THE PRIME NUMBER RACE AND ZEROS OF DIRICHLET L-FUNCTIONS OFF THE CRITICAL LINE: PART III

by KEVIN FORD ${ }^{\dagger}$ and YOUNESS LAMZOURI ${ }^{+}$
(Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, USA)
and SERGEI KONYAGIN ${ }^{\S}$
(Steklov Mathematical Institute, 8, Gubkin Street, Moscow 119991, Russia)
[Received 2 May 2012]

Abstract

We show, for any $q \geqslant 3$ and distinct reduced residues $a, b(\bmod q)$, that the existence of certain hypothetical sets of zeros of Dirichlet L-functions lying off the critical line implies that $\pi(x ; q, a)<$ $\pi(x ; q, b)$ for a set of real x of asymptotic density 1 .

1. Introduction

For $(a, q)=1$, let $\pi(x ; q, a)$ denote the number of primes $p \leqslant x$ with $p \equiv a(\bmod q)$. The study of the relative magnitudes of the functions $\pi(x ; q, a)$ for a fixed q and varying a is known colloquially as the 'prime race problem' or 'Shanks-Rényi prime race problem'. For a survey of problems and results on prime races, the reader may consult the papers $[\mathbf{3}, \mathbf{5}]$. One basic problem is the study of $P_{q ; a_{1}, \ldots, a_{r}}$, the set of real numbers $x \geqslant 2$ such that $\pi\left(x ; q, a_{1}\right)>\cdots>\pi\left(x ; q, a_{r}\right)$. It is generally believed that all sets $P_{q ; a_{1}, \ldots, a_{r}}$ are unbounded. Assuming the generalized Riemann hypothesis for Dirichlet L-functions modulo $q\left(\mathrm{GRH}_{q}\right)$ and that the non-negative imaginary parts of zeros of these L-functions are linearly independent over the rationals, Rubinstein and Sarnak [12] have shown, for any r-tuple of reduced residue classes a_{1}, \ldots, a_{r} modulo q, that $P_{q ; a_{1}, \ldots, q_{r}}$ has a positive logarithmic density (although it may be quite small in some cases). We recall that the logarithmic density of a set $E \subset(0,+\infty)$ is defined as

$$
\delta(E)=\lim _{X \rightarrow \infty} \frac{1}{\log X} \int_{[2, X] \cap E} \frac{\mathrm{~d} t}{t},
$$

provided that the limit exists.
In [2, 4], Ford and Konyagin investigated how possible violations of the GRH would affect prime number races. In [2], they proved that the existence of certain sets of zeros off the critical line would imply that some of the sets $P_{q ; a_{1}, a_{2}, a_{3}}$ are bounded, giving a negative answer to the prime race problem with $r=3$. Paper [4] was devoted to similar questions for r-way prime races with $r>3$. One result from [4] states that, for any $q, r \leqslant \phi(q)$ and set $\left\{a_{1}, \ldots, a_{r}\right\}$ of reduced residues modulo q, the

[^0]existence of certain hypothetical sets of zeros of Dirichlet L-functions modulo q implies that at most $r(r-1)$ of the sets $P_{q ; \sigma\left(a_{1}\right), \ldots, \sigma\left(a_{r}\right)}$ are unbounded, σ running over all permutations of $\left\{a_{1}, \ldots, a_{r}\right\}$.

In this paper, we investigate the effect of zeros of L-functions lying off the critical line for two-way prime races. This case is harder, since it is unconditionally proved that, for certain races $\{q ; a, b\}$, the set $P_{q ; a, b}$ is unbounded. For example, Littlewood [11] proved that $P_{4 ; 3,1}, P_{4 ; 1,3}, P_{3 ; 1,2}$ and $P_{3 ; 2,1}$ are unbounded. Later Knapowski and Turán $[9,10]$ proved, for many q, a, b that $\pi(x ; q, b)-\pi(x ; q, a)$ changes sign infinitely often and more recently Sneed [13] showed that $P_{q ; a, b}$ is unbounded for every $q \leqslant 100$ and all possible pairs (a, b).

Nevertheless, we prove that the existence of certain zeros off the critical line would imply that the set $P_{q ; a, b}$ has asymptotic density zero, in contrast to a conditional result of Kaczorowski [7] on GRH, which asserts that $P_{q ; 1, b}$ and $P_{q ; b, 1}$ have positive lower densities for all $(b, q)=1$.

Let $q \geqslant 3$ be a positive integer and a, b be distinct reduced residues modulo q. Moreover, for any set \mathcal{S} of real numbers we define $\mathcal{S}(X)=\mathcal{S} \cap[2, X]$.

Theorem 1.1 Let $q \geqslant 3$ and suppose that a and b are distinct reduced residues modulo q. Let χ be a non-principal Dirichlet character with $\chi(a) \neq \chi(b)$, and put $\xi=\arg (\chi(a)-\chi(b)) \in[0,2 \pi)$. Suppose $\frac{1}{2}<\sigma<1,0<\delta<\sigma-\frac{1}{2}, A>0$ and $\mathcal{B}=\mathcal{B}(\xi, \sigma, \delta, A)$ is a multiset of complex numbers satisfying the conditions listed in Section 2. If $L(\rho, \chi)=0$, for all $\rho \in \mathcal{B}, L(s, \chi)$, has no other zeros in the region $\{s: \operatorname{Re}(s) \geqslant \sigma-\delta, \operatorname{Im}(s) \geqslant 0\}$, and for all other non-principal characters χ^{\prime} modulo $q, L\left(s, \chi^{\prime}\right) \neq 0$ in the region $\{s: \operatorname{Re}(s) \geqslant \sigma-\delta, \operatorname{Im}(s) \geqslant 0\}$, then

$$
\lim _{X \rightarrow \infty} \frac{\operatorname{meas}\left(P_{q ; a, b}(X)\right)}{X}=0
$$

Remarks A character χ with $\chi(a) \neq \chi(b)$ exists whenever a and b are distinct modulo q. The sets \mathcal{B} have the property that any $\rho \in \mathcal{B}$ has real part in $[\sigma-\delta, \sigma]$, imaginary part greater than A and multiplicity $O\left((\log \operatorname{Im}(\rho))^{3 / 4}\right)$ (that is, the multiplicities are much smaller than known bounds on the multiplicity of zeros of Dirichlet L-functions). The number of elements of \mathcal{B} (counted with multiplicity) with imaginary part less than T is $O\left((\log T)^{5 / 4}\right)$, and thus \mathcal{B} is quite a 'thin' set. Also, we note that if $L(\beta+\mathrm{i} \gamma, \chi)=0$, then $L(\beta-\mathrm{i} \gamma, \bar{\chi})=0$, which is a consequence of the functional equation for Dirichlet L-functions (see, for example, [1, Chapter 9]). The point of Theorem 1.1 is that proving

$$
\limsup _{X \rightarrow \infty} \frac{\operatorname{meas}\left(P_{q ; a, b}(X)\right)}{X}>0
$$

requires showing that the multiset of zeros of $L(s, \chi)$ cannot contain any of the multisets \mathcal{B}. This is beyond what is possible with existing technology (see, for example, [6] for the best known estimates for multiplicities of zeros). In other words, Theorem 1.1 claims that under certain suppositions the set $P_{q ; a, b}(X)$ has the zero asymptotic density. This implies that its logarithmic density is also zero, in contrast to conditional results from [12].

Our method works as well for the difference $\pi(x)-\operatorname{li}(x)$, the error term in the prime number theorem. Littlewood [11] established that this quantity changes sign infinitely often. Let P_{1} be the set of real numbers $x \geqslant 2$ such that $\pi(x)>\operatorname{li}(x)$. In [8], Kaczorowski proved, assuming the Riemann Hypothesis, that both P_{1} and \bar{P}_{1} have positive lower densities. Assuming the Riemann Hypothesis and that the non-negative imaginary parts of the zeros of the Riemann zeta function $\zeta(s)$ are linearly independent over the rationals, Rubinstein and Sarnak [12] have shown that P_{1} has a positive logarithmic density $\delta_{1} \approx 0.00000026$. In contrast to these results, we prove that the existence of certain zeros
of $\zeta(s)$ off the critical line would imply that the set P_{1} has asymptotic density zero (or asymptotic density 1).

Theorem 1.2 Suppose $\frac{1}{2}<\sigma<1,0<\delta<\sigma-\frac{1}{2}$ and $A>0$. (i) If $\xi=0, \mathcal{B}=\mathcal{B}(\xi, \sigma, \delta, A)$ satisfies the conditions of Section 2, $\zeta(\rho)=0$ for all $\rho \in \mathcal{B}$, and $\zeta(s)$ has no other zeros in the region $\{s: \operatorname{Re}(s) \geqslant \sigma-\delta, \operatorname{Im}(s) \geqslant 0\}$, then

$$
\lim _{X \rightarrow \infty} \frac{\operatorname{meas}\left(P_{1}(X)\right)}{X}=0
$$

(ii) If $\xi=\pi, \mathcal{B}$ satisfies the conditions of Section $2, \zeta(\rho)=0$ for all $\rho \in \mathcal{B}$, and $\zeta(s)$ has no other zeros in the region $\{s: \operatorname{Re}(s) \geqslant \sigma-\delta, \operatorname{Im}(s) \geqslant 0\}$, then

$$
\lim _{X \rightarrow \infty} \frac{\operatorname{meas}\left(P_{1}(X)\right)}{X}=1
$$

We omit the proof of Theorem 1.2, as it is nearly identical to the proof of Theorem 1.1 in the case $q=4$.

2. The construction of \mathcal{B}

For $j \geqslant 1$, we fix any real numbers γ_{j}, δ_{j} and θ_{j} satisfying

$$
\begin{align*}
& \exp \left(j^{8}\right) \leqslant \gamma_{j} \leqslant 2 \exp \left(j^{8}\right), \quad\left|\delta_{j}-\frac{1}{j^{8}}\right| \leqslant \frac{1}{j^{9}} \\
& \text { and }\left|\theta_{j}-\frac{\xi-\pi / 2}{j^{16}}\right| \leqslant \frac{1}{j^{17}} \tag{1}
\end{align*}
$$

We choose j_{0} so large that, for all $j \geqslant j_{0}, \gamma_{j}>A$ and $\sigma-\delta \leqslant \sigma-\delta_{j}$. Then we take \mathcal{B} to be the union, over $j \geqslant j_{0}$ and $1 \leqslant k \leqslant j^{3}$, of $m(k, j)=k\left(j^{3}+1-k\right)$ copies of $\rho_{j, k}$, where

$$
\rho_{j, k}=\sigma-\delta_{j}+\mathrm{i}\left(k \gamma_{j}+\theta_{j}\right)
$$

3. Preliminary results

The following classical-type explicit formula was established in [2, Lemma 1.1] when $x^{\prime}=x$. The slightly more general result below, which is more convenient for us, is proved in exactly the same way.
Lemma 3.1 Let $\beta \geqslant \frac{1}{2}$ and for each non-principal character $\chi \bmod q$, let $B(\chi)$ be the sequence of zeros (duplicates allowed) of $L(s, \chi)$ with $\operatorname{Re}(s)>\beta$ and $\operatorname{Im}(s)>0$. Suppose further that all $L(s, \chi)$ are zero-free on the real segment $\beta<s<1$. If $(a, q)=(b, q)=1, x$ is sufficiently large and $x^{\prime} \geqslant x$, then

$$
\phi(q)(\pi(x ; q, a)-\pi(x ; q, b))=-2 \operatorname{Re}\left(\sum_{\substack{x \neq \chi_{0} \\ x \bmod q}}(\bar{\chi}(a)-\bar{\chi}(b)) \sum_{\substack{\rho \in B(x) \\|\operatorname{Im}(\rho)| \leqslant x^{\prime}}} f(\rho)\right)+O\left(x^{\beta} \log ^{2} x\right),
$$

where

$$
f(\rho):=\frac{x^{\rho}}{\rho \log x}+\frac{1}{\rho} \int_{2}^{x} \frac{t^{\rho}}{t \log ^{2} t} \mathrm{~d} t=\frac{x^{\rho}}{\rho \log x}+O\left(\frac{x^{\mathrm{Re}(\rho)}}{|\rho|^{2} \log ^{2} x}\right)
$$

REMARK For Theorem 1.2, we use a similar explicit formula for $\pi(x)$ in terms of the zeros $B(\zeta)$ of the Riemann zeta function which satisfy $\Re \rho>\beta$ and $\Im \rho>0$:

$$
\pi(x)=\operatorname{li}(x)-2 \mathfrak{R} \sum_{\substack{\rho \in \mathcal{B}(\zeta) \\|\Im \mathcal{J}| \leqslant x^{\prime}}} f(\rho)+O\left(x^{\beta} \log ^{2} x\right) .
$$

Using properties of the Fejér kernel, we prove the following key proposition.
Proposition 3.2 Let $\gamma \geqslant 1, L \geqslant 4$ and $X \geqslant 2$. Define

$$
F_{\gamma, L}(x)=\sum_{k=1}^{L-1}(L-k) \cos (k \gamma \log x) .
$$

Then

$$
\text { meas }\left\{x \in[1, X]: F_{\gamma, L}(x) \geqslant-\frac{L}{4}\right\} \ll \frac{X}{\sqrt{L}} \text {. }
$$

Proof. The Fejér kernel satisfies the following identity:

$$
\frac{1}{L}\left(\frac{\sin (L \theta / 2)}{\sin (\theta / 2)}\right)^{2}=1+2 \sum_{k=1}^{L-1}\left(1-\frac{k}{L}\right) \cos (k \theta)
$$

This yields

$$
F_{\gamma, L}(x)=\frac{\sin ^{2}(L \gamma \log x / 2)}{2 \sin ^{2}(\gamma \log x / 2)}-\frac{L}{2}
$$

Therefore, if $F_{\gamma, L}(x) \geqslant-L / 4$, then

$$
\sin ^{2}\left(\frac{\gamma \log x}{2}\right) \leqslant \frac{2}{L} \sin ^{2}\left(\frac{L \gamma \log x}{2}\right) \leqslant \frac{2}{L}
$$

Hence,

$$
\left\|\frac{\gamma \log x}{2 \pi}\right\| \leqslant \varepsilon:=\frac{1}{\sqrt{2 L}},
$$

where $\|t\|$ denotes the distance to the nearest integer. We observe that the condition $\|\gamma \log x / 2 \pi\| \leqslant \varepsilon$ means that, for some integer k, we have

$$
k-\varepsilon \leqslant \frac{\gamma \log x}{2 \pi} \leqslant k+\varepsilon
$$

or equivalently $\mathrm{e}^{2 \pi(k-\varepsilon) / \gamma} \leqslant x \leqslant \mathrm{e}^{2 \pi(k+\varepsilon) / \gamma}$. Thus,

$$
\begin{aligned}
\text { meas }\left\{x \in[1, X]: F_{\gamma, L}(x) \geqslant-\frac{L}{4}\right\} & \leqslant \operatorname{meas}\left\{x \in[1, X]:\left\|\frac{\gamma \log x}{2 \pi}\right\| \leqslant \varepsilon\right\} \\
& \leqslant \sum_{0 \leqslant k \leqslant \gamma \log X / 2 \pi+\varepsilon} \mathrm{e}^{2 \pi(k+\varepsilon) / \gamma}-\mathrm{e}^{2 \pi(k-\varepsilon) / \gamma} \\
& \ll \frac{\varepsilon}{\gamma} \sum_{0 \leqslant k \leqslant \gamma \log X / 2 \pi+\varepsilon} \mathrm{e}^{2 \pi(k+\varepsilon) / \gamma} \ll \varepsilon X .
\end{aligned}
$$

4. Proof of Theorem 1.1

Suppose that X is large and $\sqrt{X} \leqslant x \leqslant X$. For brevity, let

$$
\Delta=\phi(q)(\pi(x ; q, a)-\pi(x ; q, b)) .
$$

It follows from Lemma 3.1 with $x^{\prime}=\max \left(x, \max \left\{j^{3} \gamma_{j}: \gamma_{j} \leqslant x\right\}\right)$ that

$$
\begin{align*}
\Delta= & -\frac{2}{\log x} \operatorname{Re}\left((\bar{\chi}(a)-\bar{\chi}(b)) \sum_{\gamma_{j} \leqslant x} \sum_{k=1}^{j^{3}} \frac{x^{\sigma-\delta_{j}+\mathrm{i}\left(k \gamma_{j}+\theta_{j}\right)} m(k, j)}{\sigma-\delta_{j}+\mathrm{i}\left(k \gamma_{j}+\theta_{j}\right)}\right) \\
& +O\left(\frac{x^{\sigma}}{\log ^{2} x} \sum_{\gamma_{j} \leqslant x} \frac{x^{-\delta_{j}}}{\gamma_{j}^{2}} \sum_{k=1}^{j^{3}} \frac{m(k, j)}{k^{2}}+x^{\sigma-\delta} \log ^{2} x\right) \\
= & \frac{2 x^{\sigma}}{\log x} \operatorname{Re}\left(\mathrm{i}(\bar{\chi}(a)-\bar{\chi}(b)) \sum_{\gamma_{j} \leqslant x} \frac{x^{-\delta_{j}}}{\gamma_{j}} \sum_{k=1}^{j^{3}} x^{\mathrm{i}\left(k \gamma_{j}+\theta_{j}\right)}\left(j^{3}+1-k\right)\right) \\
& +O\left(\frac{x^{\sigma}}{\log x} \sum_{\gamma_{j} \leqslant x} \frac{j^{4} x^{-\delta_{j}}}{\gamma_{j}^{2}}+x^{\sigma-\delta} \log ^{2} x\right) . \tag{2}
\end{align*}
$$

Note that

$$
\frac{x^{-\delta_{j}}}{\gamma_{j}}=\exp \left(-\frac{\log x}{j^{8}}\left(1+O\left(\frac{1}{j}\right)\right)-j^{8}+O(1)\right)
$$

The maximum of this function over j occurs around $J=J(x):=\left[(\log x)^{1 / 16}\right]$. In this case, we have $\log x=J^{16}(1+O(1 / J))$ so that

$$
\begin{equation*}
\frac{x^{-\delta_{J}}}{\gamma_{J}}=\exp \left(-2 J^{8}+O\left(J^{7}\right)\right)=\exp \left(-2(\log x)^{1 / 2}+O\left((\log x)^{7 / 16}\right)\right) \tag{3}
\end{equation*}
$$

We will prove that most of the contribution to the main term on the right-hand side of (2) comes for the j s in the range $J-J^{3 / 4} \leqslant j \leqslant J+J^{3 / 4}$. First, if $j \geqslant 3 J / 2$ or $j \leqslant J / 2$, then

$$
\frac{x^{-\delta_{j}}}{\gamma_{j}} \ll \exp \left(-4 J^{8}\right) \ll \exp \left(-(\log x)^{1 / 2}\right) \frac{x^{-\delta_{J}}}{\gamma_{J}}
$$

Now suppose that $J / 2<j<J-J^{3 / 4}$ or $J+J^{3 / 4}<j<3 J / 2$. Write $j=J+r$ with $J^{3 / 4}<|r|<$ $J / 2$. For $x>0, x+1 / x=2+(x-1)^{2} / x$, hence

$$
\left(1+\frac{r}{J}\right)^{8}+\left(1+\frac{r}{J}\right)^{-8} \geqslant\left(1+\left|\frac{r}{J}\right|\right)^{8}+\left(1+\left|\frac{r}{J}\right|\right)^{-8} \geqslant 2+\frac{(8 r / J)^{2}}{1+8 r / J} \geqslant 2+12(r / J)^{2}
$$

We infer from (3) that

$$
\begin{aligned}
\frac{x^{-\delta_{j}}}{\gamma_{j}} & =\exp \left(-\frac{J^{16}}{j^{8}}\left(1+O\left(\frac{1}{J}\right)\right)-j^{8}\right) \\
& =\exp \left(-J^{8}\left(\left(1+\frac{r}{J}\right)^{8}+\left(1+\frac{r}{J}\right)^{-8}\right)+O\left(J^{7}\right)\right) \\
& \leqslant \exp \left(-2 J^{8}\left(1+\frac{6}{\sqrt{J}}\right)+O\left(J^{7}\right)\right) \\
& \ll \exp \left(-2(\log x)^{1 / 3}\right) \frac{x^{-\delta_{J}}}{\gamma_{J}}
\end{aligned}
$$

Since $\gamma_{j} \leqslant x$ implies that $j \ll(\log x)^{1 / 8}$, the contribution of the terms $1 \leqslant j<J-J^{3 / 4}$ or $J+$ $J^{3 / 4}<j$ to the main term of (2) is

$$
\begin{equation*}
\ll \exp \left(-2(\log x)^{1 / 3}\right) \frac{x^{\sigma-\delta_{J}}}{\gamma_{J}} \sum_{j \leqslant(\log x)^{1 / 4}} \sum_{k=1}^{j^{3}}\left(j^{3}+1-k\right) \ll \exp \left(-(\log x)^{1 / 3}\right) \frac{x^{\sigma-\delta_{J}}}{\gamma_{J}} . \tag{4}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
\frac{x^{-\delta_{j}}}{\gamma_{j}^{2}} & =\exp \left(-\frac{\log x}{j^{8}}\left(1+O\left(\frac{1}{j}\right)\right)-2 j^{8}+O(1)\right) \\
& \ll \exp \left(-2 \sqrt{2}(\log x)^{1 / 2}(1+o(1))\right) \\
& \ll \exp \left(-2(\log x)^{1 / 3}\right) \frac{x^{-\delta_{J}}}{\gamma_{J}}
\end{aligned}
$$

which follows from (3) along with the fact that the maximum of $f(t)=-\log x / t^{8}-2 t^{8}$ occurs at $t=(\log x / 2)^{1 / 16}$. Hence, using (3), the contribution of the error term of (2) is

$$
\begin{equation*}
\ll \exp \left(-2(\log x)^{1 / 3}\right) \frac{x^{\sigma-\delta_{J}}}{\gamma_{J}} \sum_{j \leqslant(\log x)^{1 / 4}} j^{4}+x^{\sigma-\delta} \log ^{2} x \ll \exp \left(-(\log x)^{1 / 3}\right) \frac{x^{\sigma-\delta_{J}}}{\gamma_{J}} . \tag{5}
\end{equation*}
$$

Therefore, inserting the bounds (4) and (5) in (2), we deduce that

$$
\begin{align*}
\Delta= & \frac{2 x^{\sigma}}{\log x} \operatorname{Re}\left(\mathrm{i}(\bar{\chi}(a)-\bar{\chi}(b)) \sum_{|j-J| \leqslant J^{3 / 4}} \frac{x^{-\delta_{j}}}{\gamma_{j}} \sum_{k=1}^{j^{3}} \exp \left(\mathrm{i}\left(k \gamma_{j}+\theta_{j}\right) \log x\right)\left(j^{3}+1-k\right)\right) \\
& +O\left(\exp \left(-(\log x)^{1 / 3}\right) \frac{x^{\sigma-\delta_{J}}}{\gamma_{J}}\right) . \tag{6}
\end{align*}
$$

Let $J-J^{3 / 4} \leqslant j \leqslant J+J^{3 / 4}$. Then $j^{16}=J^{16}\left(1+O\left(J^{-1 / 4}\right)\right)$. Hence, we get

$$
\begin{aligned}
\theta_{j} \log x & =\left(\arg (\chi(a)-\chi(b))-\frac{\pi}{2}\right) \frac{\log x}{j^{16}}+O\left(\frac{\log x}{j^{17}}\right) \\
& =\left(\arg (\chi(a)-\chi(b))-\frac{\pi}{2}\right)+O\left(\frac{1}{J^{1 / 4}}\right)
\end{aligned}
$$

This implies

$$
\mathrm{i}(\bar{\chi}(a)-\bar{\chi}(b)) \exp \left(\mathrm{i} \theta_{j} \log x\right)=|\chi(a)-\chi(b)|\left(1+O\left(\frac{1}{J^{1 / 4}}\right)\right),
$$

since $\mathrm{e}^{\mathrm{i} \arg z}=z /|z|$. Inserting this estimate in (6), we obtain

$$
\begin{align*}
\Delta= & \left(1+O\left(\frac{1}{\log ^{1 / 64} x}\right)\right) 2|\chi(a)-\chi(b)| \sum_{|j-J| \leqslant J^{3 / 4}} \frac{x^{\sigma-\delta_{j}}}{\gamma_{j} \log x} F_{\gamma_{j}, j^{3}+1}(x) \\
& +O\left(\exp \left(-(\log x)^{1 / 3}\right) \frac{x^{\sigma-\delta_{J}}}{\gamma_{J}}\right) . \tag{7}
\end{align*}
$$

For $x \in[\sqrt{X}, X]$, we have $\frac{1}{4}(\log X)^{1 / 16} \leqslant J-J^{3 / 4}$ and $J+J^{3 / 4} \leqslant 4(\log X)^{1 / 16}$ if X is sufficiently large, since $J=(\log x)^{1 / 16}+O(1)$. We define

$$
\Omega:=\left\{x \in[\sqrt{X}, X]: F_{\gamma_{j} ; j^{3}}(x) \leqslant-\frac{j^{3}}{4} \text { for all } \frac{1}{4}(\log X)^{1 / 16} \leqslant j \leqslant 4(\log X)^{1 / 16}\right\} .
$$

Then it follows from Proposition 3.2 that

$$
\text { meas } \begin{align*}
\Omega & =X+O\left(X \sum_{\frac{1}{4}(\log X)^{1 / 16} \leqslant j \leqslant 4(\log X)^{1 / / 6}} \frac{1}{j^{3 / 2}}+\sqrt{X}\right) \\
& =X\left(1+O\left((\log X)^{-1 / 32}\right)\right) . \tag{8}
\end{align*}
$$

Furthermore, if $x \in \Omega$, then we infer from (7) that

$$
\begin{aligned}
\Delta & \leqslant-\frac{1}{3}|\chi(a)-\chi(b)| \sum_{|j-J| \leqslant J^{3 / 4}} \frac{j^{3} x^{\sigma-\delta_{j}}}{\gamma_{j} \log x}+O\left(\exp \left(-(\log x)^{1 / 3}\right) \frac{x^{\sigma-\delta_{J}}}{\gamma_{J}}\right) \\
& \leqslant-\frac{1}{3}|\chi(a)-\chi(b)| \frac{J^{3} x^{\sigma-\delta_{J}}}{\gamma_{J} \log x}(1+o(1)) \leqslant-x^{\sigma} / \exp ((2+o(1)) \sqrt{x})<0
\end{aligned}
$$

as $X \rightarrow \infty$, which completes the proof.

Funding

The research of K.F. was partially supported by National Science Foundation grant DMS-0901339. The research of S.K. was partially supported by Russian Fund for Basic Research, Grant N. 11-0100329. The research of Y.L. was supported by a Postdoctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada.

References

1. H. Davenport, Multiplicative Number Theory, 3rd edn, Graduate Texts in Mathematics 74, Springer, New York, 2000.
2. K. Ford and S. Konyagin, The prime number race and zeros of L-functions off the critical line, Duke Math. J. 113 (2002), 313-330.
3. K. Ford and S. Konyagin, Chebyshev's conjecture and the prime number race, IV International Conference 'Modern Problems of Number Theory and its Applications': Current Problems, Part II (Russian) (Tula, 2001), 67-91, Mosk. Gos. Univ. im. Lomonosova, Mekh.Mat. Fak., Moscow, 2002. Also available on the first author's web page: http://www.math.uiuc. edu/~ford/papers/html.
4. K. Ford and S. Konyagin, The prime number race and zeros of L-functions off the critical line, II, Proceedings of the session in analytic number theory and Diophantine equations (Bonn, JanuaryJune 2002), Bonner Mathematische Schiften, Nr. 360 (Eds. D. R. Heath-Brown and B. Z. Moroz), Bonn, Germany, 2003, 40 pp . Also available on the first author's homepage http://www. math.uiuc.edu/~ford/papers.html.
5. A. Granville and G. Martin, Prime number races, Amer. Math. Monthly 113 (2006), 1-33.
6. A. Ivić, On the multiplicity of zeros of the zeta-function, Bull. Cl. Sci. Math. Nat. Sci. Math. 24 (1999), 119-132.
7. J. Kaczorowski, A contribution to the Shanks-Rényi race problem, Quart. J. Math. Oxford Ser. (2) 44 (1993), 451-458.
8. J. Kaczorowski, Results on the distribution of primes, J. Reine Angew. Math. 446 (1994), 89-113.
9. S. Knapowski and P. Turán, Comparative prime number theory Part I, Acta. Math. Sci. Hungar. 13 (1962), 299-314; Part II. 13 (1962), 315-342; Part III. 13 (1962), 343-364; Part IV. 14 (1963), 31-42; Part V. 14 (1963), 43-63; Part VI. 14 (1963), 65-78; Part VII. 14 (1963), 241-250; Part VIII. 14 (1963), 251-268.
10. S. Knapowski and P. Turán, Further developments in the comparative prime-number theory. Part I, Acta Arith. 9 (1964), 23-40; Part II. 10 (1964), 293-313; Part III. 11 (1965), 115-127; Part IV. 11 (1965), 147-161; Part V. 11 (1965), 193-202; Part VI. 12 (1966), 85-96; Part VII. 21 (1972), 193-201.
11. J. E. Littlewood, Sur la distribution des nombres premiers, C. R. Akad. Sci. Paris 158 (1974), 1869-1872.
12. M. Rubinstein and P. Sarnak, Chebyshev's bias, J. Exper. Math. 3 (1994), 173-197.
13. J. P. Sneed, Lead changes in the prime number race, Math. Comp., to appear.

[^0]: ${ }^{\dagger}$ E-mail: ford@math.uiuc.edu

 * Corresponding author. E-mail: lamzouri@math.uiuc.edu
 ${ }^{\S}$ E-mail: konyagin@mi.ras.ru

