1 + · · · + t2
r ) + i√

Nq

r∑
j=1

Cq(a j )t j

− 1

Nq

∑
1≤ j<k≤r

Bq(a j , ak)t j tk + Q4(t1, . . . , tr )

Nq

+Or

(
log q

φ(q)2

)
. (3.10)

Now, in our range of t we have

exp

⎛
⎝ i√

Nq

r∑
j=1

Cq(a j )t j

⎞
⎠ =

2∑
m=0

1

m!N m/2
q

⎛
⎝i

r∑
j=1

Cq(a j )t j

⎞
⎠

m

+ Or

(
C3

q

φ(q)3/2

)
,

and exp(Q4(t1, . . . , tr )/Nq) = 1 + Q4(t1, . . . , tr )/Nq + Or (log2 q/φ(q)2). There-
fore, using that

exp

⎛
⎝− 1

Nq

∑
1≤ j<k≤r

Bq(a j , ak)t j tk

⎞
⎠ =

∞∑
l=0

(
−∑

1≤ j<k≤r Bq(a j , ak)t j tk
)l

l!Nl
q

,

along with the previous estimates and Eq. (3.10) we deduce that the quotient of

μ̂q

(
t1√
Nq

, . . . , tr√
Nq

)
and exp(−(t2

1 + · · · + t2
r )/2) equals

1∑
s=0

2∑
m=0

∞∑
l=0

Q4(t1, . . . , tr )s

m!l!N m/2+l+s
q

⎛
⎝i

r∑
j=1

Cq(a j )t j

⎞
⎠

m ⎛
⎝−

∑
1≤ j<k≤r

Bq(a j , ak)t j tk

⎞
⎠

l

+Or

(
C3

q

φ(q)3/2

)
. (3.11)

We collect the summands above according to D = m+2s+2l (which equals twice the
power of Nq ). Then, it is easy to check that the contribution of the terms 0 ≤ D ≤ 2
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to the main term of (3.11) equals

1 + i√
Nq

r∑
j=1

Cq(a j )t j − 1

2Nq

⎛
⎝ r∑

j=1

Cq(a j )t j

⎞
⎠

2

− 1

Nq

∑
1≤ j<k≤r

Bq(a j , ak)t j tk + Q4(t1, . . . , tr )

Nq
.

Let Ps,m,l(t1, . . . , tr ) be the homogenous polynomial of degree m + 2l + 4s defined
by

Ps,m,l(t1, . . . , tr ) = 1

m!l!C
−m
q B−l

q Q4(t1, . . . , tr )
s

⎛
⎝i

r∑
j=1

Cq(a j )t j

⎞
⎠

m

×
⎛
⎝−

∑
1≤ j<k≤r

Bq(a j , ak)t j tk

⎞
⎠

l

.

Then the contribution of the terms with D ≥ 3 to (3.11) equals

1∑
m=0

2∑
s=0

∑
l≥0

2l≥3−2s−m

Cm
q Bl

q

N m/2+l+s
q

Ps,m,l(t1, . . . , tr ).

Notice that the coefficients of Ps,m,l are bounded uniformly by a function of l since r
is fixed and s, m ≤ 2. On the other hand since Cq = qo(1) we get

Cm
q Bl

q

N m/2+l+s
q

Ps,m,l(t1, . . . , tr ) � r2l+mCm
q Bl

q ||t ||m+2l+4s

m!l!N m/2+l+s
q

� r2l Bl
q ||t ||2l

l!Nl
q

.

Now, Corollary 5.4 implies that Bq ≤ cφ(q) for some absolute constant c > 0.
Therefore, in our range of t , we have r2 Bq ||t ||2/(l Nq) ≤ 2r2 A/ l. This shows that for
a suitably large constant L(A) (which also depends on r ) we have

1∑
m=0

2∑
s=0

∑
l>L

2l≥3−2s−m

Cm
q Bl

q

N m/2+l+s
q

Ps,m,l(t1, . . . , tr ) � r2L BL
q ||t ||2L

L!N L
q

,

for all L ≥ L(A), completing the proof. ��

4 An asymptotic formula for the densities δ(q; a1, . . . , ar)

The first step to prove Theorem 2.1 is to truncate the integral on the RHS of (1.1). To
this end we need to bound the tail of the distribution μq;a1,...,ar . Our idea consists in
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relating this tail to the Laplace transform of μq;a1,...,ar using Chernoff’s bound. For
s = (s1, s2, . . . , sr ) ∈ R

r we define

Lq;a1,...,ar (s1, s2, . . . , sr ) :=
∫

x∈Rr

es1x1+···+sr xr dμq;a1,...,ar (x1, . . . , xr ),

if this integral converges. The same arguments as in the proof of Rubinstein and Sarnak
for the explicit formula (3.1) of μ̂q;a1,...,ar , show under GRH and LI, that Lq;a1,...,ar (s)
exists for all s ∈ R

r and

Lq;a1,...,ar (s1, s2, . . . , sr ) = exp

⎛
⎝−

r∑
j=1

Cq(a j )s j

⎞
⎠

×
∏

χ 	=χ0
χmod q

∏
γχ>0

I0

⎛
⎝2| ∑r

j=1 χ(ai )si |√
1
4 + γ 2

χ

⎞
⎠, (4.1)

where I0(t) := ∑∞
n=0(t/2)2n/n!2 is the modified Bessel function of order 0. We prove

Proposition 4.1 Assume GRH and LI. Fix an integer r ≥ 2 and let q be a large
positive integer. Then for R ≥ √

φ(q) log q we have

μq;a1,...,ar (|x |∞ > R)≤exp

(
− R2

2φ(q) log q

(
1+O

(
log log q

log q

)))
.

Proof First we note that

μq;a1,...,ar (|x |∞ > R) ≤
r∑

j=1

μq;a1,...,ar (x j > R) +
r∑

j=1

μq;a1,...,ar (x j < −R).

We shall bound only μq;a1,...,ar (x j>R), since the corresponding bound for μq;a1,...,ar

(x j < −R) can be obtained similarly. Let s > 0. Then using (4.1) we get

μq;a1,...,ar (x j > R) ≤ e−s R
∫

(x1,...,xr )∈Rr

esx j dμq;a1,...,ar (x1, . . . , xr )

≤ e−s R−sCq (a j )
∏

χ 	=χ0
χmod q

∏
γχ>0

I0

⎛
⎝ 2s√

1
4 + γ 2

χ

⎞
⎠ .
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1136 Y. Lamzouri

Since I0(s) ≤ exp(s2/4) for all s ∈ R we obtain

∏
χ 	=χ0
χmod q

∏
γχ>0

I0

⎛
⎝ 2s√

1
4 + γ 2

χ

⎞
⎠ ≤ exp

⎛
⎜⎜⎝s2

∑
χ 	=χ0
χmod q

∑
γχ>0

1
1
4 + γ 2

χ

⎞
⎟⎟⎠

≤ exp

(
s2φ(q) log q

2

(
1 + O

(
log log q

log q

)))
,

by Lemma 3.1. The result follows by taking s = R/(φ(q) log q) along with the fact
that Cq(a j ) �ε qε for any ε > 0. ��

Let �(x) := e−x2/2 and denote by �(n) the n-th derivative of �. Then �(1)(x) =
−xe−x2/2, �(2)(x) = (x2 − 1)e−x2/2, and more generally we know that �(n)(x) =
(−1)n Hn(x)e−x2/2 where Hn is the n-th Hermite polynomial. The last ingredients we
need in order to prove Theorem 2.1 are the following lemmas:

Lemma 4.2 Let n1, . . . , nr be fixed non-negative integers, and M be a large positive
number. Then for any (x1, . . . , xr ) ∈ R

r, we have

∫

||t||<M

ei(t1x1+···+tr xr )
r∏

j=1

t
n j
j �(t j )dt=(2π)r/2

r∏
j=1

in j Hn j (x j )e
−x2

j /2+O
(

e−M2/4
)
.

Proof First, notice that

∫

t∈Rr

ei(t1x1+···+tr xr )
r∏

j=1

t
n j
j �(t j )dt = (2π)r/2

r∏
j=1

� j (x j ),

where

� j (u) = 1√
2π

∞∫

−∞
eiuv�(v)vn j dv.

Since the Fourier transform of �(u)/(2π) is �(v)/
√

2π , then using standard proper-
ties of the Fourier transform (see Appendix 3 of [21]), we deduce that �(v)vn j /

√
2π

is the Fourier transform of (−i)n j

2π
�(n j )(v). Therefore the Fourier inversion formula

gives

� j (u) = (−i)n j �(n j )(u) = in j Hn j (u)e−u2/2.
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Finally, note that

∫

||t||>M

∣∣∣∣∣∣
r∏

j=1

t
n j
j �(t j )

∣∣∣∣∣∣ dt � exp
(
−M2/2

)
Mn1+···+nr � exp

(
−M2/4

)
,

if M is large enough, which completes the proof. ��
Lemma 4.3 Let Pn(t1, . . . , tr ) be a homogeneous polynomial of degree n, whose
coefficients are complex numbers uniformly bounded by a function of n. Let R be a
large positive number and M ≥ log R be a real number. Then we have

∣∣∣∣∣∣∣∣

∫
x1>x2>···>xr|x|∞<R

∫

||t||≤M

ei(t1x1+···+tr xr ) exp

(
− t2

1 + · · · + t2
r

2

)
Pn(t1, . . . , tr )dtdx

∣∣∣∣∣∣∣∣
�n,r 1.

Proof Since the coefficients of Pn(t1, . . . , tr ) are uniformly bounded by a function of
n, it is sufficient to show that the statement holds when Pn(t1, . . . , tr ) = tn1

1 . . . tnr
r ,

where ni are non-negative integers with n1 + · · · + nr = n. Using Lemma 4.2 we get

∫

x1>x2>···>xr|x|∞<R

∫

||t||≤M

ei(t1x1+···+tr xr ) exp

(
− t2

1 + · · · + t2
r

2

)
tn1
1 · · · tnr

r dtdx

= in(2π)r/2
∫

x1>x2>···>xr|x|∞<R

Hn1(x1) . . . Hnr (xr ) exp

(
− x2

1 + · · · + x2
r

2

)
dx + oR(1),

(4.2)

since exp
(−M2/4

)
Rr � e− log2 R

8 by our hypothesis on M . The lemma then follows
upon noting that

∫
x1>x2>···>xr|x|∞>R

Hn1(x1) . . . Hnr (xr ) exp

(
− x2

1 + · · · + x2
r

2

)
dx1 . . . dxr

�n,r Rne−R2/2 = oR(1),

and

∫

x1>x2>···>xr

Hn1(x1) . . . Hnr (xr ) exp

(
− x2

1 + · · · + x2
r

2

)
dx1 . . . dxr �n,r 1.

��
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1138 Y. Lamzouri

Proof of Theorem 2.1 Let R := √
Nq log q. To lighten the notation in this proof we

write δq for δ(q; a1, . . . , ar ) and μq for μq;a1,...,ar . Then by Proposition 4.1 we obtain

δq =
∫

y1>y2>···>yr

dμq(y1, . . . , yr )

=
∫

y1>y2>···>yr|y|∞≤R

dμq(y1, . . . , yr ) + O

(
exp

(
− log2 q

10

))
. (4.3)

Next, we apply the Fourier inversion formula to the measure μq to get

∫
y1>y2>···>yr|y|∞≤R

dμq(y1, . . . , yr ) = (2π)−r

×
∫

y1>y2>···>yr|y|∞≤R

∫

s∈Rr

ei(s1 y1+···+sr yr )μ̂q(s1, . . . , sr )dsdy.

Let A = A(r) ≥ r be a suitably large constant. Then using Proposition 3.2 with
ε := A(Nq)−1/2√log q we get

∫

s∈Rr

ei(s1 y1+···+sr yr )μ̂q(s1, . . . , sr )ds

=
∫

||s||≤ε

ei(s1 y1+···+sr yr )μ̂q(s1, . . . , sr )ds + O

(
1

q2A

)
.

Hence we obtain

δq = (2π)−r
∫

y1>y2>...>yr|y|∞≤R

∫

||s||≤ε

ei(s1 y1+···+sr yr )μ̂q(s1, . . . , sr )dsdy + O

(
1

q A

)
,

(4.4)

using that Rr q−2A � q−A. Upon making the change of variables

t j := √
Nqs j , and x j := y j√

Nq
,
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we infer from (4.4) that

δq = (2π)−r
∫

x1>x2>···>xr|x|∞≤log q

∫

||t||≤A
√

log q

ei(t1x1+···+tr xr )μ̂q

(
t1√
Nq

, . . . ,
tr√
Nq

)
dtdx

+O

(
1

q A

)
. (4.5)

Now we use the asymptotic expansion of μ̂q

(
t1 N−1/2

q , . . . , tr N−1/2
q

)
proved in

Proposition 3.3. We take L = L(A) ≥ 2r to be a suitably large constant. Then,
Lemma 4.3 shows that the contribution of the error term along with the terms corre-
sponding to the polynomials Q4 and Ps,m,l (in the asymptotic expansion of Proposi-
tion 3.3) to the integral on the RHS of (4.5) is

�r
1

Nq
+

1∑
m=0

2∑
s=0

∑
0≤l≤L

2l≥3−2s−m

Cm
q Bl

q

N m/2+l+s
q

+ (log q)r BL
q

N L
q

�r
1

Nq
+ Cq Bq

N 3/2
q

+ B2
q

N 2
q
,

(4.6)

since Bq � Nq/ log q by Corollary 5.4. Now we shall compute the contribution of the
remaining terms in the asymptotic formula of μ̂q to the integral in (4.5). Appealing to
Lemma 4.2 along with the fact that exp(−(x2

1 +· · ·+x2
r )/2) is a continuous symmetric

function in x1, . . . , xr , we obtain

(2π)−r
∫

x1>x2>···>xr|x|∞≤log q

∫

||t||≤A
√

log q

ei(t1x1+···+tr xr ) exp

(
− t2

1 + · · · + t2
r

2

)
dtdx

= (2π)−r/2
∫

x1>x2>···>xr|x|∞≤log q

exp

(
− x2

1 + · · · + x2
r

2

)
dx + O

(
1

q A

)

= 1

r !(2π)r/2

∫

x∈Rr

exp

(
− x2

1 + · · · + x2
r

2

)
dx + O

(
1

q A

)
= 1

r ! + O

(
1

q A

)
.

(4.7)

Similarly, we infer from Lemma 4.2 that for 1 ≤ j ≤ r , we have

(2π)−r
∫

x1>x2>···>xr|x|∞≤log q

∫

||t||≤A
√

log q

t j e
i(t1x1+···+tr xr ) exp

(
− t2

1 + · · · + t2
r

2

)
dtdx
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1140 Y. Lamzouri

= i(2π)−r/2
∫

x1>x2>···>xr|x|∞≤log q

x j exp

(
− x2

1 + · · · + x2
r

2

)
dx

+O

(
1

q A

)
= iα j (r) + O

(
1

q A

)
, (4.8)

and

(2π)−r
∫

x1>x2>···>xr|x|∞≤log q

∫

||t||≤A
√

log q

t2
j ei(t1x1+···+tr xr ) exp

(
− t2

1 + · · · + t2
r

2

)
dtdx

= −λ j (r) + O

(
1

q A

)
. (4.9)

For 1 ≤ j < k ≤ r we analogously obtain

(2π)−r
∫

x1>x2>···>xr|x|∞≤log q

∫

||t||≤A
√

log q

t j tkei(t1x1+···+tr xr ) exp

(
− t2

1 + · · · + t2
r

2

)
dtdx

= −β j,k(r) + O

(
1

q A

)
. (4.10)

The theorem now follows upon combining Proposition 3.3 with the estimates (4.5)–
(4.10). ��

In the remaining part of this section, we explicitly compute the constants α j (r) and
β j,k(r) for r = 3. To simplify the computations we prove the following identities

Lemma 4.4 Let r ≥ 2. Then for any 1 ≤ j < k ≤ r we have

α j (r) = −αr+1− j (r) and β j,k(r) = βr+1−k,r+1− j (r).

Proof We prove only the identity for the α j (r) since the proof for the β j,k(r) is similar.
Recall that

α j (r) = (2π)−r/2
∫

x1>x2>···>xr

x j exp

(
− x2

1 + · · · + x2
r

2

)
dx1 . . . dxr .

Upon making the change of variables yk = −xr+1−k for 1 ≤ k ≤ r , we deduce
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α j (r) = −(2π)−r/2
∫

y1>y2>···>yr

yr+1− j exp

(
− y2

1 + · · · + y2
r

2

)
dy1 . . . dyr

= −αr+1− j (r).

��
Lemma 4.5 We have β1,2(2) = 0. Moreover, one has

α1(3) = 1

4
√

π
, α2(3) = 0, α3(3) = − 1

4
√

π
,

and

β1,2(3) = β2,3(3) = 1

4π
√

3
, β1,3(3) = − 1

2π
√

3
.

Proof First we have

β1,2(2) = 1

2π

∞∫

−∞

∞∫

x2

x1x2 exp

(
− x2

1 + x2
2

2

)
dx1dx2 = 1

2π

∞∫

−∞
x2e−x2

2 dx2 = 0.

Now we deal with the case r = 3. Recall that

3∑
j=1

α j (3) =
∑

1≤ j<k≤3

β j,k(3) = 0. (4.11)

We begin by computing

α1(3) = 1

(2π)3/2

∫

x1>x2>x3

x1 exp

(
− x2

1 + x2
2 + x2

3

2

)
dx1dx2dx3.

To this end, we integrate with respect to x1 first to get

α1(3) = 1

(2π)3/2

∫

x>y

exp

(
−x2 − y2

2

)
dxdy

= 1

(2π)3/2

∫

X<Y

exp

(
−X2 − Y 2

2

)
d XdY,

by making the change of variables X = −x and Y = −y. Hence, we deduce that

α1(3) = 1

2(2π)3/2

∞∫

−∞

∞∫

−∞
exp

(
−x2 − y2

2

)
dxdy = 1

4
√

π
.

123



1142 Y. Lamzouri

On the other hand, Lemma 4.4 shows that α3(3) = −α1(3), and this combined with
equation (4.11) leads to α2(3) = 0. Furthermore, we have

β1,2(3) = 1

(2π)3/2

∫

x1>x2>x3

x1x2 exp

(
− x2

1 + x2
2 + x2

3

2

)
dx1dx2dx3.

Performing the integration with respect to x1 first, then with respect to x2 gives us

β1,2(3) = 1

2(2π)3/2

∞∫

−∞
e− 3x2

3
2 dx3 = 1

4π
√

3
.

The remaining estimates follow upon using Lemma 4.4 to get β2,3(3) = β1,2(3), and
then applying Eq. (4.11) to deduce that β1,3(3) = −2β1,2(3). ��

5 The average order of |Bq(a, b)|

In this section we prove upper and lower bounds (of the same order of magnitude) for
the first moment of |Bq(a, b)| over pairs of residue classes (a, b) ∈ A2(q). To this
end, we begin by proving the following key proposition.

Proposition 5.1 Assume GRH. Let q be a large integer, and (a, b) ∈ A2(q). Put
x = (q log q)2. Then we have

Bq(a, b) = 4 log q − φ(q)lq(a, b) log 2 − φ(q)
�

(
q

(q,a−b)

)

φ
(

q
(q,a−b)

)

−φ(q)
∑

n≤2x log x
bn≡a mod q

�(n)

n
e−n/x

−φ(q)
∑

n≤2x log x
an≡b mod q

�(n)

n
e−n/x − φ(q)

∑
pν‖q

∑
1≤e≤2 log x

ape≡b mod q/pν

log p

pe+ν−1(p − 1)

−φ(q)
∑
pν‖q

∑
1≤e≤2 log x

bpe≡a mod q/pν

log p

pe+ν−1(p − 1)
+ O(log log q),

where lq(a, b) = 1 if a + b ≡ 0mod q and 0 otherwise.

Remark 5.1 This result implies that Bq(a, b) < 0 if |Bq(a, b)| > 5 log q.
Although the major part of this proposition is proved in [5] (see Theorems 1.4 and

1.7 there), we chose to include the details of the proof for the sake of completeness.
The only new input is the following lemma which corresponds to the contribution of
the principal character χ0 mod q.
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Lemma 5.2 Let q be a large positive integer and y ≥ q be a real number. Then

∑
n≥1

(n,q)=1

�(n)

n
e−n/y = log y + O(log log y).

Proof First note that

∑
n≥1

(n,q)>1

�(n)

n
e−n/y ≤

∑
p|q

∞∑
k=1

log p

pk
=

∑
p|q

log p

p − 1
� log log q.

Thus it suffices to evaluate

∞∑
n=1

�(n)

n
e−n/y .

We split the above sum into three parts: n > y log2 y, y log log y < n ≤ y log2 y and
finally n ≤ y log log y. The contribution of the first part is

∑
n>y log2 y

�(n)

n
e−n/y ≤

∑
n>y log2 y

1

n2 ≤ 1

y
,

which follows from the fact that e−n/y ≤ n−2 for n > y log2 y. Now the contribution
of the second part is

∑
y log log y<n≤y log2 y

�(n)

n
e−n/y ≤ 1

log y

∑
n≤y log2 y

�(n)

n
� 1.

Finally using that 1 − e−t ≤ t for all t > 0, we deduce that the contribution of the last
part equals

∑
n≤y log log y

�(n)

n
e−n/y =

∑
n≤y log log y

�(n)

n
+ O

⎛
⎝ 1

y

∑
n≤y log log y

�(n)

⎞
⎠

= log y + O(log log y),

which follows from the prime number theorem. ��
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Proof of Proposition 5.1 Let (a, b) ∈ A2(q). First we infer from Lemma 3.1 that

Bq(a, b) =
∑

χ 	=χ0
χmod q

∑
γχ>0

χ
( a

b

) + χ
( b

a

)
1
4 + γ 2

χ

= 1

2

∑
χ 	=χ0
χmod q

∑
γχ

χ
( a

b

) + χ
( b

a

)
1
4 + γ 2

χ

= 1

2

∑
χ 	=χ0
χmod q

(
χ

(a

b

)
+ χ

(
b

a

))
log q∗

χ − φ(q)lq(a, b) log 2

+
∑

χ 	=χ0
χmod q

(
χ

(a

b

)
+ χ

(
b

a

))
Re

L ′(1, χ∗)
L(1, χ∗)

+ O(1), (5.1)

using the orthogonality relations for characters. In order to evaluate the first sum on
the RHS of (5.1) we use Lemma 3.1 which gives

1

2

∑
χ 	=χ0
χmod q

(χ(a/b) + χ(b/a)) log q∗
χ = −φ(q)

�
(

q
(q,a−b)

)

φ
(

q
(q,a−b)

) . (5.2)

Now we compute the sum over the L-values. First we record a standard approximation
formula for L ′/L(1, χ∗) under GRH, which corresponds to Proposition 3.10 of [5]:

L ′(1, χ∗)
L(1, χ∗)

= −
∞∑

n=1

χ∗(n)�(n)

n
e−n/y + O

(
log q

y1/2

)
, (5.3)

for all y ≥ 1. Inserting this estimate into the second sum on the RHS of (5.1), we
obtain

∑
χ 	=χ0
χmod q

(
χ

(a

b

)
+ χ

(
b

a

))
Re

L ′(1, χ∗)
L(1, χ∗)

= Re
∑

χ 	=χ0
χmod q

(
χ

(a

b

)
+ χ

(
b

a

))
L ′(1, χ∗)
L(1, χ∗)

= −Re
∞∑

n=1

�(n)

n
e−n/y

∑
χ 	=χ0
χmod q

(χ(a/b)χ∗(n) + χ(b/a)χ∗(n)) + O

(
φ(q) log q

y1/2

)
.

(5.4)

Let p be a prime number and e ≥ 1 a positive integer. To evaluate the inner sum over
characters in the RHS of (5.4) we use Proposition 3.4 of [5] which states that

∑
χmod q

χ (a/b) χ∗(pe) =
⎧⎨
⎩

φ(q) if p � q and ape ≡ b mod q,

φ(q/pν) if pν ‖ q and ape ≡ b mod q/pν,

0 otherwise.
(5.5)
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Note that the condition ape ≡ b mod q implies that p � q since (b, q) = 1. Therefore,
choosing y = (q log q)2 in (5.4), and adding the contribution of the principal character
(which was evaluated in Lemma 5.2) we obtain from (5.5) that the RHS of (5.4) equals

−φ(q)
∑
n≥1

bn≡a mod q

�(n)

n
e− n

y − φ(q)
∑
n≥1

an≡b mod q

�(n)

n
e− n

y

−
∑
pν‖q

φ

(
q

pν

) ∑
e≥1

ape≡b mod q/pν

log p

pe
e− pe

y

−
∑
pν‖q

φ

(
q

pν

) ∑
e≥1

bpe≡a mod q/pν

log p

pe
e− pe

y + 4 log q + O(log log q).

Moreover, if n ≥ 2y log y, then e−n/y ≤ 1/n. This implies that

∑
n≥2y log y

bn≡a mod q

�(n)

n
e− n

y +
∑
pν‖q

∑
e≥2 log y

bpe≡a mod q/pν

log p

pe
e− pe

y �
∑

n≥2y log y

�(n)

n2 � 1

q2 .

Notice that when pν ‖ q we have φ(q/pν)=φ(q)/(pν−1(p−1)) since (pν, q/pν)=1.
Thus, using that 1 − e−t ≤ 2t for all t > 0, we obtain

∑
pν‖q

φ

(
q

pν

) ∑
1≤e≤2 log y

bpe≡a mod q/pν

log p

pe

(
1 − e− pe

y

)
� 1

q log q

∑
p|q

log p

p − 1
≤ 1

q
.

The proposition follows upon collecting the above estimates. ��
Next, we establish the following lemma which, when combined with Proposi-

tion 5.1, yields Bq(a, b) � φ(q).

Lemma 5.3 Let q be a large positive integer, (a, b) ∈ A2(q), and denote by s the
least positive residue of ab−1mod q. Put x = (q log q)2. Then

∑
n≤2x log x

bn≡a mod q

�(n)

n
e−n/x = �(s)

s
+ O

(
log2 q

q

)
.

Proof Since 1 − e−t ≤ 2t for all t > 0, then

�(s)

s
e−s/x = �(s)

s
+ O

(
1

q2

)
.
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1146 Y. Lamzouri

On the other hand if n 	= s is a positive integer such that n ≡ smod q, then n = s + jq
for some j ≥ 1. Therefore, we have

∑
n≤2x log x
n≡s mod q

�(n)

n
e−n/x − �(s)

s
� log q

∑
1≤ j≤q log4 q

1

s + jq
+ 1

q2 � log2 q

q
.

��
Corollary 5.4 For any (a, b) ∈ A2(q) we have

|Bq(a, b)| � φ(q).

Proof First we note that �(s)/s ≤ (log s)/s which is a decreasing function for s ≥ 3.
Moreover, the term �(q/(q, a−b))/φ(q/(q, a−b)) is non-zero only when q/(q, a−
b) = pl for some prime p ≥ 2 and l ≥ 1. In this case

�(q/(q, a − b))

φ(q/(q, a − b))
= log p

pl−1(p − 1)
≤ log p

p − 1
≤ log 2.

Finally we have

∑
pν‖q

∑
1≤e≤2 log x

bpe≡a mod q/pν

log p

pe+ν−1(p − 1)
≤

∑
p|q

log p

(p − 1)2 � 1.

Thus by Lemma 5.3 and Proposition 5.1, the result follows. ��
In the remaining part of this section, we prove Theorems 2.9 and 2.12.

Proof of Proposition 2.9 Surprisingly, the lower bound is much easier to establish
than the upper bound. Indeed we use only the definition of Bq(a, b) in this case.

The lower bound. Note that

∑
(a,b)∈A2(q)

Bq(a, b) =
∑

χ 	=χ0
χ mod q

∑
γχ>0

1
1
4 + γ 2

χ

∑
a mod q
(a,q)=1

∑
b 	=a mod q
(b,q)=1

(χ(a/b) + χ(b/a)).

Write s ≡ ab−1 mod q. When a is fixed and b varies over all reduced residue classes
distinct from a, s runs over all reduced residue classes different from 1. Then, using
the orthogonality relations for characters we obtain

∑
a mod q
(a,q)=1

∑
b 	=a mod q
(b,q)=1

(χ(a/b) + χ(b/a)) = −2φ(q).
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Therefore, since |A2(q)| = φ(q)2 − φ(q), and Nq = φ(q)(log q + O(log log q)) we
deduce that

1

|A2(q)|
∑

(a,b)∈A2(q)

|Bq(a, b)|≥− 1

|A2(q)|
∑

(a,b)∈A2(q)

Bq(a, b)= log q + O(log log q).

The upper bound. We use Proposition 5.1. First, remark that
∑

(a,b)∈A2(q) lq(a, b)

≤ φ(q), which implies that the contribution of this sum to the upper bound in Theo-
rem 2.9 is � 1. Take 1 ≤ a, b ≤ q −1. Let d = (q, a −b) and write a −b = ds. Then
−q/d ≤ s ≤ q/d and (s, q/d) = 1. On the other hand, for any choice of d and s satis-
fying these conditions there are at most φ(q) pairs (a, b) such that 1 ≤ a 	= b ≤ q −1,
a and b are coprime to q and a − b = ds. Thus we obtain

∑
(a,b)∈A2(q)

�
(

q
(q,a−b)

)

φ
(

q
(q,a−b)

) ≤ φ(q)
∑
d|q

�(q/d)

φ(q/d)

∑
−q/d≤s≤q/d

(s,q/d)=1

1

= 2φ(q)
∑
d|q

�(q/d) = 2φ(q) log q. (5.6)

Let x = (q log q)2. Then

∑
(a,b)∈A2(q)

∑
n≤2x log x

n≡ab−1 mod q

�(n)

n
e−n/x =

∑
n≤2x log x
(n,q)=1

�(n)

n
e−n/x

∑
(a,b)∈A2(q)

ab−1≡n mod q

1

≤ φ(q)
∑

n≤2x log x
(n,q)=1

�(n)

n
e−n/x

≤ 2φ(q) log q + O (φ(q) log log q),

which follows from Lemma 5.2. Finally, using an analogous argument we deduce that

∑
(a,b)∈A2(q)

∑
pν‖q

∑
1≤e≤2 log x

ape≡b mod q/pν

log p

pe+ν−1(p − 1)
≤ φ(q)

∑
p|q

∞∑
e=1

log p

pe(p − 1)
� φ(q),

which completes the proof. ��
Proof of Proposition 2.12 First, notice that |Ar (q)| = φ(q)r + Or

(
φ(q)r−1

)
. Let Sq

be the set of pairs (a, b) ∈ A2(q) such that |Bq(a, b)| ≥ √
φ(q). Then Theorem 2.9

shows that

|Sq |√φ(q) ≤
∑

(a,b)∈A2(q)

|Bq(a, b)| � φ(q)2 log q,
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which gives |Sq | � φ(q)3/2 log q. Now define �r (q) to be the set of r -tuples
(a1, . . . , ar ) ∈ Ar (q) such that (ai , a j ) ∈ Sq for some 1 ≤ i 	= j ≤ r . Then
|�r (q)| �r φ(q)r−1/2 log q. On the other hand, if (a1, . . . , ar ) ∈ Ar (q)\�r (q) then
|Bq(ai , a j )| ≤ √

φ(q) for all 1 ≤ i < j ≤ r . Hence, in this case, we infer from
Theorem 2.1 that

δ(q; a1, . . . , ar ) = 1

r ! − 1√
Nq

∑
1≤ j≤r

α j (r)Cq(a j ) + O

(
1√

Nq log q

)
.

Since the Cq(a j ) are integers, the theorem follows upon noting that

∑
1≤ j≤r

α j (r)Cq(a j ) 	= 0 �⇒
∣∣∣∣∣∣

∑
1≤ j≤r

α j (r)Cq(a j )

∣∣∣∣∣∣ �r 1.

��

6 Extreme values of Bq(a, b) and explicit constructions

Throughout this section we take the residues ai modulo q so that |ai | ≤ q/2. The
proofs of Theorems 2.4, 2.8 and 2.11 are based on explicit constructions of the ai . Our
strategy consists in choosing these residue classes in such a way to make exactly one
of the terms Bq(ai , a j ) large (using Proposition 6.1 below) and all the others small.
Moreover, since this term must be negative (see Remark 5.1), we use Lemma 6.3
below to control the sign of its contribution to the asymptotic formula of the densities
δ(q; a1, . . . , ar ). When |a| and |b| are relatively small compared to q, we can precisely
understand in which cases Bq(a, b) gets large. Let us define the real valued function

�0(x) :=
⎧⎨
⎩

�(x)

x
if x ∈ N,

0 otherwise.
(6.1)

Proposition 6.1 Let q be a large integer and a, b be distinct integers coprime to q
such that 1 ≤ |a|, |b| < q/2.

(I) If a and b have different signs, then

Bq(a, b) = −φ(q)l(a, b) log 2 + O
(
(|a| + |b|) log2 q

)
,

where l(a, b) = 1 if a = −b, and equals 0 otherwise.
(II) If a and b have the same sign, then

Bq(a, b) = −φ(q)�0

(
max(|a|, |b|)
min(|a|, |b|)

)
+ O

(
(|a| + |b|) log2 q

)
.

An important ingredient to the proof of this result is the following lemma.
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Lemma 6.2 Let q be a large integer and a, b be distinct integers coprime to q such
that 1 ≤ |a|, |b| < q/2. Then

∑
pν ||q

∑
1≤e≤5 log q

ape≡bmod q/pν

log p

pe+ν−1(p − 1)
� (|a| + |b|) log2 q

q
.

Proof First note that ape − b can not vanish since p|q and (ab, q) = 1. This implies
that when q/pν divides ape − b, we must have q/pν ≤ |a|pe + |b|, so that pe+ν ≥
q/(|a| + |b|). Therefore the sum we are seeking to bound is

� (|a| + |b|) log q

q

∑
p|q

p log p

p − 1
� (|a| + |b|) log2 q

q
.

��
Proof of Proposition 6.4 The proof relies on Proposition 5.1. Since |a|, |b| < q/2 then
a + b ≡ 0 mod q implies that a = −b. Moreover, notice that (q, a − b) ≤ |a| + |b|,
which gives

�
(

q
(q,a−b)

)

φ
(

q
(q,a−b)

) � (|a| + |b|) log2 q

q
,

using the standard estimate φ(q) � q/ log q. Combining this bound with Proposi-
tion 5.1 and Lemmas 5.3 and 6.2 we obtain

Bq(a, b) = −φ(q)

(
l(a, b) log 2 + �(s1)

s1
+ �(s2)

s2

)
+ O

(
(|a| + |b|) log2 q

)
,

(6.2)

where s1 and s2 denote the least positive residues of ba−1 and ab−1 modulo q, respec-
tively.

Let us first prove part I. Since a and b have different signs, then s1a 	= b and
s2b 	= a. On the other hand we have that q divides both s1a − b and s2b − a. This
implies that q ≤ si (|a| + |b|) for i = 1, 2, and thus si ≥ q/(|a| + |b|). Hence we get

�(s1)

s1
+ �(s2)

s2
� (|a| + |b|) log q

q
,

which, in view of Eq. (6.2), gives the first part of the Proposition.
Now, if a and b have the same sign, then l(a, b) = 0, and |a| 	= |b|. Without any

loss of generality we may assume that |a| < |b|. Then s2b 	= a, which as before
implies that �(s2)/s2 � (|a| + |b|)(log q)/q. Furthermore, if a|b then s1 = |b|/|a|;
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1150 Y. Lamzouri

while if a � b then s1 ≥ q/(|a| + |b|), and thus �(s1)/s1 � (|a| + |b|)(log q)/q in
this case. Therefore, we obtain

�(s1)

s1
= �0

( |b|
|a|

)
+ O

(
(|a| + |b|) log q

q

)
.

Hence, part II follows upon combining these estimates with Eq. (6.2). ��
Our next result determines the signs of some of the integrals β j,k(r).

Lemma 6.3 For r ≥ 3 we have β1,r (r) < 0 and βr−1,r (r) > 0.

Proof First we have

(2π)r/2βr−1,r (r) =
∫

x1>x2>···>xr

xr−1xr exp

(
− x2

1 + · · · + x2
r

2

)
dx1 . . . dxr

=
∫

x1>···>xr−2

exp

(
− x2

1 + · · · + x2
r−2

2

)

×
xr−2∫

−∞
xr−1e− x2

r−1
2

xr−1∫

−∞
xr e− x2

r
2 dxr dxr−1 . . . dx1

= −
∫

x1>···>xr−2

exp

(
− x2

1 + · · · + x2
r−2

2

)

×
xr−2∫

−∞
xr−1e−x2

r−1 dxr−1 . . . dx1

= 1

2

∫

x1>···>xr−2

exp

(
− x2

1 +· · · + x2
r−3+3x2

r−2

2

)
dxr−2 . . . dx1 >0.

similarly we get

(2π)r/2β1,r (r) =
∫

x1>x2>···>xr

x1xr exp

(
− x2

1 + · · · + x2
r

2

)
dx1 . . . dxr

=
∫

x2>···>xr−1

exp

(
− x2

2 + · · · + x2
r−1

2

) ∞∫

x2

x1e− x2
1
2

×
xr−1∫

−∞
xr e− x2

r
2 dx1dxr dxr−1 . . . dx2
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= −
∫

x1>···>xr−2

exp

(
−2x2

2 + x2
3 · · · + x2

r−2 + 2x2
r−1

2

)

×dxr−1 . . . dx2 < 0.
��

Before proving Theorems 2.4, 2.8 and 2.11, let us first define some notation. Let q
be a large positive integer. Define p to be the largest prime divisor of q, and denote
by p0 the least non-quadratic residue modulo p (if p = 2 take p0 = 3). Then
Burgess’s bound on short character sums (see [9]) implies that p0 ≤ p1/(4

√
e)+ε ≤

q1/4. Moreover note that p0 is a prime and is also a non-square modulo q. Furthermore
we shall denote by p1 < p2 the smallest prime numbers such that pi 	= p0 for
i = 1, 2, and (p1 p2, q) = 1. Then one has p1 < p2 ≤ 2 log q, in view of the fact that∏

p≤z p = ez+o(z) which follows from the prime number theorem.

Proof of Proposition 2.4 The first part that |δ(q; a1, . . . , ar ) − 1/r !| �r 1/ log q
follows from combining Theorem 2.1 with Corollary 5.4 and the fact that |Cq | = qo(1).

Concerning the second part we first take a1 = 1, ar = −1 and a j = (p1 p2)
2 j for

2 ≤ j ≤ r − 1. Then |a j | ≤ (2 log q)4(r−1) for all 1 ≤ j ≤ r . Using part II of
Proposition 6.2 we obtain

Bq(a j , ak) � (log q)4r , for all 1 ≤ j < k ≤ r − 1,

since p1 p2|ak/a j in this case. Furthermore, part I of the same proposition implies that

Bq(a j , ar ) � (log q)4r for all 2 ≤ j ≤ r − 1,

and

Bq(a1, ar ) = −φ(q) log 2 + O
(

log2 q
)
.

Therefore by Theorem 2.1 and Lemma 6.3 we deduce that

δ(q; a1, . . . , ar ) = 1

r ! + β1,r (r)Bq(a1, ar )

Nq
+ Oε

(
1

φ(q)1/2−ε

)

>
1

r ! + |β1,r (r)| log 2

2 log q
.

Furthermore taking b1 = ar−1, br−1 = a1 and b j = a j for all other values of j , we
obtain by Lemma 6.3 that

δ(q; b1, . . . , br ) = 1

r ! + βr−1,r (r)Bq(br−1, br )

Nq
+ Oε

(
1

φ(q)1/2−ε

)

<
1

r ! − |βr−1,r (r)| log 2

2 log q
,

completing the proof. ��
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Proof of Proposition 2.8 We need only to construct the squares a j modulo q, since in
this case δ(q; ba1, . . . , bar ) = δ(q; a1, . . . , ar ) for any residue class b modulo q by
Theorem 2 of Feuerverger and Martin [4]. Thus it suffices to take b j = ba j for any
non-square b modulo q, to get the analogous result for non-squares.

Let a1 = 1, ar = p2
1 and a j = (p1 p2)

2 j for 2 ≤ j ≤ r − 1. Then a j ≤
(2 log q)4(r−1) for all 1 ≤ j ≤ r . Moreover for 1 ≤ j < k ≤ r − 1 notice that
p1 p2|ak/a j . Therefore part II of Proposition 6.1 gives that

Bq(a j , ak) � (log q)4r , for 1 ≤ j < k ≤ r − 1,

and

Bq(a j , ar ) � (log q)4r , for 2 ≤ j ≤ r − 1,

since p1 p2|a j/ar in this case. Finally, since ar/a1 = p2
1, we have

Bq(a1, ar ) = −φ(q)
log p1

p2
1

+ O
(
(log q)4r

)
.

Thus, combining these estimates with Corollary 2.7 and Lemma 6.3 we deduce

δ(q; a1, . . . , ar ) = 1

r ! + β1,r (r)Bq(a1, ar )

Nq
+ O

(
(log q)4r

φ(q)

)
>

1

r ! + |β1,r (r)|
5 log3 q

,

(6.3)

if q is sufficiently large. Furthermore, let σ be the permutation on the set {1, . . . , r}
defined by σ(1) = r − 1, σ(r − 1) = 1, and σ( j) = j for all other values of j . Then
using Lemma 6.3 we obtain similarly to (6.3) that

δ(q; aσ(1), . . . , aσ(r)) = 1

r ! + βr−1,r (r)Bq(1, p2
1)

Nq
+ O

(
(log q)4r

φ(q)

)

<
1

r ! − |βr−1,r (r)|
5 log3 q

, (6.4)

if q is sufficiently large, which completes the proof. ��
Proof of Proposition 2.11 The main idea of the proof relies on the fact (proved in
part II of Proposition 6.1) that when a, b > 0 and a, b are small compared to q, the
quantity Bq(a, b) is small unless max(a, b)/ min(a, b) equals a prime power. Since
(κ1, . . . , κr ) 	= (0, . . . , 0) then κl 	= 0 for some l ∈ [1, r ].

Case 1: κr 	= 0 or κ1 	= 0.
We handle only the case κr 	= 0, since the treatment of the case κ1 	= 0 follows
simply by switching a1 with ar , and b1 with br in every construction we make
below. Assume first that κr > 0. In this case take a1 = 1, a j = p0(p1 p2)

2 j

for 2 ≤ j ≤ r − 1 and ar = (p1 p2)
2. Then a1 and ar are squares and a j is a
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non-square modulo q for all 2 ≤ j ≤ r − 1. Moreover choose b j = a j for all
1 ≤ j ≤ r − 1 and br = p0. In this case b1 is the only square among the b j

modulo q. Since Cq(1) > −1 we get that

r∑
j=1

κ j Cq(a j ) −
r∑

j=1

κ j Cq(b j ) = κr Cq(ar ) − κr Cq(br ) = κr (Cq(1) + 1) > 0.

In the other direction, note that |a j | ≤ q1/4(2 log q)4(r−1) for all 1 ≤ j ≤ r , and
that p1 p2 divides max(a j , ak)/ min(a j , ak) for all 1 ≤ j < k ≤ r . Therefore,
upon using part II of Proposition 6.1 we deduce that

|Bq(a j , ak)| � q1/4(log q)4r for all 1 ≤ j < k ≤ r.

Hence by Theorem 2.1 we obtain

δ(q; a1, . . . , ar ) = 1

r ! + Oε

(
1

φ(q)1/2−ε

)
. (6.5)

Similarly, part II of Proposition 6.1 gives that |Bq(b j , bk)| � q1/4(log q)4r for all
{ j, k} 	= {1, r} and

Bq(b1, br ) = −φ(q)
log p0

p0
+ O

(
q1/4(log q)4r

)
.

Thus using Theorem 2.1 along with Lemma 6.3 and equation (6.5) we get

δ(q; b1, . . . , br ) = 1

r ! + β1,r (r)Bq(b1, br )

Nq
+ Oε

(
1

φ(q)1/2−ε

)

>
1

r ! + |β1,r (r)| log p0

2p0 log q
> δ(q; a1, . . . , ar ).

Now suppose that κr < 0. In this case we choose a1 = 1 and a j = p0(p1 p2)
2 j

for all 2 ≤ j ≤ r (so that a1 is the only square among the a j ); and b j = a j for all
1 ≤ j ≤ r − 1, and br = p2

1 (in this case both b1 and br are squares modulo q).
Then similarly to the case kr > 0, one has

r∑
j=1

κ j Cq(a j ) −
r∑

j=1

κ j Cq(b j ) = −κr (1 + Cq(1)) > 0,

δ(q; a1, . . . , ar ) = 1

r ! + Oε

(
1

φ(q)1/2−ε

)
,
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and

δ(q; b1, . . . , br ) = 1

r ! + β1,r (r)Bq(b1, br )

Nq
+ Oε

(
1

φ(q)1/2−ε

)

>
1

r ! + |β1,r (r)| log p1

2p2
1 log q

> δ(q; a1, . . . , ar ),

using Theorem 2.1, part II of Proposition 6.1 and Lemma 6.3.
Case 2: κl 	= 0 for some 2 ≤ l ≤ r − 1.
As before assume first that kl > 0. For the ai we choose a1 = 1, al = (p1 p2)

2,

and a j = p0(p1 p2)
4 j for 2 ≤ j 	= l ≤ r ; and for the bi we take bl = p0(p1 p2)

4l ,
br = p0 and b j = a j for all other values of j . Then, an analogous argument to
Case 1 gives that

r∑
j=1

κ j Cq(a j ) −
r∑

j=1

κ j Cq(b j ) = κl(Cq(1) + 1) > 0, and δ(q; b1, . . . , br )

> δ(q; a1, . . . , ar ),

if q is large. Finally if κl < 0, we choose a1 = 1, ar = (p1 p2)
4 and a j =

p0(p1 p2)
4 j for 2 ≤ j ≤ r − 1; and bl = (p1 p2)

4, br = p2
1 and b j = a j for all

other values for j , to deduce the desired conclusion.

��
7 q-Extremely biased races

The idea behind the proof of Theorem 2.6 is to observe that when the ai are
small comparatively to q, the term Bq(ai , a j ) have a large contribution to the den-
sity δ(q; a1, . . . , ar ) if and only if ai = −a j or ai and a j have the same sign
and max(|ai |, |a j |)/ min(|ai |, |a j |) equals a prime power (this is proved in Propo-
sition 6.1). The first step is to reduce to the case r = 3 (which is easier to deal with)
using the following lemma.

Lemma 7.1 Let r ≥ 3 be a fixed integer, q be a large positive integer and
(a1, . . . , ar ) ∈ Ar (q). If there exist 1 ≤ i1 < i2 < i3 ≤ r such that the race
{q; ai1 , ai2 , ai3} is q-extremely biased, then the race {q; a1, . . . , ar } is q-extremely
biased.

Proof Suppose that there exist 1 ≤ i1 < i2 < i3 ≤ r with the property that the
race {q; ai1 , ai2 , ai3} is q-extremely biased. Then, for some permutation ν of the set
{i1, i2, i3} we have |δ(q; aν(i1), aν(i2), aν(i3)) − 1/6| � 1/ log q. Let jl = ν(il), and
define S to be set of all permutations σ of {1, . . . , r} such that σ( j1) > σ( j2) > σ( j3).
Note that under GRH and LI it follows from the work of Rubinstein and Sarnak [25] that
the logarithmic density of the set of real numbers x ≥ 2 with π(x; q, ai ) = π(x; q, a j )

is 0. Using this fact along with the definition of the densities δ(q; a1, . . . , ar ) we obtain

δ(q; a j1 , a j2 , a j3) =
∑
σ∈S

δ(q; aσ(1), . . . , aσ(r)). (7.1)
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Now, a simple combinatorial argument shows that |S| = r !/3!. Hence we obtain from
(7.1) that

1

log q
�

∣∣∣∣δ(q; a j1 , a j2 , a j3) − 1

6

∣∣∣∣ ≤
∑
σ∈S

∣∣∣∣δ(q; aσ(1), . . . , aσ(r)) − 1

r !
∣∣∣∣

�r max
σ∈S

∣∣∣∣δ(q; aσ(1), . . . , aσ(r)) − 1

r !
∣∣∣∣ ,

which implies that the race {q; a1, . . . , ar } is q-extremely biased. ��
The next step is to investigate the main contribution to Bq(a, b) when a, b > 0 are

relatively small compared to q and max(a, b)/ min(a, b) equals a prime power. To
this end we establish some properties of the function �0(x) defined in (6.1).

Lemma 7.2 The maximum of �0(x) over R equals (log 3)/3. Moreover, if n is a
positive integer with �0(n) 	= 0, then �0(m) = �0(n) implies that m = n.

Proof We know that �0(x) 	= 0 if and only if x = pl for some prime p and a positive
integer l. In this case �0(x) = (log p)/pl ≤ �0(p). The first part follows upon noting
that the function (log x)/x is decreasing for x ≥ 3 and (log 3)/3 > (log 2)/2.

If �0(m) = �0(n) 	= 0, then there exist primes p1, p2 and positive integers e1, e2
such that n = pe1

1 , m = pe2
2 and (log p1)/pe1

1 = (log p2)/pe2
2 . This implies that

p
p

e2
2

1 = p
p

e1
1

2 , from which one can deduce that p1 = p2 and thus e1 = e2. ��
Lemma 7.3 Let a1, a2 and a3 be distinct positive real numbers. Define

X1 = max(a1, a2)

min(a1, a2)
, X2 = max(a2, a3)

min(a2, a3)
, and X3 = max(a1, a3)

min(a1, a3)
.

If one of the values �0(X1), �0(X2) and �0(X3) is non-zero, then there exists a
permutation σ of the set {1, 2, 3} such that

�0(Xσ(1)) + �0(Xσ(2)) − 2�0(Xσ(3)) 	= 0.

Proof Assume without loss of generality that a1 < a2 < a3. In this case X1 = a2/a1,
X2 = a3/a2 and X3 = a3/a1. Suppose that for all permutations σ of the set {1, 2, 3}
we have �0(Xσ(1)) + �0(Xσ(2)) − 2�0(Xσ(3)) = 0. Then we must have �0(X1) =
�0(X2) = �0(X3). Furthermore since this value is non-zero we get by Lemma 7.2
that X1 = X2 = X3. However this can not hold since X3 	= X1 by our hypothesis on
the ai . ��
Proof of Proposition 2.6 Assume First that neither i) nor ii) hold. In this case Proposi-
tion 6.1 implies that Bq(a j , ak) = OA

(
log2 q

)
, for all 1 ≤ j < k ≤ r . Inserting this

estimate in Corollary 2.7 in the case where the ai are all squares (or all non-squares)
modulo q, gives |δ(q; a1 . . . , ar ) − 1/r !| �A,r (log q)/q. Now if this is not the case
then Theorem 2.1 implies that |δ(q; a1 . . . , ar ) − 1/r !| �ε,r q−1/2+ε . Thus in both
cases the race {q; a1, . . . , ar } is not q-extremely biased.
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Next, let us consider the case where a j = −ak = a for some 1 ≤ j < k ≤ r . Since
r ≥ 3, then there exists b ∈ {a1, . . . , ar } such that b 	= a and b 	= −a. By Lemma 7.1
it suffices to prove that the race {q; a,−a, b} is q-extremely biased. Without any loss of
generality we may assume that a and b have the same sign (otherwise simply switch a
and −a). Applying Proposition 6.1 we obtain Bq (a,−a) = −φ(q) log 2+OA(log2 q),
Bq(b,−a) = OA(log2 q) (since b and −a have different signs and b − a 	= 0) and

Bq(a, b) = −φ(q)�0

(
max(|a|, |b|)
min(|a|, |b|)

)
+ OA(log2 q) ≥ − log 3

3
φ(q) + OA(log2 q),

which follows from Lemma 7.2. Inserting these estimates in Corollary 2.3, and
recalling that Nq ∼ φ(q) log q and |Cq(a)| = qo(1), we get

δ(q; a, b,−a) ≥ 1

6
+ 2 log 2 − (log 3)/3

8π
√

3

1

log q
,

if q is large enough, so that the race {q; a,−a, b} is q-extremely biased.
Now, suppose that ai 	= −a j for all 1 ≤ i < j ≤ r , and that there exist b1, b2 ∈

{a1, . . . , ar } such that b1 = pkb2 for some prime p, and a positive integer k. In this
case part II of Proposition 6.1 yields

Bq(b1, b2) = −φ(q)
log p

pk
+ OA(log2 q). (7.2)

Since r ≥ 3, then there exists b3 ∈ {a1, . . . , ar } with b3 	= bi for i = 1, 2. First if b3
and b1 have different signs, then part I of Proposition 6.1 implies that

Bq(b1, b3), Bq(b2, b3) �A log2 q. (7.3)

Therefore, inserting the estimates (7.2) and (7.3) in Corollary 2.3 gives

δ(q; b1, b2, b3) = 1

6
− log p

4π
√

3pk(log q)
(1 + o(1)),

and thus the race {q; b1, b2, b3} is q-extremely biased. Hence, it remains only to
handle the case where all the bi have the same sign. Let us denote by S3 the set of all
permutations of {1, 2, 3}. Since |b1|, |b2| and |b3| are distinct by our hypothesis, and
�0(|b1|/|b2|) 	= 0, then Lemma 7.3 shows that there exists σ ∈ S3 such that

�0(Xσ(1)) + �0(Xσ(2)) − 2�0(Xσ(3)) 	= 0,

where

X1 = |b1|
|b2| = pk, X2 = max(|b2|, |b3|)

min(|b2|, |b3|) , and X3 = max(|b1|, |b3|)
min(|b1|, |b3|) .
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Therefore, upon using part II of Proposition 6.1 along with Corollary 2.3, we deduce
that

max
ν∈S3

∣∣∣∣δ(q; bν(1), bν(2), bν(3)) − 1

6

∣∣∣∣ � |�0(Xσ(1)) + �0(Xσ(2)) − 2�0(Xσ(3))|
log q

,

which implies that the race {q; b1, b2, b3} is q-extremely biased. Thus, appealing to
Lemma 7.1 the result follows. ��

8 Another proof for the asymptotic in two-way races

In this section we derive Fiorilli and Martin [5] asymptotic formula for the densities in
the case r = 2, using a slight modification of the method used to establish Theorem 2.1.
In the version presented below, our main concern is to obtain the main term of (2.3)
without giving much attention to the error term, in order to keep the exposition simple.
Nonetheless, our approach would give an asymptotic expansion for δ(q; a1, a2) with
little extra work, if one allows more terms in the asymptotic series of the Fourier
transform μ̂q;a1,a2 in Lemma 8.1 below. Indeed we shall establish that

δ(q; a1, a2) = 1

2
− Cq(a1) − Cq(a2)√

2πVq(a1, a2)
+ O

(
Cq(1)2 log2 q

Vq(a1, a2)

)
, (8.1)

for (a1, a2) ∈ A2(q). We begin by proving the analogue of Proposition 3.3

Lemma 8.1 For t = (t1, t2) ∈ R
2 with ||t || ≤ N 1/4

q we have

μ̂q;a1,a2

(
t1√
Nq

,
t2√
Nq

)
= exp

(
− t2

1 + t2
2

2
− Bq(a1, a2)

Nq
t1t2

)
Fq;a1,a2(t1, t2),

where

Fq;a1,a2(t1, t2) = 1 + i√
Nq

(Cq(a1)t1 + Cq(a2)t2) + O

( ||t ||4
Nq

+ ||t ||2Cq(1)2

Nq

)
.

Proof We follow closely the proof of Proposition 3.3. Indeed, for ||t || ≤ N 1/4
q the

explicit formula (3.1) implies that log μ̂q;a1,a2

(
t1 N−1/2

q , t2 N−1/2
q

)
equals

i√
Nq

(Cq(a1)t1 + Cq(a2)t2) − 1

Nq

∑
χ 	=χ0

χ mod q

∑
γχ>0

|χ(a1)t1 + χ(a2)t2|2
1
4 + γ 2

χ

+ O

( ||t ||4
Nq

)

= i√
Nq

(Cq(a1)t1 + Cq(a2)t2) − t2
1 + t2

2

2
− Bq(a1, a2)

Nq
t1t2 + O

( ||t ||4
Nq

)
.
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Thus, the lemma follows upon noting that

exp

(
i√
Nq

(Cq(a1)t1 + Cq(a2)t2)

)

= 1 + i√
Nq

(Cq(a1)t1 + Cq(a2)t2) + O

( ||t ||2Cq(1)2

Nq

)
.

��
Our next result is an analogue of Lemma 4.2 in the case of a bivariate normal

distribution.

Lemma 8.2 Let ρ be a real number such that |ρ| ≤ 1/2, n1, n2 are fixed non-negative
integers, and M a large positive number. Then

∫

||t ||≤M

ei(t1x1+t2x2)tn1
1 tn2

2 exp

(
− t2

1 + t2
2 + 2ρt1t2

2

)
dt1dt2

= 1

in1+n2

∂n1+n2�ρ(x1, x2)

∂xn1
1 ∂xn2

2

+ O

(
exp

(
− M2

8

))
,

where

�ρ(x1, x2) = 2π√
1 − ρ2

exp

(
− 1

2(1 − ρ2)
(x2

1 + x2
2 − 2ρx1x2)

)
.

Proof First, notice that t2
1 + t2

2 +2ρt1t2 ≥ (t2
1 + t2

2 )/2 which follows from the fact that
|t1t2| ≤ (t2

1 + t2
2 )/2. This implies that the integral we are seeking to estimate equals

∫

t∈R2

ei(t1x1+t2x2)tn1
1 tn2

2 exp

(
− t2

1 + t2
2 + 2ρt1t2

2

)
dt1dt2 + O

(
exp

(
− M2

8

))
.

Moreover, since the last integral is absolutely and uniformly convergent for (x1, x2) ∈
R

2, we get that

∫

t∈R2

ei(t1x1+t2x2)tn1
1 tn2

2 exp

(
− t2

1 + t2
2 + 2ρt1t2

2

)
dt1dt2 = 1

in1+n2

∂n1+n2�ρ(x1, x2)

∂xn1
1 ∂xn2

2

,

where

�ρ(x1, x2) =
∫

t∈R2

ei(t1x1+t2x2) exp

(
− t2

1 + t2
2 + 2ρt1t2

2

)
dt1dt2.
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On the other hand, note that
√

1−ρ2

2π
�ρ(x1, x2) is the characteristic function of the

bivariate normal distribution whose density is

f (t1, t2) =
√

1 − ρ2

2π
exp

(
− t2

1 + t2
2 + 2ρt1t2

2

)
.

Therefore, we obtain that

√
1 − ρ2

2π
�ρ(x1, x2) = exp

(
− 1

2(1 − ρ2)
(x2

1 + x2
2 − 2ρx1x2)

)
,

which completes the proof. ��
We are now ready to establish (8.1). We begin by following the proof of Theorem 2.1.

Write μq = μq;a1,a2 and let R = √
Nq log q. Then Proposition 4.1 yields

δ(q; a1, a2) =
∫

−R<y2<y1<R

dμq(y1, y2) + O

(
exp

(
− log2 q

10

))
.

Applying the Fourier inversion formula to the measure μq gives that

δ(q; a1, a2) = 1

(2π)2

∫

−R<y2<y1<R

∫

s∈R2

ei(s1 y1+s2 y2)μ̂q(s1, s2)dsdy

+O

(
exp

(
− log2 q

10

))
. (8.2)

Moreover, using Proposition 3.2 with ε = log q N−1/2
q gives

∫

s∈R2

ei(s1 y1+s2 y2)μ̂q(s1, s2)ds =
∫

||s||≤ε

ei(s1 y1+s2 y2)μ̂q(s1, s2)ds

+O
(

exp
(
−c log2 q

))
,

for some constant c > 0. Inserting this estimate in (8.2), and making the change of
variables t j = √

Nqs j and x j = y j/
√

Nq for j = 1, 2, we infer from Lemma 8.1 that

δ(q; a1, a2) = 1

(2π)2

∫

− log q<x2<x1<log q

∫

||t ||<log q

ei(t1x1+t2x2)μ̂q

(
t1√
Nq

,
t2√
Nq

)
dtdx

+O
(

exp
(
− log3/2 q

))
.

= I0 + iCq(a1)√
Nq

I1 + iCq(a2)√
Nq

I2 + O

(
Cq(1)2 log2 q

Nq

)
, (8.3)
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where

I0 = 1

(2π)2

∫

− log q<x2<x1<log q

∫

||t ||<log q

ei(t1x1+t2x2)

× exp

(
− t2

1 + t2
2

2
− Bq(a1, a2)

Nq
t1t2

)
dtdx,

and

I j = 1

(2π)2

∫

− log q<x2<x1<log q

∫

||t ||<log q

ei(t1x1+t2x2)t j

× exp

(
− t2

1 + t2
2

2
− Bq(a1, a2)

Nq
t1t2

)
dtdx,

for j = 1, 2. We shall first evaluate I0. Let ρ = Bq(a1, a2)/Nq . Then Corollary 5.4
implies that |ρ| ≤ 1/2 for q large. Hence Lemma 8.2 yields

I0 = 1

2π
√

1 − ρ2

∫

− log q<x2<x1<log q

exp

(
− 1

2(1 − ρ2)
(x2

1 + x2
2 − 2ρx1x2)

)
dx1dx2

+O

(
exp

(
− log2 q

10

))
.

Now the integral on the RHS of the last estimate equals

1

2π
√

1 − ρ2

∫

x1>x2

exp

(
− 1

2(1 − ρ2)
(x2

1 + x2
2 − 2ρx1x2)

)
dx1dx2

+O

(
exp

(
− log2 q

10

))
.

Therefore, using that the integrand is symmetric in x1 and x2, along with the fact that

1

2π
√

1 − ρ2

∞∫

−∞

∞∫

−∞
exp

(
− 1

2(1 − ρ2)
(x2

1 + x2
2 − 2ρx1x2)

)
dx1dx2 = 1,

we deduce that

I0 = 1

2
+ O

(
exp

(
− log2 q

10

))
. (8.4)
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Using similar ideas along with Lemma 8.2 gives

I1 = 1

(2π)2i

∫

x1>x2

∂�ρ(x1, x2)

∂x1
dx1dx2 + O

(
exp

(
− log2 q

10

))

= − 1

(2π)2i

∞∫

−∞
�ρ(x2, x2)dx2 + O

(
exp

(
− log2 q

10

))
.

Furthermore, one has

∞∫

−∞
�ρ(y, y)dy = 2π√

1 − ρ2

∞∫

−∞
exp

(
− y2

2

(
2

1 + ρ

))
dy = 2π3/2

√
1 − ρ

.

Note that 2(1 − ρ) = Vq(a1, a2)/Nq . Thus, upon combining the above estimates we
get

I1 = −
√

Nq

i
√

2πVq(a1, a2)
+ O

(
exp

(
− log2 q

10

))
. (8.5)

Similarly one obtains

I2 =
√

Nq

i
√

2πVq(a1, a2)
+ O

(
exp

(
− log2 q

10

))
. (8.6)

Finally, inserting the estimates (8.4)–(8.6) into Eq. (8.3), and using the fact that
Vq(a1, a2) ∼ 2Nq give the desired result.
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