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Abstract

We show, for any q � 3 and distinct reduced residues a, b (mod q), that the existence of certain
hypothetical sets of zeros of Dirichlet L-functions lying off the critical line implies that π(x; q, a) <

π(x; q, b) for a set of real x of asymptotic density 1.

1. Introduction

For (a, q) = 1, let π(x; q, a) denote the number of primes p � x with p ≡ a (mod q). The study of
the relative magnitudes of the functions π(x; q, a) for a fixed q and varying a is known colloquially
as the ‘prime race problem’ or ‘Shanks–Rényi prime race problem’. For a survey of problems and
results on prime races, the reader may consult the papers [3, 5]. One basic problem is the study of
Pq;a1,...,ar

, the set of real numbers x � 2 such that π(x; q, a1) > · · · > π(x; q, ar). It is generally
believed that all sets Pq;a1,...,ar

are unbounded. Assuming the generalized Riemann hypothesis for
Dirichlet L-functions modulo q (GRHq) and that the non-negative imaginary parts of zeros of these
L-functions are linearly independent over the rationals, Rubinstein and Sarnak [12] have shown, for
any r-tuple of reduced residue classes a1, . . . , ar modulo q, that Pq;a1,...,qr

has a positive logarithmic
density (although it may be quite small in some cases). We recall that the logarithmic density of a set
E ⊂ (0, +∞) is defined as

δ(E) = lim
X→∞

1

log X

∫
[2,X]∩E

dt

t
,

provided that the limit exists.
In [2, 4], Ford and Konyagin investigated how possible violations of the GRH would affect prime

number races. In [2], they proved that the existence of certain sets of zeros off the critical line would
imply that some of the sets Pq;a1,a2,a3 are bounded, giving a negative answer to the prime race problem
with r = 3. Paper [4] was devoted to similar questions for r-way prime races with r > 3. One result
from [4] states that, for any q, r � φ(q) and set {a1, . . . , ar} of reduced residues modulo q, the
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existence of certain hypothetical sets of zeros of Dirichlet L-functions modulo q implies that at most
r(r − 1) of the sets Pq;σ(a1),...,σ (ar ) are unbounded, σ running over all permutations of {a1, . . . , ar}.

In this paper, we investigate the effect of zeros of L-functions lying off the critical line for two-way
prime races. This case is harder, since it is unconditionally proved that, for certain races {q; a, b}, the
set Pq;a,b is unbounded. For example, Littlewood [11] proved that P4;3,1, P4;1,3, P3;1,2 and P3;2,1 are
unbounded. Later Knapowski and Turán [9, 10] proved, for many q, a, b that π(x; q, b) − π(x; q, a)

changes sign infinitely often and more recently Sneed [13] showed that Pq;a,b is unbounded for every
q � 100 and all possible pairs (a, b).

Nevertheless, we prove that the existence of certain zeros off the critical line would imply that the
set Pq;a,b has asymptotic density zero, in contrast to a conditional result of Kaczorowski [7] on GRH,
which asserts that Pq;1,b and Pq;b,1 have positive lower densities for all (b, q) = 1.

Let q � 3 be a positive integer and a, b be distinct reduced residues modulo q. Moreover, for any
set S of real numbers we define S(X) = S ∩ [2, X].

Theorem 1.1 Let q � 3 and suppose that a and b are distinct reduced residues modulo q. Let χ

be a non-principal Dirichlet character with χ(a) �= χ(b), and put ξ = arg(χ(a) − χ(b)) ∈ [0, 2π).
Suppose 1

2 < σ < 1, 0 < δ < σ − 1
2 , A > 0 and B = B(ξ, σ, δ, A) is a multiset of complex numbers

satisfying the conditions listed in Section 2. If L(ρ, χ) = 0, for all ρ ∈ B, L(s, χ), has no other zeros
in the region {s : Re(s) � σ − δ, Im(s) � 0}, and for all other non-principal characters χ ′ modulo
q, L(s, χ ′) �= 0 in the region {s : Re(s) � σ − δ, Im(s) � 0}, then

lim
X→∞

meas(Pq;a,b(X))

X
= 0.

Remarks A character χ with χ(a) �= χ(b) exists whenever a and b are distinct modulo q. The
sets B have the property that any ρ ∈ B has real part in [σ − δ, σ ], imaginary part greater than A

and multiplicity O((log Im(ρ))3/4) (that is, the multiplicities are much smaller than known bounds
on the multiplicity of zeros of Dirichlet L-functions). The number of elements of B (counted with
multiplicity) with imaginary part less than T is O((log T )5/4), and thus B is quite a ‘thin’ set. Also,
we note that if L(β + iγ, χ) = 0, then L(β − iγ, χ̄) = 0, which is a consequence of the functional
equation for Dirichlet L-functions (see, for example, [1, Chapter 9]). The point of Theorem 1.1 is
that proving

lim sup
X→∞

meas(Pq;a,b(X))

X
> 0

requires showing that the multiset of zeros of L(s, χ) cannot contain any of the multisets B. This is
beyond what is possible with existing technology (see, for example, [6] for the best known estimates
for multiplicities of zeros). In other words, Theorem 1.1 claims that under certain suppositions the
set Pq;a,b(X) has the zero asymptotic density. This implies that its logarithmic density is also zero,
in contrast to conditional results from [12].

Our method works as well for the difference π(x) − li(x), the error term in the prime number
theorem. Littlewood [11] established that this quantity changes sign infinitely often. Let P1 be the set
of real numbers x � 2 such that π(x) > li(x). In [8], Kaczorowski proved, assuming the Riemann
Hypothesis, that both P1 and P̄1 have positive lower densities. Assuming the Riemann Hypothesis
and that the non-negative imaginary parts of the zeros of the Riemann zeta function ζ(s) are linearly
independent over the rationals, Rubinstein and Sarnak [12] have shown that P1 has a positive logarith-
mic density δ1 ≈ 0.00000026. In contrast to these results, we prove that the existence of certain zeros
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of ζ(s) off the critical line would imply that the set P1 has asymptotic density zero (or asymptotic
density 1).

Theorem 1.2 Suppose 1
2 < σ < 1, 0 < δ < σ − 1

2 and A > 0. (i) If ξ = 0, B = B(ξ, σ, δ, A)

satisfies the conditions of Section 2, ζ(ρ) = 0 for all ρ ∈ B, and ζ(s) has no other zeros in the
region {s : Re(s) � σ − δ, Im(s) � 0}, then

lim
X→∞

meas(P1(X))

X
= 0.

(ii) If ξ = π , B satisfies the conditions of Section 2, ζ(ρ) = 0 for all ρ ∈ B, and ζ(s) has no other
zeros in the region {s : Re(s) � σ − δ, Im(s) � 0}, then

lim
X→∞

meas(P1(X))

X
= 1.

We omit the proof of Theorem 1.2, as it is nearly identical to the proof of Theorem 1.1 in the
case q = 4.

2. The construction of B
For j � 1, we fix any real numbers γj , δj and θj satisfying

exp(j 8) � γj � 2 exp(j 8),

∣∣∣∣δj − 1

j 8

∣∣∣∣ � 1

j 9

and

∣∣∣∣θj − ξ − π/2

j 16

∣∣∣∣ � 1

j 17
.

(1)

We choose j0 so large that, for all j � j0, γj > A and σ − δ � σ − δj . Then we take B to be the
union, over j � j0 and 1 � k � j 3, of m(k, j) = k(j 3 + 1 − k) copies of ρj,k , where

ρj,k = σ − δj + i(kγj + θj ).

3. Preliminary results

The following classical-type explicit formula was established in [2, Lemma 1.1] when x ′ = x. The
slightly more general result below, which is more convenient for us, is proved in exactly the same way.

Lemma 3.1 Let β � 1
2 and for each non-principal character χ mod q, let B(χ) be the sequence

of zeros (duplicates allowed) of L(s, χ) with Re(s) > β and Im(s) > 0. Suppose further that all
L(s, χ) are zero-free on the real segment β < s < 1. If (a, q) = (b, q) = 1, x is sufficiently large
and x ′ � x, then

φ(q)(π(x; q, a) − π(x; q, b)) = −2 Re

⎛
⎜⎜⎝

∑
χ �=χ0

χ mod q

(χ̄(a) − χ̄(b))
∑

ρ∈B(χ)
|Im(ρ)|�x ′

f (ρ)

⎞
⎟⎟⎠ + O(xβ log2 x),
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where

f (ρ) := xρ

ρ log x
+ 1

ρ

∫ x

2

tρ

t log2 t
dt = xρ

ρ log x
+ O

(
xRe(ρ)

|ρ|2 log2 x

)
.

Remark For Theorem 1.2, we use a similar explicit formula for π(x) in terms of the zeros B(ζ ) of
the Riemann zeta function which satisfy �ρ > β and �ρ > 0:

π(x) = li(x) − 2�
∑

ρ∈B(ζ )
|�ρ|�x ′

f (ρ) + O(xβ log2 x).

Using properties of the Fejér kernel, we prove the following key proposition.

Proposition 3.2 Let γ � 1, L � 4 and X � 2. Define

Fγ,L(x) =
L−1∑
k=1

(L − k) cos(kγ log x).

Then

meas

{
x ∈ [1, X] : Fγ,L(x) � −L

4

}

 X√

L
.

Proof . The Fejér kernel satisfies the following identity:

1

L

(
sin(Lθ/2)

sin(θ/2)

)2

= 1 + 2
L−1∑
k=1

(
1 − k

L

)
cos(kθ).

This yields

Fγ,L(x) = sin2(Lγ log x/2)

2 sin2(γ log x/2)
− L

2
.

Therefore, if Fγ,L(x) � −L/4, then

sin2

(
γ log x

2

)
� 2

L
sin2

(
Lγ log x

2

)
� 2

L
.

Hence, ∥∥∥∥γ log x

2π

∥∥∥∥ � ε := 1√
2L

,

where ‖t‖ denotes the distance to the nearest integer. We observe that the condition ‖γ log x/2π‖ � ε

means that, for some integer k, we have

k − ε � γ log x

2π
� k + ε,
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or equivalently e2π(k−ε)/γ � x � e2π(k+ε)/γ . Thus,

meas

{
x ∈ [1, X] : Fγ,L(x) � −L

4

}
� meas

{
x ∈ [1, X] :

∥∥∥∥γ log x

2π

∥∥∥∥ � ε

}

�
∑

0�k�γ log X/2π+ε

e2π(k+ε)/γ − e2π(k−ε)/γ


 ε

γ

∑
0�k�γ log X/2π+ε

e2π(k+ε)/γ 
 εX.

�

4. Proof of Theorem 1.1

Suppose that X is large and
√

X � x � X. For brevity, let

� = φ(q)(π(x; q, a) − π(x; q, b)).

It follows from Lemma 3.1 with x ′ = max(x, max{j 3γj : γj � x}) that

� = − 2

log x
Re

⎛
⎝(χ̄(a) − χ̄(b))

∑
γj �x

j 3∑
k=1

xσ−δj +i(kγj +θj )m(k, j)

σ − δj + i(kγj + θj )

⎞
⎠

+ O

⎛
⎝ xσ

log2 x

∑
γj �x

x−δj

γ 2
j

j 3∑
k=1

m(k, j)

k2
+ xσ−δ log2 x

⎞
⎠

= 2xσ

log x
Re

⎛
⎝i(χ̄(a) − χ̄(b))

∑
γj �x

x−δj

γj

j 3∑
k=1

x i(kγj +θj )(j 3 + 1 − k)

⎞
⎠

+ O

⎛
⎝ xσ

log x

∑
γj �x

j 4x−δj

γ 2
j

+ xσ−δ log2 x

⎞
⎠ . (2)

Note that
x−δj

γj

= exp

(
− log x

j 8

(
1 + O

(
1

j

))
− j 8 + O(1)

)
.

The maximum of this function over j occurs around J = J (x) := [(log x)1/16]. In this case, we have
log x = J 16(1 + O(1/J )) so that

x−δJ

γJ

= exp(−2J 8 + O(J 7)) = exp(−2(log x)1/2 + O((log x)7/16)). (3)

We will prove that most of the contribution to the main term on the right-hand side of (2) comes for
the js in the range J − J 3/4 � j � J + J 3/4. First, if j � 3J/2 or j � J/2, then

x−δj

γj


 exp(−4J 8) 
 exp(−(log x)1/2)
x−δJ

γJ

.
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Now suppose thatJ/2 < j < J − J 3/4 orJ + J 3/4 < j < 3J/2.Write j = J + r withJ 3/4 < |r| <

J/2. For x > 0, x + 1/x = 2 + (x − 1)2/x, hence

(
1 + r

J

)8 +
(

1 + r

J

)−8
�

(
1 +

∣∣∣ r

J

∣∣∣)8 +
(

1 +
∣∣∣ r

J

∣∣∣)−8
� 2 + (8r/J )2

1 + 8r/J
� 2 + 12(r/J )2.

We infer from (3) that

x−δj

γj

= exp

(
−J 16

j 8

(
1 + O

(
1

J

))
− j 8

)

= exp

(
−J 8

((
1 + r

J

)8 +
(

1 + r

J

)−8
)

+ O(J 7)

)

� exp

(
−2J 8

(
1 + 6√

J

)
+ O(J 7)

)


 exp(−2(log x)1/3)
x−δJ

γJ

.

Since γj � x implies that j 
 (log x)1/8, the contribution of the terms 1 � j < J − J 3/4 or J +
J 3/4 < j to the main term of (2) is


 exp(−2(log x)1/3)
xσ−δJ

γJ

∑
j�(log x)1/4

j 3∑
k=1

(j 3 + 1 − k) 
 exp(−(log x)1/3)
xσ−δJ

γJ

. (4)

Similarly, we have

x−δj

γ 2
j

= exp

(
− log x

j 8

(
1 + O

(
1

j

))
− 2j 8 + O(1)

)


 exp(−2
√

2(log x)1/2(1 + o(1)))


 exp(−2(log x)1/3)
x−δJ

γJ

,

which follows from (3) along with the fact that the maximum of f (t) = − log x/t8 − 2t8 occurs at
t = (log x/2)1/16. Hence, using (3), the contribution of the error term of (2) is


 exp(−2(log x)1/3)
xσ−δJ

γJ

∑
j�(log x)1/4

j 4 + xσ−δ log2 x 
 exp(−(log x)1/3)
xσ−δJ

γJ

. (5)

Therefore, inserting the bounds (4) and (5) in (2), we deduce that

� = 2xσ

log x
Re

⎛
⎝i(χ̄(a) − χ̄(b))

∑
|j−J |�J 3/4

x−δj

γj

j 3∑
k=1

exp(i(kγj + θj ) log x)(j 3 + 1 − k)

⎞
⎠

+ O

(
exp(−(log x)1/3)

xσ−δJ

γJ

)
. (6)
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Let J − J 3/4 � j � J + J 3/4. Then j 16 = J 16(1 + O(J−1/4)). Hence, we get

θj log x =
(

arg(χ(a) − χ(b)) − π

2

) log x

j 16
+ O

(
log x

j 17

)

=
(

arg(χ(a) − χ(b)) − π

2

)
+ O

(
1

J 1/4

)
.

This implies

i(χ̄(a) − χ̄(b)) exp(iθj log x) = |χ(a) − χ(b)|
(

1 + O

(
1

J 1/4

))
,

since ei arg z = z/|z|. Inserting this estimate in (6), we obtain

� =
(

1 + O

(
1

log1/64 x

))
2|χ(a) − χ(b)|

∑
|j−J |�J 3/4

xσ−δj

γj log x
Fγj ,j 3+1(x)

+ O

(
exp(−(log x)1/3)

xσ−δJ

γJ

)
. (7)

For x ∈ [√X, X], we have 1
4 (log X)1/16 � J − J 3/4 and J + J 3/4 � 4(log X)1/16 if X is sufficiently

large, since J = (log x)1/16 + O(1). We define

� :=
{
x ∈ [√X, X] : Fγj ,j 3(x) � −j 3

4
for all

1

4
(log X)1/16 � j � 4(log X)1/16

}
.

Then it follows from Proposition 3.2 that

meas � = X + O

⎛
⎝X

∑
1
4 (log X)1/16�j�4(log X)1/16

1

j 3/2
+ √

X

⎞
⎠

= X(1 + O((log X)−1/32)). (8)

Furthermore, if x ∈ �, then we infer from (7) that

� � −1

3
|χ(a) − χ(b)|

∑
|j−J |�J 3/4

j 3xσ−δj

γj log x
+ O

(
exp(−(log x)1/3)

xσ−δJ

γJ

)
.

� −1

3
|χ(a) − χ(b)|J

3xσ−δJ

γJ log x
(1 + o(1)) � −xσ / exp((2 + o(1))

√
x) < 0

as X → ∞, which completes the proof.
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