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By Daniel Fiorilli at Montreal and Greg Martin at Vancouver

Abstract. Chebyshev was the first to observe a bias in the distribution of primes in
residue classes. The general phenomenon is that if a is a nonsquare ðmod qÞ and b is a
square ðmod qÞ, then there tend to be more primes congruent to a ðmod qÞ than b ðmod qÞ
in initial intervals of the positive integers; more succinctly, there is a tendency for pðx; q; aÞ
to exceed pðx; q; bÞ. Rubinstein and Sarnak defined dðq; a; bÞ to be the logarithmic density
of the set of positive real numbers x for which this inequality holds; intuitively, dðq; a; bÞ is
the ‘‘probability’’ that pðx; q; aÞ > pðx; q; bÞ when x is ‘‘chosen randomly’’. In this paper,
we establish an asymptotic series for dðq; a; bÞ that can be instantiated with an error term
smaller than any negative power of q. This asymptotic formula is written in terms of a
variance Vðq; a; bÞ that is originally defined as an infinite sum over all nontrivial zeros of
Dirichlet L-functions corresponding to characters ðmod qÞ; we show how Vðq; a; bÞ can be
evaluated exactly as a finite expression. In addition to providing the exact rate at which
dðq; a; bÞ converges to 1=2 as q grows, these evaluations allow us to compare the various
density values dðq; a; bÞ as a and b vary modulo q; by analyzing the resulting formulas, we
can explain and predict which of these densities will be larger or smaller, based on arithme-
tic properties of the residue classes a and b ðmod qÞ. For example, we show that if a is a
prime power and a 0 is not, then dðq; a; 1Þ < dðq; a 0; 1Þ for all but finitely many moduli q

for which both a and a 0 are nonsquares. Finally, we establish rigorous numerical bounds
for these densities dðq; a; bÞ and report on extensive calculations of them, including for ex-
ample the determination of all 117 density values that exceed 9=10.
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1. Introduction

We have known for over a century now that the prime numbers are asymptotically
evenly distributed among the reduced residue classes modulo any fixed positive integer q.
In other words, if pðx; q; aÞ denotes the number of primes not exceeding x that are con-
gruent to a ðmod qÞ, then lim

x!y
pðx; q; aÞ=pðx; q; bÞ ¼ 1 for any integers a and b that are

relatively prime to q. However, this information by itself is not enough to tell us about the
distribution of values of the di¤erence pðx; q; aÞ � pðx; q; bÞ, in particular whether this dif-
ference must necessarily take both positive and negative values. Several authors—notably
Chebyshev in 1853 and Shanks [15] in 1959—observed that pðx; 4; 3Þ has an extremely
strong tendency to be greater than pðx; 4; 1Þ, and similar biases exist for other moduli
as well. The general phenomenon is that pðx; q; aÞ tends to exceed pðx; q; bÞ when a is a
nonsquare modulo q and b is a square modulo q.

In 1994, Rubinstein and Sarnak [14] developed a framework for studying these ques-
tions that has proven to be quite fruitful. Define dðq; a; bÞ to be the logarithmic density of
the set of real numbers xf 1 satisfying pðx; q; aÞ > pðx; q; bÞ. (Recall that the logarithmic
density of a set S of positive real numbers is

lim
X!y

�
1

log X

Ð
1exeX

x AS

dx

x

�
;
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or equivalently the natural density of the set flog x : x A Sg.) Rubinstein and Sarnak inves-
tigated these densities under the following two hypotheses:

� The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet L-
functions have real part equal to 1=2.

� A linear independence hypothesis (LI): the nonnegative imaginary parts of these
nontrivial zeros are linearly independent over the rationals.

Under these hypotheses, they proved that the limit defining dðq; a; bÞ always exists
and is strictly between 0 and 1. Among other things, they also proved that dðq; a; bÞ tends
to 1=2 as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues ðmod qÞ.

In the present paper, we examine these densities dðq; a; bÞ more closely. We are partic-
ularly interested in a quantitative statement of the rate at which dðq; a; bÞ approaches 1=2.
In addition, computations show that for a fixed modulus q, the densities dðq; a; bÞ vary as
a and b range over nonsquares and squares modulo q, respectively. We are also interested
in determining which pairs a; b ðmod qÞ give rise to larger or smaller values of dðq; a; bÞ, and
especially in giving criteria that depend as directly as possible on a and b rather than on
analytic data such as the zeros of Dirichlet L-functions.

Our first theorem, which is proved in Section 2.4, exhibits an asymptotic series for
dðq; a; bÞ:

Theorem 1.1. Assume GRH and LI. Let q be a positive integer, and let rðqÞ be the

function defined in Definition 1:2. Let a and b be reduced residues ðmod qÞ such that a is a

nonsquare ðmod qÞ and b is a square ðmod qÞ, and let Vðq; a; bÞ be the variance defined in

Definition 1:3. Then for any nonnegative integer K ,

dðq; a; bÞ ¼ 1

2
þ rðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pVðq; a; bÞ
p PK

l¼0

1

Vðq; a; bÞl
Pl
j¼0

rðqÞ2j
sq;a;bðl; jÞð1:1Þ

þ OK

rðqÞ2Kþ3

Vðq; a; bÞKþ3=2

 !
;

where the real numbers sq;a;bðl; jÞ, which are bounded in absolute value by a function of l
uniformly in q, a, b, and j, are defined in Definition 2:23. In particular, sq;a;bð0; 0Þ ¼ 1, so

that

dðq; a; bÞ ¼ 1

2
þ rðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pVðq; a; bÞ
p þ O

rðqÞ3

Vðq; a; bÞ3=2

 !
:ð1:2Þ

We will see in Proposition 3.6 that Vðq; a; bÞ@ 2fðqÞ log q, and so the error term in
equation (1.1) is fK; e 1=qKþ3=2�e.

The assumption that a is a nonsquare ðmod qÞ and b is a square ðmod qÞ is natural
in this context, reflecting the bias observed by Chebyshev. Rubinstein and Sarnak showed
(assuming GRH and LI) that dðq; b; aÞ þ dðq; a; bÞ ¼ 1; therefore if a is a square ðmod qÞ
and b is a nonsquare ðmod qÞ, the right-hand sides of the asymptotic formulas (1.1) and
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(1.2) become 1=2 � � � � instead of 1=2 þ � � � . Rubinstein and Sarnak also showed that
dðq; b; aÞ ¼ dðq; a; bÞ ¼ 1=2 if a and b are both squares or both nonsquares ðmod qÞ.

The definitions of rðqÞ and of Vðq; a; bÞ are as follows:

Definition 1.2. As usual, oðqÞ denotes the number of distinct prime factors of q.
Define rðqÞ to be the number of real characters ðmod qÞ, or equivalently the index of the
subgroup of squares in the full multiplicative group ðmod qÞ, or equivalently still the num-
ber of solutions of x2 1 1 ðmod qÞ. An exercise in elementary number theory shows that

rðqÞ ¼

2oðqÞ; if 2F q;

2oðqÞ�1; if 2 j q but 4F q;

2oðqÞ; if 4 j q but 8F q;

2oðqÞþ1; if 8 j q;

8>>><
>>>:

which implies that rðqÞfe qe for every e > 0. U

Definition 1.3. For any Dirichlet character w ðmod qÞ, define

bðwÞ ¼
P
g AR

Lð1=2þig;wÞ¼0

1

1=4 þ g2
:

We adopt the convention throughout this paper that the zeros are listed with multiplicity in
all such sums (though note that the hypothesis LI, when in force, implies that all such zeros
are simple). For any reduced residues a and b ðmod qÞ, define

Vðq; a; bÞ ¼
P

w ðmod qÞ
jwðbÞ � wðaÞj2bðwÞ:

We will see in Proposition 2.7 that Vðq; a; bÞ is the variance of a particular distribution
associated with the di¤erence pðx; q; aÞ � pðx; q; bÞ. U

As the asymptotic series in Theorem 1.1 depends crucially on the variance Vðq; a; bÞ,
we next give a formula for it (established in Section 3.2) that involves only a finite number
of easily computed quantities:

Theorem 1.4. Assume GRH. For any pair a, b of distinct reduced residues modulo q,

Vðq; a; bÞ ¼ 2fðqÞ
�
LðqÞ þ Kqða � bÞ þ iqð�ab�1Þ log 2

�
þ 2M �ðq; a; bÞ;

where the functions L, Kq, and iq are defined in Definition 1.5 and the quantity M �ðq; a; bÞ is

defined in Definition 1.6.

The definitions of these three arithmetic functions and of the analytic quantity M � are
as follows:

124 Fioril l i and Martin, Inequities in the Shanks–Rényi prime number race



Definition 1.5. As usual, fðqÞ denotes Euler’s totient function, and LðqÞ denotes the
von Mangoldt function, which takes the value log p if q is a power of the prime p and 0
otherwise. For any positive integer q, define

LðqÞ ¼ log q �
P
p j q

log p

p � 1
þLðqÞ

fðqÞ � ðg0 þ log 2pÞ;

where g0 ¼ lim
x!y

� P
nex

1

n
� log x

�
is Euler’s constant; it can be easily shown that LðqÞ

is positive when qf 43. Note that LðqÞ ¼ logðq=2peg0Þ when q is prime and that
LðqÞ ¼ log q þ Oðlog log qÞ for any integer qf 3. Also let

iqðnÞ ¼
1; if n1 1 ðmod qÞ;
0; if nE 1 ðmod qÞ

�

denote the characteristic function of the integers that are congruent to 1 ðmod qÞ. Finally,
define

KqðnÞ ¼
L
�
q=ðq; nÞ

�
f
�
q=ðq; nÞ

� �LðqÞ
fðqÞ :

Note that these last two functions depend only on the residue class of n modulo q. For this
reason, in expressions such as iqðn�1Þ or Kqðn�1Þ, the argument n�1 is to be interpreted as
an integer that is the multiplicative inverse of n ðmod qÞ. In addition, note that KqðnÞf 0,
since the only way that the second term can contribute is if q is a prime power, in which
case the first term contributes at least as much. On the other hand, Kq is bounded above,
since if q=ðq; nÞ is a power of the prime p, then KqðnÞe ðlog pÞ=ðp � 1Þe log 2. Note also
that KqðnÞ ¼ 0 when ðn; qÞ ¼ 1. U

Definition 1.6. As usual, Lðs; wÞ ¼
Py
n¼1

wðnÞn�s denotes the L-function associated to

the Dirichlet character w. Given such a character w ðmod qÞ, let q� denote its conductor
(that is, the smallest integer d such that w is induced by a character modulo d), and let w�

be the unique character modulo q� that induces w. Now define

M �ðq; a; bÞ ¼
P

w ðmod qÞ
w3w0

jwðaÞ � wðbÞj2 L 0ð1; w�Þ
Lð1; w�Þ

and

Mðq; a; bÞ ¼
P

w ðmod qÞ
w3w0

jwðaÞ � wðbÞj2 L 0ð1; wÞ
Lð1; wÞ : U

The formula for Vðq; a; bÞ in Theorem 1.4 is exact and hence well suited for compu-
tations. For theoretical purposes, however, we need a better understanding of M �ðq; a; bÞ,
which our next theorem (proved in Section 3.3) provides:
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Theorem 1.7. Assume GRH. For any pair a, b of distinct reduced residues modulo q,
let r1 and r2 denote the least positive residues of ab�1 and ba�1 ðmod qÞ, and let the quantity

Hðq; a; bÞ be defined in Definition 1.8. Then

M �ðq; a; bÞ ¼ fðqÞ Lðr1Þ
r1

þLðr2Þ
r2

þ Hðq; a; bÞ þ O
log2 q

q

 !0
@

1
A;

where the implied constant is absolute.

(The unexpected appearance of the specific integers r1 and r2, in a formula for a quan-
tity depending upon entire residue classes ðmod qÞ, is due to the approximation of infinite
series by their first terms—see Proposition 3.12.) The quantity Hðq; a; bÞ is usually quite
small, unless there is an extreme coincidence in the locations of a and b relative to the prime
divisors of q, which would be reflected in a small value of the quantity eðq; p; rÞ defined as
follows:

Definition 1.8. Given an integer q and a prime p, let nf 0 be the integer such that
pn k q (that is, pn j q but pnþ1 F q). For any reduced residue r ðmod qÞ, define

eðq; p; rÞ ¼ minfef 1 : pe 1 r�1 ðmod q=pnÞg;

and define

hðq; p; rÞ ¼ 1

fðpnÞ
log p

peðq;p; rÞ :

When r is not in the multiplicative subgroup generated by p ðmod q=pnÞ, we make the con-
vention that eðq; p; rÞ ¼ y and hðq; p; rÞ ¼ 0. Finally, for any integers a and b, define

Hðq; a; bÞ ¼
P
p j q

�
hðq; p; ab�1Þ þ hðq; p; ba�1Þ

�
:

Note that if q ¼ pn is a prime power, then hðq; p; rÞ ¼ ðlog pÞ=pnðp � 1Þ is independent of r,
which implies that Hðq; a; bÞf ðlog qÞ=q when q is a prime power. U

The extremely small relative error in Theorem 1.1 implies that the formula given
therein is useful even for moderate values of q. The following corollary of the above
theorems, the proof of which is given in Section 4.1, is useful only for large q due to a worse
error term. It has the advantage, however, of isolating the fine-scale dependence of dðq; a; bÞ
on the residue classes a and b from its primary dependence on the modulus q:

Corollary 1.9. Assume GRH and LI. Let qf 43 be an integer. Let a and b be reduced

residues ðmod qÞ such that a is a nonsquare ðmod qÞ and b is a square ðmod qÞ, and let r1

and r2 denote the least positive residues of ab�1 and ba�1 ðmod qÞ. Then

dðq; a; bÞ ¼ 1

2
þ rðqÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðqÞLðqÞ

p 1 � Dðq; a; bÞ
2LðqÞ þ O

1

log2 q

� � !
;ð1:3Þ
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where

Dðq; a; bÞ ¼ Kqða � bÞ þ iqð�ab�1Þ log 2 þLðr1Þ
r1

þLðr2Þ
r2

þ Hðq; a; bÞð1:4Þ

(here, the functions L, Kq, and iq are defined in Definition 1.5, and H is defined in

Definition 1.8). Moreover, Dðq; a; bÞ is nonnegative and bounded above by an absolute

constant.

Armed with this knowledge of the delicate dependence of dðq; a; bÞ on the residue
classes a and b, we are actually able to ‘‘race races’’, that is, investigate inequalities between
various values of dðq; a; bÞ as q increases. We remark that Feuerverger and Martin [5],
Theorem 2 (b), showed that dðq; a; bÞ ¼ dðq; ab�1; 1Þ for any square b ðmod qÞ, and so it
often su‰ces to consider only the densities dðq; a; 1Þ. Some surprising inequalities come to
light when we fix the residue class a and allow the modulus q to vary (among moduli rela-
tively prime to a for which a is a nonsquare). Our next theorem, which is a special case of
Corollary 4.3 derived in Section 4.2, demonstrates some of these inequalities:

Theorem 1.10. Assume GRH and LI.

� For any integer a3�1, we have dðq;�1; 1Þ < dðq; a; 1Þ for all but finitely many

integers q with ðq; aÞ ¼ 1 such that both �1 and a are nonsquares ðmod qÞ.

� If a is a prime power and a 0 3�1 is an integer that is not a prime power, then

dðq; a; 1Þ < dðq; a 0; 1Þ for all but finitely many integers q with ðq; aa 0Þ ¼ 1 such that both a

and a 0 are nonsquares ðmod qÞ.

� If a and a 0 are prime powers with LðaÞ=a > Lða 0Þ=a 0, then dðq; a; 1Þ < dðq; a 0; 1Þ for

all but finitely many integers q with ðq; aa 0Þ ¼ 1 such that both a and a 0 are nonsquares

ðmod qÞ.

Finally, these results have computational utility as well. A formula ([5], equation
(2-57)) for calculating the value of dðq; a; bÞ is known. However, this formula requires
knowledge of a large number of zeros of all Dirichlet L-functions associated to characters
ðmod qÞ even to estimate via numerical integration; therefore it becomes unwieldy to use
the formula when q becomes large. On the other hand, the asymptotic series in Theorem
1.1 can be made completely e¤ective, and the calculation of Vðq; a; bÞ is painless thanks
to Theorem 1.4. Therefore the densities dðq; a; bÞ can be individually calculated, and collec-
tively bounded, for large q.

For example, the values of dðq; a; bÞ for all moduli up to 1000 are plotted in Figure 1.
The modulus q is given on the horizontal axis; the vertical line segment plotted for each q

extends between the maximal and minimal values of dðq; a; bÞ, as a runs over all nonsquares
ðmod qÞ and b runs over all squares ðmod qÞ. (Of course both a and b should be relatively
prime to q. We also omit moduli of the form q1 2 ðmod 4Þ, since the distribution of primes
into residue classes modulo such q is the same as their distribution into residue classes
modulo q=2.)
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The values shown in Figure 1 organize themselves into several bands; each band cor-
responds to a constant value of rðqÞ, the e¤ect of which on the density dðq; a; bÞ can be
clearly seen in the second term on the right-hand side of equation (1.3). For example, the
lowest (and darkest) band corresponds to moduli q for which rðqÞ ¼ 2, meaning odd
primes and their powers (as well as q ¼ 4); the second-lowest band corresponds to those
moduli for which rðqÞ ¼ 4, consisting essentially of numbers with two distinct prime fac-
tors; and so on, with the first modulus q ¼ 840 for which rðqÞ ¼ 32 (the segment closest
to the upper right-hand corner of the graph) hinting at the beginning of a fifth such band.
Each band decays roughly at a rate of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q log q

p
, as is also evident from the aforemen-

tioned term of equation (1.3).

To give one further example of these computations, which we describe in Section 5.4,
we are able to find the largest values of dðq; a; bÞ that ever occur. (All decimals listed in this
paper are rounded o¤ in the last decimal place.)

Theorem 1.11. Assume GRH and LI. The ten largest values of dðq; a; bÞ are given in

Table 1.

Our approach expands upon the seminal work of Rubinstein and Sarnak [14], who
introduced a random variable whose distribution encapsulates the information needed to

Figure 1. All densities dðq; a; bÞ with qe 1000.

q a b dðq; a; bÞ

24 5 1 0.999988
24 11 1 0.999983
12 11 1 0.999977
24 23 1 0.999889
24 7 1 0.999834
24 19 1 0.999719
8 3 1 0.999569
12 5 1 0.999206
24 17 1 0.999125
3 2 1 0.999063

Table 1. The top 10 most unfair prime number races.
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understand pðx; q; aÞ � pðx; q; bÞ. We discuss these random variables, formulas and esti-
mates for their characteristic functions (that is, Fourier transforms), and the subsequent
derivation of the asymptotic series from Theorem 1.1 in Section 2. In Section 3 we demon-
strate how to transform the variance Vðq; a; bÞ from an infinite sum into a finite expression;
we can even calculate it extremely precisely using only arithmetic (rather than analytic) in-
formation. We also show how the same techniques can be used to establish a central limit
theorem for the aforementioned distributions, and we outline how modifications of our ar-
guments can address the two-way race between all nonresidues and all residues ðmod qÞ.
We investigate the fine-scale e¤ect of the particular residue classes a and b upon the density
dðq; a; bÞ in Section 4; we also show how a similar analysis can explain a ‘‘mirror image’’
phenomenon noticed by Bays and Hudson [3]. Finally, Section 5 is devoted to explicit esti-
mates and a description of our computations of the densities and the resulting conclusions,
including Theorem 1.11.

Acknowledgment. The authors thank Brian Conrey and K. Soundararajan for
suggesting proofs of Lemma 2.8 (c) and Proposition 3.10, respectively, that were supe-
rior to our original proofs. We also thank Andrew Granville for indicating how to im-
prove the error term in Proposition 3.11, as well as Colin Myerscough for correcting a
numerical error in Proposition 2.14 that a¤ected our computations in Sections 5.3–5.4.
Robert Rumely and Michael Rubinstein provided lists of zeros of Dirichlet L-functions
and the appropriate software to compute these zeros, which are needed for the calcu-
lations of the densities in Section 5, and we thank them as well. Finally, we express
our gratitude to our advisors past and present, Andrew Granville, Hugh Montgomery,
and Trevor Wooley, both for their advice about this paper and for their guidance in
general.

2. The asymptotic series for the density d(q; a, b)

The ultimate goal of this section is to prove Theorem 1.1. We begin in Section 2.1
by describing a random variable whose distribution is the same as the limiting logarithmic
distribution of a suitably normalized version of pðx; q; aÞ � pðx; q; bÞ, as well as calculat-
ing its variance. This approach is the direct descendant of that of Rubinstein and Sarnak
[14]; one of our main innovations is the exact evaluation of the variance Vðq; a; bÞ in a
form that does not involve the zeros of Dirichlet L-functions. In Section 2.2 we derive the
formula for the characteristic function (Fourier transform) of that random variable; this
formula is already known, but our derivation is slightly di¤erent and allows us to write
the characteristic function in a convenient form (see Proposition 2.12). We then use our
knowledge of the characteristic function to write the density dðq; a; bÞ as the truncation
of an infinite integral in Section 2.3, where the error terms are explicitly bounded using
knowledge of the counting function NðT ; wÞ of zeros of Dirichlet L-functions. Finally, we
derive the asymptotic series from Theorem 1.1 from this truncated integral formula in
Section 2.4.

2.1. Distributions and random variables. We begin by describing random variables
related to the counting functions of primes in arithmetic progressions. As is typical when
considering primes in arithmetic progressions, we first consider expressions built out of
Dirichlet characters.
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Definition 2.1. For any Dirichlet character w such that GRH holds for Lðs; wÞ,
define

Eðx; wÞ ¼
P
g AR

Lð1=2þig;wÞ¼0

xig

1=2 þ ig
:

This sum does not converge absolutely, but (thanks to GRH and the functional equation
for Dirichlet L-functions) it does converge conditionally when interpreted as the limit ofP
jgj<T

as T tends to infinity. All untruncated sums over zeros of Dirichlet L-functions in

this paper should be similarly interpreted. U

Definition 2.2. For any real number g, let Zg denote a random variable that is uni-
formly distributed on the unit circle, and let Xg denote the random variable that is the real
part of Zg. We stipulate that the collection fZgggf0 is independent and that Z�g ¼ Zg; this
implies that the collection fXgggf0 is also independent and that X�g ¼ Xg. U

By the limiting logarithmic distribution of a real-valued function f ðtÞ, we mean the
measure dn having the property that the limiting logarithmic density of the set of positive

real numbers such that f ðtÞ lies between a and b is
Ðb
a

dn for any interval ða; bÞ.

Proposition 2.3. Assume LI. Let fcw : w ðmod qÞg be a collection of complex numbers,
indexed by the Dirichlet characters ðmod qÞ, satisfying cw ¼ cw. The limiting logarithmic dis-

tribution of the function

P
w ðmod qÞ

cwEðx; wÞ

is the same as the distribution of the random variable

2
P

w ðmod qÞ
jcwj

P
g>0

Lð1=2þig;wÞ¼0

Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p :

Proof. We have

P
w ðmod qÞ

cwEðx; wÞ ¼ lim
T!y

P
w ðmod qÞ

cw
P

jgj<T
Lð1=2þig;wÞ¼0

xig

1=2 þ ig

¼ lim
T!y

P
w ðmod qÞ

cw

� P
0<g<T

Lð1=2þig;wÞ¼0

xig

1=2 þ ig
þ

P
�T<g<0

Lð1=2þig;wÞ¼0

xig

1=2 þ ig

�
:

(The assumption of LI precludes the possibility that g ¼ 0.) By the functional equation,
the zeros of Lðs; wÞ below the real axis correspond to those of Lðs; wÞ above the real axis.
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Therefore

P
w ðmod qÞ

cwEðx; wÞ ¼ lim
T!y

P
w ðmod qÞ

cw

� P
0<g<T

Lð1=2þig;wÞ¼0

xig

1=2þ ig
þ

P
0<g<T

Lð1=2þig;wÞ¼0

x�ig

1=2� ig

�
ð2:1Þ

¼ lim
T!y

� P
w ðmod qÞ

cw
P

0<g<T
Lð1=2þig;wÞ¼0

xig

1=2 þ ig

þ
P

w ðmod qÞ
cw

P
0<g<T

Lð1=2þig;wÞ¼0

xig

1=2 þ ig

�
:

Reindexing this last sum by replacing w by w, we obtain

P
w ðmod qÞ

cwEðx; wÞ ¼ lim
T!y

� P
w ðmod qÞ

cw
P

0<g<T
Lð1=2þig;wÞ¼0

xig

1=2 þ ig
ð2:2Þ

þ
P

w ðmod qÞ
cw

P
0<g<T

Lð1=2þig;wÞ¼0

xig

1=2 þ ig

�

¼ lim
T!y

2 Re

� P
w ðmod qÞ

cw
P

0<g<T
Lð1=2þig;wÞ¼0

xig

1=2 þ ig

�

¼ 2 lim
T!y

P
w ðmod qÞ

jcwjRe

� P
0<g<T

Lð1=2þig;wÞ¼0

eig log xyw; gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p �
;

where yw; g ¼ cw 1=2 þ igj j=jcwj 1=2 þ igð Þ is a complex number of modulus 1. The quantity
eig log xyw; g is uniformly distributed (as a function of log x) on the unit circle as x tends
to infinity, and hence its limiting logarithmic distribution is the same as the distribu-
tion of Zg. Since the various g in each inner sum are linearly independent over the rationals
by LI, the tuple ðeig log xyw; gÞ0<g<T is uniformly distributed in the NðT ; wÞ-dimensional
torus by Kronecker’s theorem. Therefore the limiting logarithmic distribution of the
sum

P
0<g<T

Lð1=2þig;wÞ¼0

eig log xyw; gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p

is the same as the distribution of the random variable

P
0<g<T

Lð1=2þig;wÞ¼0

Zgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p :
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Finally, the work of Rubinstein and Sarnak ([14], Section 3.1) shows that the limiting
logarithmic distribution of

P
w ðmod qÞ

cwEðx; wÞ ¼ 2 lim
T!y

P
w ðmod qÞ

jcwjRe

� P
0<g<T

Lð1=2þig;wÞ¼0

eig log xyw; gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p �

is the same as the distribution of the random variable

P
w ðmod qÞ

cwEðx; wÞ ¼ 2 lim
T!y

P
w ðmod qÞ

jcwj
P

0<g<T
Lð1=2þig;wÞ¼0

Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p

¼ 2
P

w ðmod qÞ
jcwj

P
g>0

Lð1=2þig;wÞ¼0

Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p ;

the convergence of this last limit being ensured by the fact that the Xg are bounded and that
each of the sums

P
g>0

Lð1=2þig;wÞ¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p
 !2

e bðwÞ

is finite. This establishes the lemma. r

We shall have further occasion to change the indexing of sums, between over all g and
over only positive g, in the same manner as in equations (2.1) and (2.2); henceforth we shall
justify such changes ‘‘by the functional equation for Dirichlet L-functions’’ and omit the
intermediate steps.

Definition 2.4. For any relative prime integers q and a, define

cðq; aÞ ¼ �1 þKfx ðmod qÞ : x2 1 a ðmod qÞg:

Note that cðq; aÞ takes only the values �1 and rðqÞ � 1. Now, with Xg as defined in Defini-
tion 2.2, define the random variable

Xq;a;b ¼ cðq; bÞ � cðq; aÞ þ 2
P

w ðmod qÞ
jwðbÞ � wðaÞj

P
g>0

Lð1=2þig;wÞ¼0

Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p :

Note that the expectation of the random variable Xq;a;b is eitherGrðqÞ or 0, depending on
the values of cðq; aÞ and cðq; bÞ. U

Definition 2.5. With pðx; q; aÞ ¼Kfpe x : p prime; p1 a ðmod qÞg denoting the
counting function of primes in the arithmetic progression a ðmod qÞ, define the normalized
error term

Eðx; q; aÞ ¼ log xffiffiffi
x

p
�
fðqÞpðx; q; aÞ � pðxÞ

�
: U
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The next proposition characterizes the limiting logarithmic distribution of the di¤er-
ence of two of these normalized counting functions.

Proposition 2.6. Assume GRH and LI. Let a and b be reduced residues modulo q. The

limiting logarithmic distribution of Eðx; q; aÞ � Eðx; q; bÞ is the same as the distribution of the

random variable Xq;a;b defined in Definition 2.4.

Remark. Since dðq; a; bÞ is defined to be the logarithmic density of those real num-
bers x for which pðx; q; aÞ > pðx; q; bÞ, or equivalently for which Eðx; q; aÞ > Eðx; q; bÞ, we
see that dðq; a; bÞ equals the probability that Xq;a;b is greater than 0. However, we never use
this fact directly in the present paper, instead quoting from [5] a consequence of that fact in
equation (2.10) below.

Proof. As is customary, define

cðx; wÞ ¼
P

nex

wðnÞLðnÞ:

A consequence of the explicit formula for cðx; wÞ that arises from the analytic proof of the
prime number theorem for arithmetic progressions ([11], Corollary 12.11, combined with
[11], (12.12)) is that for w3 w0,

cðx; wÞ ¼ �
P
g AR

Lð1=2þig;wÞ¼0

x1=2þig

1=2 þ ig
þ Oðlog q � log xÞ

under the assumption of GRH. We also know ([14], Lemma 2.1) that

Eðx; q; aÞ ¼ �cðq; aÞ þ
P

w ðmod qÞ
w3w0

wðaÞcðx; wÞffiffiffi
x

p þ Oq

1

log x

� �
:ð2:3Þ

Combining these last two equations with Definition 2.1 for Eðx; wÞ, we obtain

Eðx; q; aÞ ¼ �cðq; aÞ �
P

w ðmod qÞ
w3w0

wðaÞEðx; wÞ þ Oq

1

log x

� �
:

We therefore see that

Eðx; q; aÞ � Eðx; q; bÞ ¼ cðq; bÞ � cðq; aÞ þ
P

w ðmod qÞ

�
wðbÞ � wðaÞ

�
Eðx; wÞ þ Oq

1

log x

� �

(where we have added in the w ¼ w0 term for convenience). The error term tends to zero as
x grows and thus does not a¤ect the limiting distribution, and the constant cðq; bÞ � cðq; aÞ
is independent of x. Therefore, by Proposition 2.3, the limiting logarithmic distribution of
Eðx; q; aÞ � Eðx; q; bÞ is the same as the distribution of the random variable

cðq; bÞ � cðq; aÞ þ 2
P

w ðmod qÞ
jwðbÞ � wðaÞj

P
g>0

Lð1=2þig;wÞ¼0

Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p :
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Since jwðbÞ � wðaÞj ¼ jwðbÞ � wðaÞj, this last expression is exactly the random variable Xq;a;b

as claimed. r

To conclude this section, we calculate the variance of the random variable Xq;a;b.

Proposition 2.7. Assume LI. Let fcw : w ðmod qÞg be a collection of complex numbers

satisfying cw ¼ cw. For any constant m, the variance of the random variable

mþ 2
P

w ðmod qÞ
cw

P
g>0

Lð1=2þig;wÞ¼0

Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

pð2:4Þ

equals
P

w ðmod qÞ
jcwj2bðwÞ, where bðwÞ was defined in Definition 1.3. In particular, the variance

of the random variable Xq;a;b defined in Definition 2.4 is equal to the quantity Vðq; a; bÞ
defined in Definition 1.3.

Proof. The random variables fXg : g > 0g form an independent collection by defini-
tion; it is important to note that no single variable Xg can correspond to multiple char-
acters w, due to the assumption of LI. The variance of the sum (2.4) is therefore simply the
sum of the individual variances, that is,

s2

�
2
P

w ðmod qÞ
jcwj

P
g>0

Lð1=2þig;wÞ¼0

Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p �
¼ 4

P
w ðmod qÞ

jcwj2
P
g>0

Lð1=2þig;wÞ¼0

s2ðXgÞ
1=4 þ g2

:

The variance of any Xg is 1=2, and so this last expression equals

2
P

w ðmod qÞ
jcwj2

P
g>0

Lð1=2þig;wÞ¼0

1

1=4 þ g2

¼
P

w ðmod qÞ
jcwj2

P
g>0

Lð1=2þig;wÞ¼0

1

1=4 þ g2
þ

P
w ðmod qÞ

jcwj2
P
g<0

Lð1=2þig;wÞ¼0

1

1=4 þ g2

¼
P

w ðmod qÞ
jcwj2

P
g AR

Lð1=2þig;wÞ¼0

1

1=4 þ g2
¼

P
w ðmod qÞ

jcwj2bðwÞ

by the functional equation for Dirichlet L-functions. The fact that Vðq; a; bÞ is the variance
of Xq;a;b now follows directly from their definitions. r

2.2. Calculating the characteristic function. The characteristic function X̂X q;a;bðzÞ
of the random variable Xq;a;b will be extremely important to our analysis of the density
dðq; a; bÞ. To derive the formula for this characteristic function, we begin by setting down
some relevant facts about the standard Bessel function J0 of order zero. Specifically, we col-
lect in the following lemma some useful information about the power series coe‰cients ln

for

log J0ðzÞ ¼
Py
n¼0

lnzn;ð2:5Þ
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which is valid for jzje 12=5 since J0 has no zeros in a disk of radius slightly larger than
12=5 centered at the origin.

Lemma 2.8. Let the coe‰cients ln be defined in equation (2.5). Then:

(a) ln f
5

12

� �n

uniformly for nf 0,

(b) l0 ¼ 0 and l2m�1 ¼ 0 for every mf 1,

(c) l2m < 0 for every mf 1,

(d) ln is a rational number for every nf 0.

Proof. The fact that log J0 is analytic in a disk of radius slightly larger than 12=5
centered at the origin immediately implies part (a). Part (b) follows from the fact that J0

is an even function with J0ð0Þ ¼ 1. Next, J0 has the product expansion ([17], Section
15.41, equation (3))

J0ðzÞ ¼
Qy
k¼1

1 � z2

z2
k

� �
;

where the zk are the positive zeros of J0. Taking logarithms of both sides and expanding
each summand in a power series (valid for jzje 12=5 as before) gives

log J0ðzÞ ¼
Py
k¼1

log 1 � z2

z2
k

� �
¼ �

Py
n¼1

z2n

n

Py
k¼1

1

z2n
k

;

which shows that l2n ¼ �n�1
Py
k¼1

z�2n
k is negative, establishing part (c). Finally, the Bessel

function J0ðzÞ ¼
Py

m¼0

ð�1=4Þm
z2m=ðm!Þ2 itself has a power series with rational coe‰cients,

as does logð1 þ zÞ; therefore the composition log
�
1 þ

�
J0ðzÞ � 1

��
also has rational coe‰-

cients, establishing part (d). r

Definition 2.9. Let ln be defined in equation (2.5). For any distinct reduced residues
a and b ðmod qÞ, define

Wnðq; a; bÞ ¼
22njl2nj

Vðq; a; bÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n P

g>0
Lð1=2þig;wÞ¼0

1

ð1=4 þ g2Þn ;ð2:6Þ

where Vðq; a; bÞ was defined in Definition 1.3, so that W1ðq; a; bÞ ¼ 1

2
for example. U

In fact, Wnðq; a; bÞVðq; a; bÞ is (up to a constant factor depending on n) the 2nth
cumulant of X ðq; a; bÞ, which explains why it will appear in the lower terms of the asymp-
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totic formula. We have normalized by Vðq; a; bÞ so that the Wnðq; a; bÞ depend upon q, a,
and b in a bounded way:

Proposition 2.10. We have Wnðq; a; bÞf
10

3

� �2n

uniformly for all integers q and all

reduced residues a and b ðmod qÞ.

Proof. From Definition 2.9 and Lemma 2.8 (a), we see that

Wnðq; a; bÞf
22n

Vðq; a; bÞ
5

12

� �2n P
w ðmod qÞ

jwðaÞ � wðbÞj2n P
g>0

Lð1=2þig;wÞ¼0

1

ð1=4 þ g2Þn

f
ð5=6Þ2n

Vðq; a; bÞ
P

w ðmod qÞ
22n�2jwðbÞ � wðaÞj2

P
g>0

Lð1=2þig;wÞ¼0

4n�1

1=4 þ g2

¼ 5

6

� �2n

22n�24n�1 f
10

3

� �2n

;

as claimed. r

The following functions are necessary to write down the formula for the characteristic
function X̂X q;a;b.

Definition 2.11. For any Dirichlet character w, define

Fðz; wÞ ¼
Q
g>0

L 1
2
þig;wð Þ¼0

J0
2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p
 !

:

Then define

Fq;a;bðzÞ ¼
Q

w ðmod qÞ
F
�
jwðaÞ � wðbÞjz; w

�
for any reduced residues a and b ðmod qÞ. Note that jFðx; wÞje 1 for all real numbers x,
since the same is true of J0. U

The quantity Wnðq; a; bÞ owes its existence to the following convenient expansion:

Proposition 2.12. For any reduced residue classes a and b ðmod qÞ,

Fq;a;bðzÞ ¼ exp

�
�Vðq; a; bÞ

Py
m¼1

Wmðq; a; bÞz2m

�

for jzj < 3

10
. In particular,

Fq;a;bðzÞ ¼ e�Vðq;a;bÞz2=2
�
1 þ O

�
Vðq; a; bÞz4

��
for jzjemin Vðq; a; bÞ�1=4;

1

4

� �
.
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Proof. Taking logarithms of both sides of the definition of Fq;a;bðzÞ in Defini-
tion 2.11 yields

logFq;a;bðzÞ ¼
P

w ðmod qÞ

P
g>0

Lð1=2þig;wÞ¼0

log J0
2jwðaÞ � wðbÞjzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p

 !
:

Since jzj < 3=10, the argument of the logarithm of J0 is at most 2 � 2 � 3

10

�
1

2
¼ 12

5
, and so

the power series expansion (2.5) converges absolutely, giving

logFq;a;bðzÞ ¼
P

w ðmod qÞ

P
g>0

Lð1=2þig;wÞ¼0

Py
n¼0

ln

2jwðaÞ � wðbÞjzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p
 !n

:

By Lemma 2.8 (b) only the terms n ¼ 2m with mf 1 survive, and by Lemma 2.8 (c) we
may replace l2m by �jl2mj. We thus obtain

logFq;a;bðzÞ ¼ �
Py

m¼0

z2m � jl2mj22m
P

w ðmod qÞ
jwðaÞ � wðbÞj2m P

g>0
Lð1=2þig;wÞ¼0

1

1=4 þ g2ð Þm

¼ �
Py

m¼1

Vðq; a; bÞWmðq; a; bÞz2m

for jzj < 3=10, by Definition 2.9 for Wmðq; a; bÞ. This establishes the first assertion of the
proposition.

By Proposition 2.10, we also have

Py
m¼2

Wmðq; a; bÞz2m f
Py

m¼2

10

3

� �2m

z2m ¼ ð10=3Þ4
z4

1 � 100z2=9
f z4ð2:7Þ

uniformly for jzje 1=4, say. Therefore by the first assertion of the proposition,

Fq;a;bðzÞ ¼ exp
�
�Vðq; a; bÞW1ðq; a; bÞz2

�
exp

�
�Vðq; a; bÞ

Py
m¼2

Wmðq; a; bÞz2m

�

¼ e�Vðq;a;bÞz2=2 exp
�
O
�
Vðq; a; bÞz4

��
¼ e�Vðq;a;bÞz2=2

�
1 þ O

�
Vðq; a; bÞz4

��

as long as Vðq; a; bÞz4 e 1. This establishes the second assertion of the proposition. r

All the tools are now in place to calculate the characteristic function

X̂X q;a;bðzÞ ¼ EðeizXq; a; bÞ:
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Proposition 2.13. For any reduced residue classes a and b ðmod qÞ,

X̂X q;a;bðzÞ ¼ eizðcðq;bÞ�cðq;aÞÞFq;a;bðzÞ:

In particular,

log X̂X q;a;bðzÞ ¼ i
�
cðq; aÞ � cðq; bÞ

�
z � 1

2
Vðq; a; bÞz2 þ O

�
Vðq; a; bÞz4

�

for jzje 1

4
.

Remark. The first assertion of the proposition was shown by Feuerverger and
Martin [5] by a slightly di¤erent method. Unfortunately an i in the exponential factor
of [5], equation (2-21), is missing, an omission that is repeated in the statement of [5],
Theorem 4.

Proof. For a random variable X , define the cumulant-generating function

gX ðtÞ ¼ log X̂XðtÞ ¼ log EðeitX Þ

to be the logarithm of the characteristic function of X . It is easy to see that gaX ðtÞ ¼ gX ðatÞ
for any constant a. Moreover, if X and Y are independent random variables, then we
have EðeitX eitY Þ ¼ EðeitX ÞEðeitY Þ and so gXþY ðtÞ ¼ gX ðtÞ þ gY ðtÞ. Note that if the random
variable C is constant with value c, then gCðtÞ ¼ itc.

We can also calculate gXg
ðtÞ where Xg was defined in Definition 2.2. Indeed, if Y is

a random variable uniformly distributed on the interval ½�p; p�, then Zg ¼ eiY and thus
Xg ¼ cosY, whence

gXg
ðtÞ ¼ log Eðeit cosYÞ ¼ log

� Ðp
�p

eit cos y dy

2p

�
¼ log J0ðtÞ;

where J0 is the Bessel function of order zero ([1], 9.1.21).

From Definition 2.4, the above observations yield

gXq; a; b
ðtÞ ¼ it

�
cðq; bÞ � cðq; aÞ

�
þ

P
w ðmod qÞ

P
g>0

Lð1=2þig;wÞ¼0

gXg

2jwðaÞ � wðbÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p t

 !
;

in other words,

log X̂X q;a;bðtÞ ¼ it
�
cðq; bÞ � cðq; aÞ

�
ð2:8Þ

þ
P

w ðmod qÞ

P
g>0

Lð1=2þig;wÞ¼0

log J0
2jwðaÞ � wðbÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p t

 !

¼ it
�
cðq; bÞ � cðq; aÞ

�
þ logFq;a;bðxÞ
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according to Definition 2.11. Exponentiating both sides establishes the first assertion
of the proposition. To establish the second assertion, we combine equation (2.8) with
Proposition 2.12 to see that for jzje 1=4,

log X̂X q;a;bðtÞ ¼ it
�
cðq; bÞ � cðq; aÞ

�
� Vðq; a; bÞ

Py
m¼1

Wmðq; a; bÞz2m

¼ it
�
cðq; bÞ � cðq; aÞ

�
� 1

2
Vðq; a; bÞz2 þ O

�
Vðq; a; bÞz4

�

by the estimate (2.7) and the fact that W1ðq; a; bÞ ¼
1

2
. r

2.3. Bounds for the characteristic function. A formula (namely equation (2.10)
below) is known that relates dðq; a; bÞ to an integral involving Fq;a;b. Using this formula
to obtain explicit estimates for dðq; a; bÞ requires explicit estimates upon Fq;a;b; our first
estimate shows that this function takes its largest values near 0.

Proposition 2.14. Let 0e ke 5=24. For any reduced residue classes a and b ðmod qÞ,
we have jFq;a;bðtÞje jFq;a;bðkÞj for all tf k.

Proof. From Definition 2.11, it su‰ces to show that for any real number g > 0,

J0
2jwðaÞ � wðbÞjtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p

 !					
					e J0

2jwðaÞ � wðbÞjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p
 !					

					ð2:9Þ

for all tf k. We use the facts that J0 is a positive, decreasing function on the interval
½0; 5=3� and that J0ð5=3Þf jJ0ðxÞj for all xf 5=3. Since

0e
2jwðaÞ � wðbÞjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p e

2 � 2 � 5=24ffiffiffiffiffiffiffiffi
1=4

p ¼ 5

3
;

we see that J0 is positive and decreasing on the interval

2jwðaÞ � wðbÞjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p ;
5

3

" #
:

Together with J0ð5=3Þf jJ0ðxÞj for all xf 5=3, this establishes equation (2.9) and hence
the lemma. r

Let NðT ; wÞ denote, as usual, the number of nontrivial zeros of Lðs; wÞ having imagi-
nary part at most T in absolute value. Since the function Fq;a;b is a product indexed
by these nontrivial zeros, we need to establish the following explicit estimates for NðT ; wÞ.
Although exact values for the constants in the results of this section are not needed for
proving Theorem 1.1, they will become necessary in Section 5 when we explicitly calculate
values and bounds for dðq; a; bÞ.
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Proposition 2.15. Let the nonprincipal character w ðmod qÞ be induced by

w� ðmod q�Þ. For any real number T f 1,

NðT ; wÞe T

p
log

q�T

2pe
þ 0:68884 log

q�T

2pe
þ 10:6035:

For T f 100,

NðT ; wÞf 44T

45p
log

q�T

2pe
� 10:551:

Proof. We cite the following result of McCurley ([10], Theorem 2.1): for T f 1 and
h A ð0; 0:5�,

NðT ; wÞ � T

p
log

q�T

2pe

				
				< C1 log q�T þ C2;

with

C1 ¼ 1 þ 2h

p log 2

and

C2 ¼ :3058 � :268hþ 4
log zð1 þ hÞ

log 2
� 2

log zð2 þ 2hÞ
log 2

þ 2

p

log zð3=2 þ 2hÞ
log 2

:

(McCurley states his result for primitive nonprincipal characters, but since Lðs; wÞ and
Lðs; w�Þ have the same zeros inside the critical strip, the result holds for any nonprincipal
character.) Taking h ¼ 0:25, we obtain

NðT ; wÞ � T

p
log

q�T

2pe

				
				< 0:68884 log q�T þ 8:64865 < 0:68884 log

q�T

2pe
þ 10:6035:

This inequality establishes the first assertion of the proposition. The inequality also implies
that

NðT ; wÞ > 44T

45p
log

q�T

2pe
þ T

45p
� :68884

� �
log

q�T

2pe
� 10:6035

 !
;

the second assertion of the proposition follows upon calculating that the expression in
parentheses is at least �10:551 when T f 100 (we know that q� f 3 as there are no non-
principal primitive characters modulo 1 or 2). r

The next two results establish an exponentially decreasing upper bound for Fq;a;bðtÞ
when t is large.

Lemma 2.16. For any nonprincipal character w ðmod qÞ, we have

jFðx; wÞFðx; wÞje e�0:2725x

for xf 200.
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Proof. First note that

Fðx; wÞ ¼
Q
g>0

Lð1=2þig;wÞ¼0

J0
2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p

 !
¼

Q
g<0

Lð1=2þig;wÞ¼0

J0
2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ ð�gÞ2
q

0
@

1
A

by the identity Lðs; wÞ ¼ Lðs; wÞ, and therefore

Fðx; wÞFðx; wÞ ¼
Q
g AR

Lð1=2þig;wÞ¼0

J0
2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p

 !
:

Using the bound ([14], equation (4.5))

jJ0ðzÞjemin 1;

ffiffiffiffiffiffiffiffi
2

pjxj

s( )
;

we see that for xf 1,

jFðx; wÞFðx; wÞje
Q

�x=2<g<x=2
Lð1=2þig;wÞ¼0

J0
2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p

 !					
					e Q

jgj<x=2
Lð1=2þig;wÞ¼0

ð1=4 þ g2Þ1=4ffiffiffiffiffiffi
px

p :

When xf 1 and jgj < x=2, the factor ð1=4 þ g2Þ1=4ðpxÞ�1=2 never exceeds 1=2. Therefore

jFðx; wÞFðx; wÞje 2�Nðx=2;wÞ ¼ exp
�
�ðlog 2ÞNðx=2; wÞ

�
:

By Proposition 2.15, we thus have for xf 200

jFðx; wÞFðx; wÞje 210:558 exp � 22 log 2

45p
x log

q�x

4pe

� �

e exp �0:107866x log
3x

4pe
þ 7:3183

� �
e e�0:2725x;

as claimed. r

Proposition 2.17. For any distinct reduced residue classes a and b ðmod qÞ such that

ðab; qÞ ¼ 1, we have jFq;a;bðtÞje e�0:0454fðqÞt for tf 200.

Proof. We begin by noting that the orthogonality relations for Dirichlet characters
imply that

P
w ðmod qÞ

jwðaÞ � wðbÞj2 ¼ 2fðqÞ (as we show in Proposition 3.1 below). On the

other hand, if S is the set of characters w ðmod qÞ such that jwðaÞ � wðbÞjf 1, then

P
w ðmod qÞ

jwðaÞ � wðbÞj2 e
P

w ðmod qÞ
w BS

1 þ
P
w AS

4 ¼ fðqÞ �KS þ 4KS:
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Combining these two inequalities shows that

2fðqÞe fðqÞ þ 3KS;

or equivalently KS f
1

3
fðqÞ. Note that clearly w0 B S.

From Definition 2.11, we have

jFq;a;bðtÞj2 ¼
Q

w ðmod qÞ

		F�jwðaÞ � wðbÞjt; w
�		2

¼
Q

w ðmod qÞ

		F�jwðaÞ � wðbÞjt; w
�
F
�
jwðaÞ � wðbÞjt; w

�		;
since every character appears once as w and once as w in the product on the right-hand side.
Since jFðx; wÞje 1 for all real numbers x, we can restrict the product on the right-hand side
to those characters w A S and still have a valid upper bound. For any w A S, Lemma 2.16
gives us

		F�jwðaÞ � wðbÞjt; w
�
F
�
jwðaÞ � wðbÞjt; w

�		e e�0:2725jwðaÞ�wðbÞjt e e�0:2725t for tf 200,
whence

jFq;a;bðtÞj2 e
Q
w AS

		F�jwðaÞ � wðbÞjt; w
�
F
�
jwðaÞ � wðbÞjt; w

�		
e ðe�0:2725tÞKS

e ðe�0:0454fðqÞtÞ2;

which is equivalent to the assertion of the proposition. r

At this point we can establish the required formula for dðq; a; bÞ, in terms of a
truncated integral involving Fq;a;b, with an explicit error term. To more easily record the
explicit bounds for error terms, we employ a variant of the O-notation: we write A ¼ OðBÞ
if jAjeB (as opposed to a constant times B) for all values of the parameters under consid-
eration.

Proposition 2.18. Assume GRH and LI. Let a and b be reduced residues ðmod qÞ such

that a is a nonsquare ðmod qÞ and b is a square ðmod qÞ. If Vðq; a; bÞf 531, then

dðq; a; bÞ ¼ 1

2
þ 1

2p

ÐVðq;a;bÞ�1=4

�Vðq;a;bÞ�1=4

sin rðqÞx
x

Fq;a;bðxÞ dx

þ O 0:03506
e�9:08fðqÞ

fðqÞ þ 63:67rðqÞe�Vðq;a;bÞ1=2=2

� �
:

Proof. Our starting point is the formula of Feuerverger and Martin ([5], equation
(2.57)), which is valid under the assumptions of GRH and LI:

dðq; a; bÞ ¼ 1

2
� 1

2p

Ðy
�y

sin
��

cðq; aÞ � cðq; bÞ
�
x
�

x
Fq;a;bðxÞ dx:ð2:10Þ
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In the case where a is a nonsquare modulo q and b is a square modulo q, we find that the
constant cðq; aÞ � cðq; bÞ equals �rðqÞ, so that

dðq; a; bÞ ¼ 1

2
þ 1

2p

Ðy
�y

sin rðqÞx
x

Fq;a;bðxÞ dx:

The part of the integral where xf 200 can be bounded using Proposition 2.17:

				 1

2p

Ðy
200

sin rðqÞx
x

Fq;a;bðxÞ dx

				e 1

400p

Ðy
200

e�0:0454fðqÞx dx <
0:01753e�9:08fðqÞ

fðqÞ :

The part where xe�200 is bounded by the same amount, and so

dðq; a; bÞ ¼ 1

2
þ 1

2p

Ð200

�200

sin rðqÞx
x

Fq;a;bðxÞ dx þ O 0:03506
e�9:08fðqÞ

fðqÞ

� �
:ð2:11Þ

We now consider the part of the integral where Vðq; a; bÞ�1=4
e xe 200. The hypoth-

esis that Vðq; a; bÞf 531 implies that Vðq; a; bÞ�1=4 < 5=24, which allows us to make two
simplifications. First, by Proposition 2.14, we know that jFq;a;bðxÞjeFq;a;b

�
Vðq; a; bÞ�1=4�

for all x in the range under consideration. Second, by Proposition 2.12 we have

Fq;a;bðxÞ ¼ exp

�
�Vðq; a; bÞ

Py
m¼1

Wmðq; a; bÞx2m

�
e e�Vðq;a;bÞx2=2

for all real numbers jxj < 3=10, since W1ðq; a; bÞ ¼ 1=2 and all the Wmðq; a; bÞ are non-
negative by Definition 2.9. Since 5=24 < 3=10, we see that jFq;a;bðxÞje e�Vðq;a;bÞ1=2=2 for
all x in the range under consideration. Noting also that

		sin
�
rðqÞx

�
=x
		e rðqÞ for all real

numbers x, we conclude that

				 Ð200

Vðq;a;bÞ�1=4

sin rðqÞx
x

FðxÞ dx

				e rðqÞ
Ð200

Vðq;a;bÞ�1=4

e�Vðq;a;bÞ1=2=2 dx

e 200rðqÞe�Vðq;a;bÞ1=2=2:

The part of the integral where �200e xe�Vðq; a; bÞ�1=4 is bounded by the same amount,
and thus equation (2.11) becomes

dðq; a; bÞ ¼ 1

2
þ 1

2p

ÐVðq;a;bÞ�1=4

�Vðq;a;bÞ�1=4

sin rðqÞx
x

Fq;a;bðxÞ dx

þ O 0:03506
e�9:08fðqÞ

fðqÞ þ 200

p
rðqÞe�Vðq;a;bÞ1=2=2

 !
;

which establishes the proposition. r
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2.4. Derivation of the asymptotic series. In this section we give the proof of
Theorem 1.1. Our first step is to transform the conclusion of Proposition 2.18, which was
phrased with a mind towards the explicit calculations in Section 5, into a form more
convenient for our present purposes:

Lemma 2.19. Assume GRH and LI. For any reduced residues a and b ðmod qÞ such

that a is a nonsquare ðmod qÞ and b is a square ðmod qÞ, and for any fixed J > 0,

dðq; a; bÞ ¼ 1

2
þ rðqÞ

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq; a; bÞ

p ÐVðq;a;bÞ1=4

�Vðq;a;bÞ1=4

sin
�
rðqÞy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq; a; bÞ

p �
rðqÞy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq; a; bÞ

p Fq;a;b
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vðq; a; bÞ
p

 !
dy

þ OJ

�
Vðq; a; bÞ�J

�
:

Proof. We make the change of variables x ¼ y=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq; a; bÞ

p
in Proposition 2.18,

obtaining

dðq; a; bÞ ¼ 1

2
þ 1

2p

ÐVðq;a;bÞ1=4

�Vðq;a;bÞ1=4

sin
�
rðqÞy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq; a; bÞ

p �
y=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq; a; bÞ

p Fq;a;b
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vðq; a; bÞ
p
 !

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðq; a; bÞ

p

þ O 0:06217
e�5:12fðqÞ

fðqÞ þ 63:67rðqÞe�Vðq;a;bÞ1=2=2

� �
;

the main terms of which are exactly what we want. The lemma then follows from the esti-
mates

e�5:12fðqÞ fJ Vðq; a; bÞ�J and rðqÞe�Vðq;a;bÞ1=2=2 fJ Vðq; a; bÞ�J

for any fixed constant J: these estimates hold because Vðq; a; bÞ@ 2fðqÞ log q by Prop-
osition 3.6, while the standard lower bound fðqÞg q=log log q follows from equa-
tion (5.19). r

We will soon be expanding most of the integrand in Lemma 2.19 into a power series;
the following definition and lemma treat the integrals that so arise.

Definition 2.20. For any nonnegative integer k, define

ð2k � 1Þ!! ¼ ð2k � 1Þð2k � 3Þ � � � 3 � 1;

where we make the convention that ð�1Þ!! ¼ 1. Also, for any nonnegative integer k and
any positive real number B, define

MkðBÞ ¼
ÐB
�B

y2ke�y2=2 dy: U

Lemma 2.21. Let J and B be positive real numbers. For any nonnegative integer k, we

have MkðBÞ ¼ ð2k � 1Þ!!
ffiffiffiffiffiffi
2p

p
þ Ok;J

�
B�J

�
.
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Proof. We proceed by induction on k. In the case k ¼ 0, we have

M0ðBÞ ¼
ÐB
�B

e�y2=2 dy ¼
Ðy

�y
e�y2=2 dy � 2

Ðy
B

e�y2=2 dy

¼
ffiffiffiffiffiffi
2p

p
þ O

�Ðy
B

e�By=2 dy

�

¼
ffiffiffiffiffiffi
2p

p
þ O

2

B
e�B2=2

� �
¼

ffiffiffiffiffiffi
2p

p
þ OJðB�JÞ

as required. On the other hand, for k f 1 we can use integration by parts to obtain

MkðBÞ ¼
ÐB
�B

y2k�1 � ye�y2=2 dy ¼ �y2k�1e�y2=2jB�B þ ð2k � 1Þ
ÐB
�B

y2k�2e�y2=2 dy

¼ OðB2k�1e�B2=2Þ þ ð2k � 1ÞMk�1ðBÞ:

Since the error term B2k�1e�B2=2 is indeed Ok;J

�
B�J

�
, the lemma follows from the inductive

hypothesis for Mk�1ðBÞ. r

The following familiar power series expansions can be truncated with reasonable
error terms:

Lemma 2.22. Let K be a nonnegative integer and C > 1 a real number. Uniformly

for jzjeC, we have the series expansions

ez ¼
PK
j¼0

z j

j!
þ OC;KðjzjKþ1Þ;

sin z

z
¼
PK
j¼0

ð�1Þ j z2j

ð2j þ 1Þ!þ OC;Kðjzj2ðKþ1ÞÞ:

Proof. The Taylor series for ez, valid for all complex numbers z, can be written as

ez ¼
PK
j¼0

z j

j!
þ zKþ1Py

j¼0

z j

ð j þ K þ 1Þ! :

The function
Py
j¼0

z j=ð j þ K þ 1Þ! converges for all complex numbers z and hence represents

an entire function; in particular, it is continuous and hence bounded in the disc jzjeC.
This establishes the first assertion of the lemma, and the second assertion is proved in a
similar fashion. r

Everything we need to prove Theorem 1.1 is now in place, once we give the definition
of the constants sq;a;bðl; jÞ that appear in its statement:
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Definition 2.23. For any reduced residues a and b ðmod qÞ, and any positive integers
j e l, define

sq;a;bðl; jÞ ¼ ð�1Þ j

ð2j þ 1Þ!
P

� � �
P

i2þ2i3þ���þlilþ1¼l� j

�
2ðlþ i2 þ � � � þ ilþ1Þ � 1

�
!!
Qlþ1

k¼2

�
�Wkðq; a; bÞ

� ik

ik!
;

where the indices i2; . . . ; ilþ1 take all nonnegative integer values that satisfy the constraint
i2 þ 2i3 þ � � � þ lilþ1 ¼ l� j. Note that sq;a;bð0; 0Þ ¼ 1 always. Since Wkðq; a; bÞfð10=3Þk

by Proposition 2.10, we see that sq;a;bðl; jÞ is bounded in absolute value by some (combina-
torially complicated) function of l uniformly in q, a, and b (and uniformly in j as well,
since there are only finitely many possibilities f0; 1; . . . ; lg for j). U

Proof of Theorem 1.1. To lighten the notation in this proof, we temporarily write r

for rðqÞ, d for dðq; a; bÞ, V for Vðq; a; bÞ, and Wk for Wkðq; a; bÞ. We also allow all
O-constants to depend on K . Since d is bounded, the theorem is trivially true when V is
bounded, since the error term is at least as large as any other term in that case; therefore
we may assume that V is su‰ciently large. For later usage in this proof, we note that
rfV 1=4, which follows amply from the bound rfe qe mentioned in Definition 1.2 and
the asymptotic formula V @ 2fðqÞ log q proved in Proposition 3.6.

We begin by noting that from Proposition 2.12,

Fq;a;bðxÞ ¼ exp

�
�V

Py
k¼1

Wkx2k

�
¼ exp

�
�V

PKþ1

k¼1

Wkx2k þ OðVx2ðKþ2ÞÞ
�

ð2:12Þ

¼ exp

�
�V

PKþ1

k¼1

Wkx2k

��
1 þ OðVx2ðKþ2ÞÞ

�

uniformly for all jxjeminð1=4;V�1=4Þ, where the second equality follows from the upper
bound given in Proposition 2.10. Inserting this formula into the expression for dðq; a; bÞ
from Lemma 2.19, applied with J ¼ K þ 2, gives

d ¼ 1

2
þ r

2p
ffiffiffiffi
V

p
ÐV 1=4

�V 1=4

sinðry=
ffiffiffiffi
V

p
Þ

ry=
ffiffiffiffi
V

p exp

�
�
PKþ1

k¼1

Wk y2k

V k�1

�
1 þ O

y2ðKþ2Þ

V Kþ1

� � !
dy þ O

�
V�K�2

�
:

This use of equation (2.12) is justified because the argument y=
ffiffiffiffi
V

p
of Fq;a;b in the integral

in Lemma 2.19 is at most V 1=4=
ffiffiffiffi
V

p
e 1=4, by the assumption that V is su‰ciently large.

To simplify the error term in the integral, we ignore all of the factors in the integrand
(which are bounded by 1 in absolute value) except for the k ¼ 1 term, in which W1 ¼ 1=2,
to derive the upper bound

ÐV 1=4

�V 1=4

sinðry=
ffiffiffiffi
V

p
Þ

ry=
ffiffiffiffi
V

p exp

�
�
PKþ1

k¼1

Wk y2k

V k�1

�
y2ðKþ2Þ

V Kþ1
dyf

1

V Kþ1

Ðy
�y

e�y2=2y2Kþ4 dy

fK

1

V Kþ1
:
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Therefore

d ¼ 1

2
þ r

2p
ffiffiffiffi
V

p
ÐV 1=4

�V 1=4

sinðry=
ffiffiffiffi
V

p
Þ

ry=
ffiffiffiffi
V

p exp

�
�
PKþ1

k¼1

Wk y2k

V k�1

�
dy þ O

r

V Kþ3=2

� �
:ð2:13Þ

The integrand in equation (2.13) is the product of K þ 2 functions, namely K þ 1 ex-
ponential factors and a factor involving the function ðsin zÞ=z. Our plan is to keep the first
exponential function as it is and expand the other factors into their power series at the or-
igin. Note that the argument of the kth exponential factor is at most WkV 1�k=2 in absolute
value, which is bounded (by a constant depending on K) for all k f 2 by Proposition 2.10.
Similarly, the argument of the function ðsin zÞ=z is bounded by rV 1=4=

ffiffiffiffi
V

p
f 1. Therefore

the expansion of all of these factors, excepting the exponential factor corresponding to
k ¼ 1, into their power series is legitimate in the range of integration.

Specifically, we have the two identities

PK
j¼0

ð�1Þ j

ð2j þ 1Þ!
ðryÞ2j

V j
¼ sinðry=

ffiffiffiffi
V

p
Þ

ry=
ffiffiffiffi
V

p þ O
ðryÞ2ðKþ1Þ

V Kþ1

 !
;

PK
ik¼0

ð�1Þ ik

ik!

Wk y2k

V k�1

� �ik

¼ exp �Wk y2k

V k�1

� �
þ O

Wk y2k

V k�1

� �Kþ1
 !

¼ exp �Wk y2k

V k�1

� �
þ O

y2kðKþ1Þ

V Kþ1

� �
;

where the error terms are justified by Lemma 2.22; in the last equality we have used
Proposition 2.10 to ignore the contribution of the factor Wk to the error term (since the
O-constant may depend on K). From these identities, we deduce that

�PK
j¼0

ð�1Þ j

ð2j þ 1Þ!
ðryÞ2j

V j

�
e�y2=2 QKþ1

k¼2

PK
ik¼0

ð�1Þ ik

ik!

Wk y2k

V k�1

� �ik
 !

¼ sinðry=
ffiffiffiffi
V

p
Þ

ry=
ffiffiffiffi
V

p þ O
ðryÞ2ðKþ1Þ

V Kþ1

 !0
@

1
A

� e�y2=2 QKþ1

k¼2

exp �Wk y2k

V k�1

� �
þ O

Wk y2k

V k�1

� �Kþ1
 ! !

¼ sinðry=
ffiffiffiffi
V

p
Þ

ry=
ffiffiffiffi
V

p
QKþ1

k¼1

exp �Wk y2k

V k�1

� �
þ O yðKþ2ÞðKþ1Þ2

e�y2=2 r
2Kþ2

V Kþ1

� �
:

(The computation of the error term is simplified by the fact that all the main terms on
the right-hand side are at most 1 in absolute value, so that we only need to figure out the
largest powers of y and r, and the smallest power of V , that can be obtained by the cross
terms.)
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Substituting this identity into equation (2.13) yields

d ¼ 1

2
þ r

2p
ffiffiffiffi
V

p
ÐV 1=4

�V 1=4

�PK
j¼0

ð�1Þ j

ð2j þ 1Þ!
ðryÞ2j

V j

�
e�y2=2 QKþ1

k¼2

PK
ik¼0

ð�1Þ ik

ik!

Wk y2k

V k�1

� �ik
 !

dy

þ O

�
rffiffiffiffi
V

p
Ðy

�y
yðKþ2ÞðKþ1Þ2

e�y2=2 r
2Kþ2

V Kþ1
dy þ r

V Kþ3=2

�

¼ 1

2
þ r

2p
ffiffiffiffi
V

p
PK
j¼0

PK
i2¼0

� � �
PK

iKþ1¼0

� ð�1Þ j

ð2j þ 1Þ!
r2j

V j

QKþ1

k¼2

1

ik!

�Wk

V k�1

� �ik

Mjþ2i2þ���þðKþ1ÞiKþ1
ðV 1=4Þ

 !
þ O

r2Kþ3

V Kþ3=2

� �
;

where M was defined in Definition 2.20. Invoking Lemma 2.21 and then collecting the
summands according to the power l ¼ j þ i1 þ 2i2 þ � � � þ KiKþ1 of V in the denominator,
we obtain

d ¼ 1

2
þ rffiffiffiffiffiffiffiffiffi

2pV
p

PK
j¼0

PK
i2¼0

� � �
PK

iKþ1¼0

ð2:14Þ

�
�

ð�1Þ j

ð2j þ 1Þ!
r2j

V j

QKþ1

k¼2

1

ik!

�Wk

V k�1

� �ik��
2
�

j þ 2i2 þ � � � þ ðK þ 1ÞiKþ1

�
� 1
�
!!

þ OðV�ðKþ1ÞÞ
��

þ O
r2Kþ3

V Kþ3=2

� �

¼ 1

2
þ rffiffiffiffiffiffiffiffiffi

2pV
p

PKð1þKðKþ1Þ=2Þ

l¼0

1

V l

PK
j¼0

ð�1Þ jr2j

ð2j þ 1Þ!
PK
i2¼0

� � �
PK

iKþ1¼0

i2þ2i3þ���þKiKþ1¼l� j

�
� QKþ1

k¼2

ð�WkÞ ik

ik!

�
2ðlþ i2 þ � � � þ iKþ1Þ � 1

�
!!

�
þ O

r2Kþ3

V Kþ3=2

� �
;

where we have subsumed the first error term into the second with the help of Prop-
osition 2.10.

The proof of Theorem 1.1 is actually now complete, although it takes a moment
to recognize it. For 0e leK , the values of j that contribute to the sum are 0e j e l,
since l� j must be a sum of nonnegative numbers due to the condition of summation
of the inner sum. In particular, all possible values of j and the ik are represented in the
sum, and the upper bound of K for these variables is unnecessary. We therefore see that
the coe‰cient of r2jV �l on the right-hand side of equation (2.14) matches Definition 2.23
for sq;a;bðl; jÞ. On the other hand, for each of the finitely many larger values of l, the
lth summand is bounded above by r2KV �K�1 times some constant depending only on K

(again we have used Proposition 2.10 to bound the quantities Wk uniformly), which
is smaller than the indicated error term once the leading factor r=

ffiffiffiffiffiffiffiffiffi
2pV

p
is taken into

account. r
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3. Analysis of the variance V(q; a, b)

In this section we prove Theorems 1.4 and 1.7, as well as discussing related results to
which our methods apply. We begin by establishing some arithmetic identities involving
Dirichlet characters and their conductors in Section 3.1. Using these identities and a classi-
cal formula for bðwÞ, we complete the proof of Theorem 1.4 in Section 3.2. The linear com-
bination of values L 0ð1; wÞ=Lð1; wÞ that defines M �ðq; a; bÞ can be converted into an asymp-
totic formula involving the von Mangoldt L-function, as we show in Section 3.3, and in
this way we establish Theorem 1.7.

Our analysis to this point has the interesting consequence that the densities dðq; a; bÞ
can be evaluated extremely precisely using only arithmetic content, that is, arithmetic on
rational numbers (including multiplicative functions of integers) and logarithms of integers;
we explain this consequence in Section 3.4. Next, we show in Section 3.5 that the limiting
logarithmic distributions of the di¤erences Eðx; q; aÞ � Eðx; q; bÞ obey a central limit
theorem as q tends to infinity. Finally, we explain in Section 3.6 how our analysis can be
modified to apply to the race between the aggregate counting functions

pðx; q;NÞ ¼Kfpe x : p is a quadratic nonresidue mod qg

and

pðx; q;RÞ ¼Kfpe x : p is a quadratic residue mod qg:

3.1. Arithmetic sums over characters. We begin by establishing some preliminary
arithmetic identities that will be needed in later proofs.

Proposition 3.1. Let a and b be distinct reduced residue classes ðmod qÞ. Then

P
w ðmod qÞ

jwðaÞ � wðbÞj2 ¼ 2fðqÞ;

while for any reduced residue cE 1 ðmod qÞ we have

P
w ðmod qÞ

jwðaÞ � wðbÞj2wðcÞ ¼ �fðqÞ
�
iqðcab�1Þ þ iqðcba�1Þ

�
;

where iq is defined in Definition 1.5.

Proof. These sums are easy to evaluate using the orthogonality relation ([11],
Corollary 4.5)

P
w ðmod qÞ

wðmÞ ¼ fðqÞ; if m1 1 ðmod qÞ
0; if mE 1 ðmod qÞ

� �
¼ fðqÞiqðmÞ:ð3:1Þ
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We have

P
w ðmod qÞ

jwðaÞ � wðbÞj2 ¼
P

w ðmod qÞ

�
2 � wðaÞwðbÞ � wðbÞwðaÞ

�

¼
P

w ðmod qÞ
2 �

P
w ðmod qÞ

wðab�1Þ �
P

w ðmod qÞ
wðba�1Þ ¼ 2fðqÞ þ 0 þ 0;

since aE b ðmod qÞ. Similarly,

P
w ðmod qÞ

jwðaÞ � wðbÞj2wðcÞ ¼
P

w ðmod qÞ

�
2 � wðaÞwðbÞ � wðbÞwðaÞ

�
wðcÞ

¼
P

w ðmod qÞ
2wðcÞ �

P
w ðmod qÞ

wðcab�1Þ �
P

w ðmod qÞ
wðcba�1Þ

¼ 0 � fðqÞ
�
iqðcab�1Þ þ iqðcba�1Þ

�
: r

The results in the next two lemmas were discovered independently by Vorhauer
(see [11], Section 9.1, Problem 8).

Lemma 3.2. For any positive integer q, we have

P
d j q

Lðq=dÞfðdÞ ¼ fðqÞ
P
p j q

log p

p � 1
;

while for any proper divisor s of q we have

P
d j s

Lðq=dÞfðdÞ ¼ fðqÞLðq=sÞ
fðq=sÞ :

Proof. For the first identity, we group together the contributions from the divisors d

such that q=d is a power of a particular prime factor p of q. If pr k q, write q ¼ mpr, so
that pFm. We get a contribution to the sum only when d ¼ mpr�k for some 1e k e r.
Therefore

P
d j q

Lðq=dÞfðdÞ ¼
P

pr k q

Pr

k¼1

LðpkÞfðmpr�kÞ ¼
P

pr k q

fðmÞ log p
Pr

k¼1

fðpr�kÞ:

Since
P
a j b

fðaÞ ¼ b for any positive integer b, the inner sum is exactly pr�1. Noting that

fðmÞ ¼ fðqÞ=fðprÞ since pF n, we obtain

P
d j q

Lðq=dÞfðdÞ ¼
P

pr k q

fðqÞ
fðprÞ pr�1 log p ¼ fðqÞ

P
p j q

log p

p � 1

as claimed.

We turn now to the second identity. If q=s has at least two distinct prime factors, then
so will q=d for every divisor d of s, and hence all of the Lðq=dÞ terms will be 0. Therefore
the entire sum equals 0, which is consistent with the claimed identity as RqðsÞ ¼ 0 as well in
this case. Therefore we only need to consider the case where q=s equals a prime power pt.
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Again write q ¼ mpr with pFm. Since s ¼ q=pt ¼ mpt�r, the only terms that con-
tribute to the sum are d ¼ mpr�k for te k e r. By a similar calculation as before,

P
d j s

Lðq=dÞfðdÞ ¼
Pr

k¼t

LðpkÞfðmpr�kÞ ¼ fðmÞ log p
Pr

k¼t

fðpr�kÞ

¼ fðqÞ
fðprÞ pr�t log p

¼ fðqÞ log p

pt�1ðp � 1Þ

¼ fðqÞLðq=sÞ
fðq=sÞ ;

since q=s ¼ pt. This establishes the second identity. r

Recall that w� denotes the primitive character that induces w and that q� denotes the
conductor of w�.

Proposition 3.3. For any positive integer q,

P
w ðmod qÞ

log q� ¼ fðqÞ
�

log q �
P
p j q

log p

p � 1

�
;

while if aE 1 ðmod qÞ is a reduced residue,

P
w ðmod qÞ

wðaÞ log q� ¼ �fðqÞ
L
�
q=ðq; a � 1Þ

�
f
�
q=ðq; a � 1Þ

� :
Proof. First we show that

P
w ðmod qÞ

wðaÞ log q� ¼ log q
P

w ðmod qÞ
wðaÞ �

P
d j q

Lðq=dÞ
P

w ðmod dÞ
wðaÞð3:2Þ

for any reduced residue a ðmod qÞ. Given a character w ðmod qÞ and a divisor d of q, the
character w is induced by a character ðmod dÞ if and only if d is a multiple of q�. Therefore

P
d j q

Lðq=dÞ
P

w ðmod dÞ
wðaÞ ¼

P
w ðmod qÞ

wðaÞ
P
d j q

q� j d

Lðq=dÞ:

Making the change of variables c ¼ q=d, this identity becomes

P
d j q

Lðq=dÞ
P

w ðmod dÞ
wðaÞ ¼

P
w ðmod qÞ

wðaÞ
P

c j q=q�
LðcÞ

¼
P

w ðmod qÞ
wðaÞ log

q

q� ¼ log q
P

w ðmod qÞ
wðaÞ �

P
w ðmod qÞ

wðaÞ log q�;

which verifies equation (3.2).
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If a1 1 ðmod qÞ, then equation (3.2) becomes

P
w ðmod qÞ

log q� ¼ log q
P

w ðmod qÞ
1 �

P
d j q

Lðq=dÞ
P

w ðmod dÞ
1

¼ fðqÞ log q �
P
d j q

Lðq=dÞfðdÞ ¼ fðqÞ log q � fðqÞ
P
p j q

log p

p � 1

by Lemma 3.2, establishing the first assertion of the lemma. If on the other hand
aE 1 ðmod qÞ, then applying the orthogonality relation (3.1) to equation (3.2) yields

P
w ðmod qÞ

wðaÞ log q� ¼ 0 �
P
d j q

Lðq=dÞfðdÞidðaÞ

¼ �
P

d j ðq;a�1Þ
Lðq=dÞfðdÞ ¼ �fðqÞ

L
�
q=ðq; a � 1Þ

�
f
�
q=ðq; a � 1Þ

�
by Lemma 3.2 again, establishing the second assertion of the lemma. r

Finally we record a proposition that involves values of both primitive characters and
characters induced by them.

Proposition 3.4. Let p be a prime and e a positive integer, and let r be a reduced

residue ðmod qÞ. If pF q, then

P
w ðmod qÞ

wðrÞ
�
w�ðpeÞ � wðpeÞ

�
¼ 0:

On the other hand, if p j q, then

P
w ðmod qÞ

wðrÞ
�
w�ðpeÞ � wðpeÞ

�
¼ f

�
q=pn

�
; if rpe 1 1 ðmod q=pnÞ;

0; otherwise;

�

where nf 1 is the integer such that pn k q.

Proof. The first assertion is trivial: if pF q, then w�ðpeÞ ¼ wðpeÞ for every character
w ðmod qÞ. If p j q, then wðpeÞ ¼ 0 for every w, and so

P
w ðmod qÞ

wðrÞ
�
w�ðpeÞ � wðpeÞ

�
¼

P
w ðmod qÞ

wðrÞw�ðpeÞ ¼
P

w ðmod qÞ
w�ðrpeÞ

since wðrÞ ¼ w�ðrÞ for every w ðmod qÞ due to the hypothesis that ðr; qÞ ¼ 1. Also, we have
w�ðpeÞ ¼ 0 for any character w such that p j q�, and so

P
w ðmod qÞ

w�ðrpeÞ ¼
P

w ðmod qÞ
q� j q=p n

w�ðrpeÞ ¼
P

w ðmod q=p nÞ
wðrpeÞ;

since ðpe; q=pnÞ ¼ 1. The second assertion now follows from the orthogonality relation
(3.1) above. r
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3.2. A formula for the variance. Recall that bðwÞ was defined in Definition 1.3; we
record a classical formula for bðwÞ in the next lemma, after which we will be able to prove
Theorem 1.4.

Lemma 3.5. Assume GRH. Let qf 3, and let w be any nonprincipal character

modulo q. Then

bðwÞ ¼ log
q�

p
� g0 �

�
1 þ wð�1Þ

�
log 2 þ 2 Re

L 0ð1; w�Þ
Lð1; w�Þ :

Proof. Since the zeros of Lðs; wÞ and Lðs; w�Þ on the line Re z ¼ 1

2
are identical, it

su‰ces to show that for any primitive character w modulo q,

P
g AR

Lð1=2þig;wÞ¼0

1

1=4 þ g2
¼ log

q

p
� g0 �

�
1 þ wð�1Þ

�
log 2 þ 2 Re

L 0ð1; wÞ
Lð1; wÞ :

There is a certain constant BðwÞ that appears in the Hadamard product formula for Lðs; wÞ.
One classical formula related to it ([11], equation (10.38)) is

Re BðwÞ ¼ �
P
r AC

0<Re r<1
Lðr;wÞ¼0

Re
1

r
:ð3:3Þ

We can relate BðwÞ to bðwÞ under GRH by rewriting the previous equation as

�2 Re BðwÞ ¼
P
g AR

Lð1=2þig;wÞ¼0

Re
2

1=2 þ ig

� �
¼

P
g AR

Lð1=2þig;wÞ¼0

Re
1 � 2ig

1=4 þ g2

 !
¼ bðwÞ:ð3:4Þ

On the other hand, Vorhauer showed in 2006 (see [11], equation (10.39)) that

BðwÞ ¼ � 1

2
log

q

p
� L 0

L
ð1; wÞ þ g0

2
þ 1 þ wð�1Þ

2
log 2:

Taking real parts (which renders moot the di¤erence between w and w) and comparing to
equation (3.4) establishes the lemma. r

Proof of Theorem 1.4. We begin by applying Lemma 3.5 to Definition 1.3 for
Vðq; a; bÞ, which yields

Vðq; a; bÞ ¼
P

w ðmod qÞ
w3w0

jwðaÞ � wðbÞj2ð3:5Þ

� log
q�

p
� g0 �

�
1 þ wð�1Þ

�
log 2 þ 2 Re

L 0ð1; w�Þ
Lð1; w�Þ

� �

¼
P

w ðmod qÞ
jwðaÞ � wðbÞj2 log q� � ðg0 þ log 2pÞ

P
w ðmod qÞ

jwðaÞ � wðbÞj2

� log 2
P

w ðmod qÞ
jwðaÞ � wðbÞj2wð�1Þ þ 2M �ðq; a; bÞ;
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recalling Definition 1.6 for M �ðq; a; bÞ. We are permitted to reinclude the principal charac-
ter w0 in the three sums on the right-hand side, since the coe‰cient jw0ðaÞ � w0ðbÞj

2 always
equals 0.

The second and third terms on the right-hand side of equation (3.5) are easy to eval-
uate using Proposition 3.1: we have

�ðg0 þ log 2pÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2 ¼ �2ðg0 þ log 2pÞfðqÞð3:6Þ

and

�log 2
P

w ðmod qÞ
jwðaÞ � wðbÞj2wð�1Þ ¼ ðlog 2ÞfðqÞ

�
iqð�ab�1Þ þ iqð�ba�1Þ

�
ð3:7Þ

¼ ð2 log 2ÞfðqÞiqð�ab�1Þ:

The first sum on the right-hand side of equation (3.5) can be evaluated using Prop-
osition 3.3:

P
w ðmod qÞ

jwðaÞ � wðbÞj2 log q� ¼
P

w ðmod qÞ

�
2 � wðab�1Þ � wðba�1Þ

�
log q�

¼ 2fðqÞ
�

log q �
P
p j q

log p

p � 1

�
þ fðqÞ

L
�
q=ðq; ab�1 � 1Þ

�
f
�
q=ðq; ab�1 � 1Þ

�
þ fðqÞ

L
�
q=ðq; ba�1 � 1Þ

�
f
�
q=ðq; ba�1 � 1Þ

� :
Since ðq;mnÞ ¼ ðq; nÞ for any integer m that is relatively prime to q, we see that

ðq; ab�1 � 1Þ ¼ ðq; a � bÞ ¼ ðq; b � aÞ ¼ ðq; ba�1 � 1Þ;

and therefore

P
w ðmod qÞ

jwðaÞ � wðbÞj2 log q� ¼ 2fðqÞ
�

log q �
P
p j q

log p

p � 1
þ
L
�
q=ðq; a � bÞ

�
f
�
q=ðq; a � bÞ

� �:ð3:8Þ

Substituting the evaluations (3.6), (3.7), and (3.8) into equation (3.5), we obtain

Vðq; a; bÞ ¼ 2fðqÞ
�

log q �
P
p j q

log p

p � 1
þ
L
�
q=ðq; a � bÞ

�
f
�
q=ðq; a � bÞ

� �

� 2ðg0 þ log 2pÞfðqÞ þ ð2 log 2ÞfðqÞiqð�ab�1Þ þ 2M �ðq; a; bÞ

¼ 2fðqÞ
�
LðqÞ þ Kqða � bÞ þ iqð�ab�1Þ log 2

�
þ 2M �ðq; a; bÞ;

where LðqÞ and KqðnÞ were defined in Definition 1.5. This establishes the theorem. r

Theorem 1.4 has the following asymptotic formula as a corollary:

154 Fioril l i and Martin, Inequities in the Shanks–Rényi prime number race



Proposition 3.6. Assuming GRH, we have

Vðq; a; bÞ ¼ 2fðqÞ log q þ O
�
fðqÞ log log q

�
:

Proof. First note that the function ðlog tÞ=ðt � 1Þ is decreasing for t > 1. Conse-
quently, LðqÞ=fðqÞ is bounded by log 2. Also, letting pj denote the jth prime, we see that

P
p j q

log p

p � 1
e
PoðqÞ
j¼1

log pj

pj � 1
f log poðqÞf logoðqÞf log log q;

where the final inequality uses the trivial bound oðqÞe ðlog qÞ=ðlog 2Þ. From Defini-
tion 1.5, we conclude that LðqÞ ¼ log q þ Oðlog log qÞ. Next, Kqða � bÞ is bounded by log 2
as above, and iqðab�1Þ is of course bounded as well. Finally, on GRH we know that

L 0ð1; w�Þ=Lð1; w�Þf log log q�
e log log q

(either see [8], or take y ¼ log2 q in Proposition 3.10), which immediately implies that

M �ðq; a; bÞf fðqÞ log log q

by Definition 1.6. The proposition now follows from Theorem 1.4. r

3.3. Evaluation of the analytic term M*(q; a, b). The goal of this section is a proof of
Theorem 1.7. We start by examining more closely, in the next two lemmas, the relationship
between the quantities M �ðq; a; bÞ and Mðq; a; bÞ defined in Definition 1.6. Recall that
eðq; p; rÞ was defined in Definition 1.8.

Lemma 3.7. If pn k q, then

P
ef1

rpe11 ðmod q=p nÞ

1

pe
¼ 1

peðq;p; rÞð1 � p�eðq;p;1ÞÞ :

Proof. If r is not in the multiplicative subgroup ðmod q=pnÞ generated by p, then the
left-hand side is clearly zero, while the right-hand side is zero by the convention that
eðq; p; rÞ ¼ y in this case. Otherwise, the positive integers e for which rpe 1 1 ðmod q=pnÞ
are precisely the ones of the form eðq; p; rÞ þ keðq; p; 1Þ for k f 0, since eðq; p; rÞ is the first
such integer and eðq; p; 1Þ is the order of p ðmod q=pnÞ. Therefore we obtain the geometric
series

P
ef1

rpe11 ðmod q=p nÞ

1

pe
¼
Py
k¼0

1

peðq;p; rÞþkeðq;p;1Þ ¼
1

peðq;p; rÞð1 � p�eðq;p;1ÞÞ

as claimed. r

Definition 3.8. If pn k q, define

h0ðq; p; rÞ ¼ 1

fðpnÞ
log p

peðq;p; rÞð1 � p�eðq;p;1ÞÞ
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and

H0ðq; a; bÞ ¼
P
p j q

�
h0ðq; p; ab�1Þ þ h0ðq; p; ba�1Þ � 2h0ðq; p; 1Þ

�
:

We will see later in this section, in the proof of Theorem 1.7, that h0 and H0 are very close
to the functions h and H also defined in Definition 1.8. Notice that if q is prime, then
h0ðq; q; rÞ ¼ ðlog qÞ=qðq�1Þ is independent of r and thus Hðq; a; bÞ ¼ 0 for any a and b. U

The next lemma could be proved under a hypothesis much weaker than GRH, but
this is irrelevant to our present purposes.

Lemma 3.9. Assume GRH. If a and b are reduced residues ðmod qÞ, then

M �ðq; a; bÞ ¼ Mðq; a; bÞ þ fðqÞH0ðq; a; bÞ;

where M �ðq; a; bÞ and Mðq; a; bÞ are defined in Definition 1.6.

Proof. We begin with the identity

L 0ð1; wÞ
Lð1; wÞ ¼ � lim

y!y

P
pey

Py
e¼1

wðpeÞ log p

pe
:

This identity follows from the fact that the Euler product of Lðs; wÞ converges uniformly
for ReðsÞf 1=2 þ e; this is implied by the estimate

P
pex

wðpÞfq x1=2 log2 x which itself is a
consequence of GRH.

Therefore

M �ðq; a; bÞ � Mðq; a; bÞ

¼
P

w ðmod qÞ
w3w0

jwðaÞ � wðbÞj2 L 0ð1; w�Þ
Lð1; w�Þ � L 0ð1; wÞ

Lð1; wÞ

� �

¼ �
P

w ðmod qÞ
w3w0

jwðaÞ � wðbÞj2 lim
y!y

P
pey

log p
Py
e¼1

w�ðpeÞ � wðpeÞ
pe

¼ lim
y!y

P
pey

log p
Py
e¼1

1

pe

P
w ðmod qÞ

�
wðab�1Þ þ wðba�1Þ � 2

��
w�ðpeÞ � wðpeÞ

�
;

where the inserted term involving w0 is always zero. Proposition 3.4 tells us that the inner
sum vanishes except possibly when the prime p divides q; invoking that proposition three
times, we see that

M �ðq; a; bÞ � Mðq; a; bÞ

¼
P

pn k q

fðq=pnÞ log p

� P
ef1

ab�1pe11 ðmod q=p nÞ

1

pe
þ

P
ef1

ba�1pe11 ðmod q=pnÞ

1

pe
� 2

P
ef1

pe11 ðmod q=p nÞ

1

pe

�
:
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We can evaluate these inner sums using Lemma 3.7: by comparison with Definition 3.8,

M �ðq; a; bÞ � Mðq; a; bÞ

¼ fðqÞ
P

p n k q

log p

fðpnÞ

�
1

peðq;p;ab�1Þð1 � p�eðq;p;1ÞÞ

þ 1

peðq;p;ba�1Þð1 � p�eðq;p;1ÞÞ
� 2

1

peðq;p;1Þð1 � p�eðq;p;1ÞÞ

�

¼ fðqÞH0ðq; a; bÞ;

which establishes the lemma. r

We will need the following three propositions, with explicit constants given, when
we undertake our calculations and estimations of dðq; a; bÞ. Because the need for explicit
constants makes their derivations rather lengthy, we will defer the proofs of the first two
propositions until Section 5.2 and derive only the third one in this section.

Proposition 3.10. Assume GRH. Let w be a nonprincipal character ðmod qÞ. For any

positive real number y,

L 0ð1; wÞ
Lð1; wÞ ¼ �

Py
n¼1

wðnÞLðnÞ
n

e�n=y þ O
14:27 log q þ 16:25

y1=2
þ 16:1 log q þ 17:83

y3=4

� �
:

Proposition 3.11. If 1e a < q, then

P
n1a ðmod qÞ

LðnÞ
n

e�n=q2 ¼ LðaÞ
a

þ O
2 log2 q

q
þ 3:935 log q

q

 !
:

Assuming these propositions for the moment, we can derive the following explicit
estimate for M �ðq; a; bÞ, after which we will be able to finish the proof of Theorem 1.7.

Proposition 3.12. Assume GRH. For any pair a, b of distinct reduced residues

modulo q, let r1 and r2 denote the least positive residues of ab�1 and ba�1 ðmod qÞ. Then for

qf 150,

M �ðq; a; bÞ ¼ fðqÞ Lðr1Þ
r1

þLðr2Þ
r2

þ H0ðq; a; bÞ
� �

þ O
23:619fðqÞ log2 q

q

 !
:

Proof. The bulk of the proof is devoted to understanding Mðq; a; bÞ. From Proposi-
tion 3.10, we have

Mðq; a; bÞ ¼
P

w ðmod qÞ
jwðaÞ � wðbÞj2 L 0ð1; wÞ

Lð1; wÞð3:9Þ
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¼
P

w ðmod qÞ

�
2 � wðba�1Þ � wðab�1Þ

�

�
 
�
Py
n¼1

LðnÞwðnÞ
n

e�n=y þ O
14:27 log q þ 10:6

y1=2
þ 16:1 log q þ 13:1

y3=4

� �!

¼
Py
n¼1

LðnÞ
n

e�n=y
P

w ðmod qÞ

�
wðba�1nÞ þ wðab�1nÞ � 2wðnÞ

�

þ 4fðqÞO 14:27 log q þ 16:25

y1=2
þ 16:1 log q þ 17:83

y3=4

� �
;

and using the orthogonality relations in Proposition 3.1, we see that

Mðq; a; bÞ ¼ fðqÞ
� P

n1ab�1 ðmod qÞ

LðnÞ
n

e�n=y þ
P

n1ba�1 ðmod qÞ

LðnÞ
n

e�n=y

� 2
P

n11 ðmod qÞ

LðnÞ
n

e�n=y

�

þ 4fðqÞO 14:27 log q þ 16:25

y1=2
þ 16:1 log q þ 17:83

y3=4

� �
:

At this point we choose y ¼ q2. We calculate that

ð14:27 log q þ 16:25Þ=q þ ð16:1 log q þ 17:83Þ=q3=2 < 3:816ðlog2 qÞ=q

for qf 150, and so

Mðq; a; bÞ ¼ fðqÞ
� P

n1ab�1 ðmod qÞ

LðnÞ
n

e�n=q2 þ
P

n1ba�1 ðmod qÞ

LðnÞ
n

e�n=q2

� 2
P

n11 ðmod qÞ

LðnÞ
n

e�n=q2

�
þ O

15:263fðqÞ log2 q

q

 !
:

Let r1 and r2 denote the least positive residues of ab�1 and ba�1 ðmod qÞ. Using
Proposition 3.11 three times, we see that

Mðq; a; bÞ ¼ fðqÞ Lðr1Þ
r1

þLðr2Þ
r2

� 2
Lð1Þ

1
þ O 3

2 log2 q

q
þ 3:935 log q

q

 !0
@

1
A

0
@

1
A

þ O
15:263fðqÞ log2 q

q

 !

¼ fðqÞ Lðr1Þ
r1

þLðr2Þ
r2

� �
þ O

36:619fðqÞ log2 q

q

 !
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for qf 150. With this understanding of Mðq; a; bÞ, the proposition now follows for
M �ðq; a; bÞ by Lemma 3.9. r

Proof of Theorem 1.7. Since Proposition 3.12 tells us that

M �ðq; a; bÞ ¼ fðqÞ Lðr1Þ
r1

þLðr2Þ
r2

þ H0ðq; a; bÞ þ O
log2 q

q

 !0
@

1
A;

all we need to do to prove the theorem is to show that

H0ðq; a; bÞ ¼ Hðq; a; bÞ þ O
log2 q

q

 !
:

The key observation is that peðq;p;1Þ 1 1 ðmod q=pnÞ and peðq;p;1Þf p1 > 1, and so

peðq;p;1Þ > q=pn:

Therefore by Definitions 1.8 and 3.8, we have h0ðq; p; rÞ ¼ hðq; p; rÞ
�
1 þ Oðpn=qÞ

�
and

hðq; p; 1Þf ðlog pÞ=fðpnÞðq=pnÞf ðlog pÞ=q. We see that

H0ðq; a; bÞ ¼
P

p n k q

�
h0ðq; p; ab�1Þ þ h0ðq; p; ba�1Þ � 2h0ðq; p; 1Þ

�

¼
P

p n k q

�
hðq; p; ab�1Þ þ hðq; p; ba�1Þ

�
1 þ O

pn

q

� � !
þ O

log p

q

� � !
:

It is certainly true that hðq; p; rÞf ðlog pÞ=fðpnÞf ðlog pÞ=pn, and so the previous equation
becomes

H0ðq; a; bÞ ¼ Hðq; a; bÞ þ O
P

p n k q

log p

pn

pn

q
þ log p

q

� � !
¼ Hðq; a; bÞ þ O

log q

q

� �
;

which establishes the theorem. r

3.4. Estimates in terms of arithmetic information only. The purpose of this section
is to show that the densities dðq; a; bÞ can be calculated extremely precisely using only
‘‘arithmetic information’’. For the purposes of this section, ‘‘arithmetic information’’
means finite expressions composed of elementary arithmetic operations involving only
integers, logarithms of integers, values of the Riemann zeta function at positive integers,
and the constants p and g0. (In fact, all of these quantities themselves can in principle be
calculated arbitrarily precisely using only elementary arithmetic operations on integers.)
The point is that ‘‘arithmetic information’’ excludes integrals and such quantities as
Dirichlet characters and L-functions, Bessel functions, and trigonometric functions. The
formula we can derive, with only arithmetic information in the main term, has an error
term of the form OAðq�AÞ for any constant A > 0 we care to specify in advance.

To begin, we note that letting y tend to infinity in equation (3.9) leads to the heuristic
statement
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Mðq; a; bÞ ¼
Py
n¼1

LðnÞ
n

P
w ðmod qÞ

�
wðba�1nÞ þ wðab�1nÞ � 2wðnÞ

�

¼ fðqÞ
Py
n¼1

LðnÞ
n

�
iqðba�1nÞ þ iqðab�1nÞ � 2iqðnÞ

�

‘‘¼’’ fðqÞ
� P

n1ab�1 ðmod qÞ

LðnÞ
n

þ
P

n1ba�1 ðmod qÞ

LðnÞ
n

� 2
P

n11 ðmod qÞ

LðnÞ
n

�
;

where the ‘‘¼’’ warns that the sums on the right-hand side do not individually converge. In
fact, using a di¤erent approach based on the explicit formula, one can obtain

Mðq; a; bÞ ¼ fðqÞ
� P

1eney

n1ab�1 ðmod qÞ

LðnÞ
n

þ
P

1eney

n1ba�1 ðmod qÞ

LðnÞ
n

ð3:10Þ

� 2
P

1eney
n11 ðmod qÞ

LðnÞ
n

�
þ O

fðqÞ log2 qyffiffiffi
y

p
 !

:

In light of Theorem 1.4 in conjunction with Lemma 3.9, we see that we can get an arbi-
trarily good approximation to Vðq; a; bÞ using only arithmetic information.

By Theorem 1.1, we see we can thus obtain an extremely precise approximation for
dðq; a; bÞ as long as we can calculate the coe‰cients sq;a;bðl; jÞ defined in Definition 2.23.
Inspecting that definition reveals that it su‰ces to be able to calculate Wmðq; a; bÞ (or equiv-
alently Wmðq; a; bÞVðq; a; bÞ) arbitrarily precisely using only arithmetic content. With the
next several lemmas, we describe how such a calculation can be made.

Lemma 3.13. Let n be a positive integer, and set l ¼ n

2

j k
. There exist rational num-

bers Cn;1; . . . ;Cn;l such that

1

ð1=4 þ t2Þn ¼ 2 Re
1

ð1=2 � itÞn

� �
þ Cn;1

ð1=4 þ t2Þn�1
þ Cn;2

ð1=4 þ t2Þn�2
þ � � � þ Cn;l

ð1=4 þ t2Þn�l

for any complex number t.

Proof. Since

2 Re
1

ð1=2 � itÞn ¼ 1

ð1=2 � itÞn þ
1

ð1=2 þ itÞn ¼ ð1=2 þ itÞn þ ð1=2 � itÞn

ð1=4 þ t2Þn ;

it su‰ces to show that

ð1=2 þ itÞn þ ð1=2 � itÞn

ð1=4 þ t2Þnð3:11Þ

¼ Cn;0

ð1=4 þ t2Þn þ
�Cn;1

ð1=4 þ t2Þn�1
þ � � � þ �Cn;l

ð1=4 þ t2Þn�l
;
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where each Cn;m is a rational number and Cn;0 ¼ 1. In fact, we only need to show that this
identity holds for some rational number Cn;0, since multiplying both sides by ð1=4 þ t2Þn

and taking the limit as t tends to i=2 proves that Cn;0 must equal 1.

Using the binomial theorem,

ð1=2 þ itÞn þ ð1=2 � itÞn ¼
Pn
k¼0

n

k

� �
1

2

� �n�k�
ðitÞk þ ð�itÞk�

¼
Pl
j¼0

n

2j

� �
1

2

� �n�2j�
2ð�1Þ j

t2j
�

¼ 2
Pl
j¼0

n

2j

� �
1

2

� �n�2j

ð�1Þ j 1

4
þ t2

� �
� 1

4

 !j

¼ 2
Pl
j¼0

n

2j

� �
1

2

� �n�2j

ð�1Þ j Pj

m¼0

j

m

� �
1

4
þ t2

� �m

� 1

4

� �j�m

;

which is a linear combination of the expressions ð1=4 þ t2Þm, for 0eme l, with rational
coe‰cients not depending on t. Dividing both sides by ð1=4 þ t2Þn establishes equation
(3.11) for suitable rational numbers Cn;m and hence the lemma. r

For the rest of this section, we say that a quantity is a fixed Q-linear combination of
certain elements if the coe‰cients of this linear combination are rational numbers that are
independent of q, a, b and w (but may depend on n and j where appropriate). Our methods
allow the exact calculation of these rational coe‰cients, but the point of this section would
be obscured by the bookkeeping required to record them.

Definition 3.14. As usual, GðzÞ denotes Euler’s Gamma function. For any positive
integer n and any Dirichlet character w ðmod qÞ, define

bnðwÞ ¼
P
g AR

Lð1=2þig;wÞ¼0

1

ð1=4 þ g2Þn ;

so that b1ðwÞ ¼ bðwÞ for example. U

Lemma 3.15. Assume GRH. Let n be a positive integer, and let w be a primitive char-

acter ðmod qÞ. Then bnðwÞ is a fixed Q-linear combination of the quantities

�
log

q

p
;

d

ds
logGðsÞ


 �
s¼ð1þxÞ=2

; . . . ;
d n

dsn
logGðsÞ


 �
s¼ð1þxÞ=2

;ð3:12Þ

Re
d

ds
log Lðs; wÞ


 �
s¼1

; . . . ;Re
d n

dsn
log Lðs; wÞ


 �
s¼1

�
;

where x ¼ 0 if wð�1Þ ¼ 1 and x ¼ 1 if wð�1Þ ¼ �1.
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Remark. Since the critical zeros of Lðs; wÞ and Lðs; w�Þ are identical, the lemma
holds for any nonprincipal character w if, in the set (3.12), we replace q by q� and Lðs; wÞ
by Lðs; w�Þ.

Proof. For primitive characters w, Lemma 3.5 tells us that

bðwÞ ¼ log
q

p
� g0 �

�
1 þ wð�1Þ

�
log 2 þ 2 Re

L 0ð1; wÞ
Lð1; wÞ

¼ log
q

p
þ G 0ðsÞ

GðsÞ


 �
s¼ð1þxÞ=2

þ 2 Re
L 0ð1; wÞ
Lð1; wÞ ;

which establishes the lemma for n ¼ 1. We proceed by induction on n. By Lemma 3.13, we
see that

bnðwÞ ¼
P
g AR

Lð1=2þig;wÞ¼0

1

ð1=4 þ g2Þnð3:13Þ

¼
P
g AR

Lð1=2þig;wÞ¼0

 
2 Re

1

ð1=2 � igÞn þ
Cn;1

ð1=4 þ g2Þn�1

þ Cn;2

ð1=4 þ g2Þn�2
þ � � � þ Cn;l

ð1=4 þ g2Þn�l

!

¼ Cn;1bn�1ðwÞ þ � � � þ Cn;lbn�lðwÞ þ 2
P
g AR

Lð1=2þig;wÞ¼0

Re
1

ð1=2 � igÞn

(where l ¼ bn=2c). By the induction hypothesis, each term of the form Cn;mbn�mðwÞ is a
fixed Q-linear combination of the elements of the set (3.12); therefore all that remains is
to show that the sum on the right-hand side of equation (3.13) is also a fixed Q-linear com-
bination of these elements.

Consider the known formula ([11], equation (10.37))

d

ds
log Lðs; wÞ ¼ BðwÞ � d

ds
logG

s þ x

2

� �
� 1

2
log

q

p
þ
P
r

1

s � r
þ 1

r

� �
;

where
P
r

denotes a sum over all nontrivial zeros of Lðs; wÞ and BðwÞ is a constant (alluded

to in the proof of Lemma 3.5). If we di¤erentiate this formula n � 1 times with respect to s,
we obtain

d n

dsn
log Lðs; wÞ ¼ � d n

dsn
logG

s þ x

2

� �
þ
P
r

ð�1Þn�1ðn � 1Þ!
ðs � rÞn :

Setting s ¼ 1 and taking real parts, and using GRH, we conclude that
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P
g AR

Lð1=2þig;wÞ¼0

Re
1

ð1=2 � igÞn ¼
P
r

Re
1

ð1 � rÞn

¼ ð�1Þn�1

ðn � 1Þ! Re
d n

dsn
log Lðs; wÞ þ d n

dsn
logG

s þ x

2

� �
 �
s¼1

;

which is a fixed Q-linear combination of the elements of the set (3.12) as desired. (Although
d n

dsn
logGðsÞ


 �
s¼ð1þxÞ=2

and
d n

dsn
logG

s þ x

2

� �
 �
s¼1

di¤er by a factor of 2n, this does not

invalidate the conclusion.) r

The following three definitions, which generalize earlier notation, will be important in
our analysis of the higher-order terms Wnðq; a; bÞVðq; a; bÞ.

Definition 3.16. For any positive integers q and n, define

LnðqÞ ¼
P
jijen

ð�1Þ i 2n

n þ i

� � 
iqðaib�iÞ log

q

p
�
P
p j q

log p

p � 1

 !

�
�
1 � iqðaib�iÞ

�L�q=ðq; ai � biÞ
�

f
�
q=ðq; ai � biÞ

�
!
: U

Definition 3.17. Let w be a Dirichlet character ðmod qÞ, and let a and b be integers.
For any positive integers j e n, define

M�
n; jðq; a; bÞ ¼

1

fðqÞ
P

w ðmod qÞ
w3w0

jwðaÞ � wðbÞj2n d j

ds j
log Lðs; w�Þ


 �
s¼1

and

Mn; jðq; a; bÞ ¼ 1

fðqÞ
P

w ðmod qÞ
w3w0

jwðaÞ � wðbÞj2n d j

ds j
log Lðs; wÞ


 �
s¼1

;

so that M�
1;1ðq; a; bÞ ¼ M �ðq; a; bÞ=fðqÞ and M1;1ðq; a; bÞ ¼ Mðq; a; bÞ=fðqÞ for example.

One can use Lemma 3.19 and Perron’s formula to show that

Mn; jðq; a; bÞ ¼ ð�1Þ j P
jije j

ð�1Þ i 2j

j þ i

� � P
ney

n1aib�i ðmod qÞ

LðnÞ log j�1 n

n
þ Oj

log jþ1 qyffiffiffi
y

p
 !

;

in analogy with equation (3.10). U

Definition 3.18. For any distinct reduced residue classes a and b ðmod qÞ, define

Hn; jðq; a; bÞ ¼ ð�1Þ j P
p n k q

ðlog pÞ j

fðpnÞ
P
jije j

ð�1Þ i 2n

n þ i

� � P
ef1

aib�ipe11 ðmod q=p nÞ

e j�1

pe
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for any integers 1e j e n. Notice that the inner sum is

P
ef1

aib�ip e11 ðmod q=p nÞ

e j�1

pe
¼

P
ef1

e1eðq;p;aib�iÞ ðmod eðq;p;1ÞÞ

e j�1

pe
;

where eðq; p; rÞ is defined in Definition 1.8. It turns out that the identity

P
ef1

e1r ðmod sÞ

em

pe
¼ 1

prð1 � p�sÞ
Pm
g¼0

m

g

� �
sgrm�g

Pg
l¼0

g

l

� �
l!

ðps � 1Þl

(in which
g

l

� �
denotes the Stirling number of the second kind) is valid for any positive

integers m, p, r, and s such that re s (as one can see by expanding ðsk þ rÞm by the bino-
mial theorem and then invoking the identity [6], equation 7.46). Consequently, we see
that Hn; jðq; a; bÞ is a rational linear combination of the elements of the set fðlog pÞ j : p j qg
(although the rational coe‰cients depend upon q, a, and b). U

Once we determine how to expand the coe‰cient jwðaÞ � wðbÞj2n as a linear combina-
tion of individual values of w, we can establish Proposition 3.20 which describes how the
cumulant Wnðq; a; bÞVðq; a; bÞ can be evaluated in terms of the arithmetic information
already defined.

Lemma 3.19. Let w be a Dirichlet character ðmod qÞ, and let a and b be reduced

residues ðmod qÞ. For any nonnegative integer n, we have

jwðaÞ � wðbÞj2n ¼
P
jijen

ð�1Þ i 2n

n þ i

� �
wðaib�iÞ:

Proof. The algebraic identity

�
2 � t � t�1

�n ¼
P
jijen

ð�1Þ i 2n

n þ i

� �
ti

can be verified by a straightforward induction on n. Since

jwðaÞ � wðbÞj2 ¼
�
wðaÞ � wðbÞ

��
wðaÞ � wðbÞ

�
¼ 2 � wðab�1Þ � wðab�1Þ�1;

the lemma follows immediately. r

Proposition 3.20. Assume GRH. Let a and b be reduced residues ðmod qÞ. For any

positive integer n, the expression Wnðq; a; bÞVðq; a; bÞ=fðqÞ can be written as a fixed Q-linear

combination of elements in the set

fLnðqÞgW fiqðaib�iÞ log 2; iqð�aib�iÞ log 2; iqðaib�iÞg0 : jije ngð3:14Þ

W fiqðaib�iÞzð jÞ; iqð�aib�iÞzð jÞ : jije n; 2e j e ng

W fHn; jðq; a; bÞ;Mn; jðq; a; bÞ : 1e j e ng:
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Proof. From the definitions (2.9) and (3.14) of Wnðq; a; bÞ and bnðwÞ, we have

Wnðq; a; bÞVðq; a; bÞ
fðqÞ ¼ 22njl2nj

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n P

g>0
Lð1=2þig;wÞ¼0

1

ð1=4 þ g2Þn

¼ 22n�1jl2nj �
1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n

bnðwÞ:

Lemma 2.8 (d) tells us that the numbers l2n are rational. Therefore by Lemma 3.15, it
su‰ces to establish that three types of expressions, corresponding to the three types of
quantities in the set (3.12), are fixed Q-linear combinations of elements of the set (3.14).

Type 1.
1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n log

q�

p
.

Note that Proposition 3.3 can be rewritten in the form

1

fðqÞ
P

w ðmod qÞ
wðaÞ log q� ¼ iqðaÞ

�
log q �

P
p j q

log p

p � 1

�
ð3:15Þ

�
�
1 � iqðaÞ

�L�q=ðq; a � 1Þ
�

f
�
q=ðq; a � 1Þ

� :
By Lemma 3.19 and the orthogonality relation (3.1), we have

1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2nwðcÞ ¼

P
jijen

ð�1Þ i 2n

n þ i

� �
iqðaib�icÞ:ð3:16Þ

Therefore, using equation (3.15) and Proposition 3.1, we get

1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n log

q�

p

¼ 1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n log q� � 1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n log p

¼
P
jijen

ð�1Þ i 2n

n þ i

� ��
iqðaib�iÞ

�
log q �

P
p j q

log p

p � 1

�

�
�
1 � iqðaib�iÞ

�L�q=ðq; aib�i � 1Þ
�

f
�
q=ðq; aib�i � 1Þ

� � iqðaib�iÞ logp

�
¼ LnðqÞ;

since ðq; aib�i � 1Þ ¼ ðq; ai � biÞ.

Type 2.
1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n d j

ds j
logGðsÞ


 �
s¼ð1þxÞ=2

for some 1e j e n.
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The following identities hold for j f 2 (see [1], equations (6.4.2) and (6.4.4)):

d j

ds j
logGðsÞ


 �
s¼1

¼ ð�1Þ jð j � 1Þ!zð jÞ;

d j

ds j
logGðsÞ


 �
s¼1=2

¼ ð�1Þ jð j � 1Þ!zð jÞð2 j � 1Þ:

Because x ¼ 0 when wð�1Þ ¼ 1 and x ¼ 1 when wð�1Þ ¼ �1, we may thus write

d j

ds j
logGðsÞ


 �
s¼ð1þxÞ=2

¼ ð�1Þ jð j � 1Þ!zð jÞ
�
2 j�1 þ wð�1Þð2 j�1 � 1Þ

�
;

whence by equation (3.16),

1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n d j

ds j
logGðsÞ


 �
s¼ð1þxÞ=2

¼ 1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2nð�1Þ jð j � 1Þ!zð jÞ

�
2 j�1 þ wð�1Þð2 j�1 � 1Þ

�

¼ ð�1Þ jð j � 1Þ!zð jÞ
 

2 j�1 P
jijen

ð�1Þ i 2n

n þ i

� �
iqðaib�iÞ

þ ð2 j�1 � 1Þ
P
jijen

ð�1Þ i 2n

n þ i

� �
iqð�aib�iÞ

!
;

which is a linear combination of the desired type. The case j ¼ 1 can be handled similarly
using the identity

d

ds
logGðsÞ


 �
s¼ð1þxÞ=2

¼ �g0 �
�
1 þ wð�1Þ

�
log 2:

Type 3.
1

fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj2n Re

d j

ds j
log Lðs; w�Þ


 �
s¼1

for some 1e j e n.

The expression in question is exactly M�
n; jðq; a; bÞ, and so it su‰ces to show that

M�
n; jðq; a; bÞ ¼ Mn; jðq; a; bÞ þ Hn; jðq; a; bÞ. Note that the identity

d j

ds j
log Lðs; wÞ ¼ d j�1

ds j�1

�
�
Py
n¼1

LðnÞwðnÞ
ns

�
¼ ð�1Þ jPy

n¼1

LðnÞðlog nÞ j�1wðnÞ
ns

implies

d j

ds j
log Lðs; wÞ


 �
s¼1

¼ ð�1Þ jP
p

ðlog pÞ j Py
e¼1

e j�1

pe
wðpeÞ:
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The proof of Lemma 3.9 can then be adapted to obtain the equation

M�
n; jðq; a; bÞ �Mn; jðq; a; bÞ

¼ ð�1Þ j

fðqÞ
P
p j q

ðlog pÞ j Py
e¼1

e j�1

pe

P
w ðmod qÞ

jwðaÞ � wðbÞj2nw�ðpeÞ

¼ ð�1Þ j

fðqÞ
P
p j q

ðlog pÞ j Py
e¼1

e j�1

pe

P
jijen

ð�1Þ i 2n

n þ i

� � P
w ðmod qÞ

wðaib�iÞw�ðpeÞ

by Lemma 3.19. Evaluating the inner sum by Proposition 3.4 shows that this last expres-
sion is precisely the definition of Hn; jðq; a; bÞ, as desired. r

As described at the beginning of this section, Proposition 3.14 is exactly what we need
to justify the assertion that we can calculate dðq; a; bÞ, using only arithmetic information, to
within an error of the form OAðq�AÞ. That some small primes in arithmetic progressions
ðmod qÞ enter the calculations is not surprising; interestingly, though, the arithmetic pro-
gressions involved are the residue classes a jb�j for j jje n, rather than the residue classes
a and b themselves!

To give a better flavor of the form these approximations take, we end this section by
explicitly giving such a formula with an error term better than Oðq�5=2þeÞ for any e > 0.
Taking K ¼ 1 in Theorem 1.1 gives the formula

dðq; a; bÞ ¼ 1

2
þ rðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pVðq; a; bÞ
p 1 � rðqÞ2

6Vðq; a; bÞ �
3W2ðq; a; bÞ

Vðq; a; bÞ

 !
þ O

rðqÞ5

Vðq; a; bÞ5=2

 !
:

Going through the above proofs, one can laboriously work out that

W2ðq; a; bÞVðq; a; bÞ
fðqÞ ¼ 1

4
L2ðqÞ �

1

4fðqÞ
P

w ðmod qÞ
jwðaÞ � wðbÞj4

� g0 þ log 2 þ 1

2
zð2Þ

� �
þ wð�1Þ log 2 þ 1

4
zð2Þ

� �� �

þ 1

2

�
M2;1ðq; a; bÞ þ H2;1ðq; a; bÞ

�
� 1

4

�
M2;2ðq; a; bÞ þ H2;2ðq; a; bÞ

�
;

to which Lemma 3.19 can be applied with n ¼ 2. Combining these two expressions and
expanding Vðq; a; bÞ as described after equation (3.10) results in the following formula:

Proposition 3.21. Assume GRH and LI. Suppose a and b are reduced residues

ðmod qÞ such that a is a nonsquare and b is a square ðmod qÞ. Then
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dðq; a; bÞ ¼ 1

2
þ rðqÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðqÞ

�
~LLðq; a; bÞ þ ~RRðq; a; bÞ

�q

�
�

1 � rðqÞ2

12fðqÞ ~LLðq; a; bÞ
� 3

16fðqÞ ~LLðq; a; bÞ2

�
�
L2ðqÞ �

�
6 þ 2iqða2b�2Þ

�
g0 þ log 2 þ 1

2
zð2Þ

� �

�
�
2iqð�a2b�2Þ � 8iqð�ab�1Þ

�
log 2 þ 1

4
zð2Þ

� �

þ 2F1ðq; a; bÞ þ 2H2;1ðq; a; bÞ �F2ðq; a; bÞ � H2;2ðq; a; bÞ
��

þ O
rðqÞ5

ffiffiffiffiffiffiffiffiffiffi
log q

p
fðqÞ5=2

 !
;

where L2ðqÞ is defined in Definition 3.16 and H2; jðq; a; bÞ is defined in Definition 3.18,
and

~LLðq; a; bÞ ¼ LðqÞ þ Kqða � bÞ þ iqð�ab�1Þ log 2 þ H0ðq; a; bÞ þ
Lðab�1Þ

ab�1
þLðba�1Þ

ba�1
;

~RRðq; a; bÞ ¼
P

qeneq4

n1ab�1 ðmod qÞ

LðnÞ
n

þ
P

qeneq4

n1ba�1 ðmod qÞ

LðnÞ
n

� 2
P

qeneq4

n11 ðmod qÞ

LðnÞ
n

;

F1ðq; a; bÞ ¼
Lða2b�2Þ

a2b�2
� 4

Lðab�1Þ
ab�1

� 4
Lðba�1Þ

ba�1
þLðb2a�2Þ

b2a�2
;

F2ðq; a; bÞ ¼
Lða2b�2Þ logða2b�2Þ

a2b�2
� 4

Lðab�1Þ logðab�1Þ
ab�1

� 4
Lðba�1Þ logðba�1Þ

ba�1
þLðb2a�2Þ logðb2a�2Þ

b2a�2
:

In all these definitions, expressions such as a2b�2 refer to the smallest positive integer con-

gruent to a2b�2 ðmod qÞ.

3.5. A central limit theorem. In this section we prove a central limit theorem for the
functions

Eðx; q; aÞ � Eðx; q; bÞ ¼ fðqÞ
�
pðx; q; aÞ � pðx; q; bÞ

�
x�1=2 log x:

The technique we use is certainly not without precedent. Hooley [7] and Rubinstein and
Sarnak [14] both prove central limit theorems for similar normalized error terms under
the same hypotheses GRH and LI (though each with di¤erent acronyms).
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Theorem 3.22. Assume GRH and LI. As q tends to infinity, the limiting logarithmic

distributions of the functions

Eðx; q; aÞ � Eðx; q; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fðqÞ log q

pð3:17Þ

converge in measure to the standard normal distribution of mean 0 and variance 1, uniformly

for all pairs a, b of distinct reduced residues modulo q.

We remark that this result can in fact be derived from Rubinstein and Sarnak’s
2-dimensional central limit theorem [14], Section 3.2, for

�
Eðx; q; aÞ;Eðx; q; bÞ

�
, although

this implication is not made explicit in their paper. In general, let

fX ;Y ðs; tÞ ¼
Ðy
0

Ðy
0

exp
�
iðsx þ tyÞ

�
fX ;Y ðx; yÞ dx dy

denote the joint characteristic function of a pair ðX ;YÞ of real-valued random variables,
where fX ;Y ðx; yÞ is the joint density function of the pair. Then the characteristic function
of the real-valued random variable X � Y is

fX�Y ðtÞ ¼ E
�
exp
�
itðX � YÞ

��
¼
Ðy
0

Ðy
0

exp
�
itðx � yÞ

�
fX ;Y ðx; yÞ dx dy ¼ fX ;Y ðt;�tÞ:

The derivation of Theorem 3.22 from Rubinstein and Sarnak’s 2-dimensional central
limit theorem then follows by taking X and Y to be the random variables having the
same limiting distributions as Eðx; q; aÞ and Eðx; q; bÞ, respectively (which implies that
X � Y ¼ Xq;a;b).

On the other hand, we note that our analysis of the variances of these distributions
has the benefit of providing a better quantitative statement of the convergence of our limit-
ing distributions to the Gaussian distribution: see equation (3.19) below.

Proof of Theorem 3.22. Since the Fourier transform of the limiting logarithmic
distribution of Eðx; q; aÞ � Eðx; q; bÞ is X̂X q;a;bðhÞ, the Fourier transform of the limiting
logarithmic distribution of the quotient (3.17) is X̂X q;a;b

�
h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fðqÞ log q

p �
. A theorem of

Lévy from 1925 ([12], Section 4.2, Theorem 4), the Continuity Theorem for characteristic
functions, asserts that all we need to show is that

lim
q!y

X̂X q;a;b
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2fðqÞ log q
p

 !
¼ e�h2=2ð3:18Þ

for every fixed real number h. Because the right-hand side is continuous at h ¼ 0, it is
automatically the characteristic function of the measure to which the limiting logarithmic
distributions of the quotients (3.17) converge in distribution, according to Lévy’s theorem.

When q is large enough in terms of h, we have jh=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fðqÞ log q

p
je 1=4. For such q,

Proposition 2.13 implies that
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log X̂X q;a;b
hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2fðqÞ log q
p

 !
ð3:19Þ

¼ � Vðq; a; bÞ
2fðqÞ log q

h2

2
þ O

�
cðq; aÞ � cðq; bÞ

�		hjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðqÞ log q

p þ Vðq; a; bÞh4�
fðqÞ log q

�2

 !

¼ � h2

2
þ O

h2 log log q

log q
þ jhjrðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðqÞ log q
p þ h4

fðqÞ log q

 !

using the asymptotic formula for Vðq; a; bÞ given in Proposition 3.6. Since h is fixed, this is
enough to verify (3.18), which establishes the theorem. r

3.6. Racing quadratic nonresidues against quadratic residues. This section is devoted
to understanding the e¤ect of low-lying zeros of Dirichlet L-functions on prime number
races between quadratic residues and quadratic nonresidues. This phenomenon has already
been studied by many authors—see for instance [2]. Let q be an odd prime, and define

pðx; q;NÞ ¼Kfpe x : p is a quadratic nonresidue mod qg

and

pðx; q;RÞ ¼Kfpe x : p is a quadratic residue mod qg:

Each of pðx; q;NÞ and pðx; q;RÞ is asymptotic to pðxÞ=2, but Chebyshev’s bias predicts that
the di¤erence pðx; q;NÞ � pðx; q;RÞ, or equivalently the normalized di¤erence

Eðx;N;RÞ ¼ log xffiffiffi
x

p
�
pðx; q;NÞ � pðx; q;RÞ

�
;

is more often positive than negative.

Our methods lead to an asymptotic formula for dðq;N;RÞ, the logarithmic density of
the set of real numbers xf 1 satisfying pðx; q;NÞ > pðx; q;RÞ, that explains the e¤ect of
low-lying zeros in a straightfoward and quantitative way. We sketch this application now.

First, define the random variable

Xq;N;R ¼ 2 þ 2
P
g>0

Lð1=2þig;w1Þ¼0

Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4 þ g2

p ;

where w1 is the unique quadratic character ðmod qÞ. Under GRH and LI, the distribution of
Xq;N;R is the same as the limiting distribution of the normalized error term Eðx;N;RÞ. The
methods of Section 3 then lead to an asymptotic formula analogous to equation (1.2):

dðq;N;RÞ ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pVðq;N;RÞ

s
þ O

1

Vðq;N;RÞ3=2

 !
;ð3:20Þ
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where

Vðq;N;RÞ ¼ bðw1Þ ¼
P
g AR

Lð1=2þig;w1Þ¼0

1

1=4 þ g2
:

To simplify the discussion, we explore only the e¤ect of the lowest zero (the zero closest to
the real axis) on the size of Vðq;N;RÞ.

By the classical formula for the zero-counting function NðT ; wÞ, the average height of
the lowest zero of Lðs; w1Þ is 2p=log q. Suppose we have a lower-than-average zero, say at
height c � 2p=log q for some 0 < c < 1. Then we get a higher-than-average contribution to
the variance of size

1

1=4 þ ðc � 2p=log qÞ2
� 1

1=4 þ ð2p=log qÞ2
:

Since the variance Vðq;N;RÞ ¼ bðw1Þ is asymptotically log q by Lemma 3.5, this increases
the variance by roughly a percentage t given by

t@
1

log q

1

1=4 þ ðc � 2p=log qÞ2
� 1

1=4 þ ð2p=log qÞ2

 !
:ð3:21Þ

Therefore, given any two of the three parameters

� how low the lowest zero is (in terms of the percentage c of the average),

� how large a contribution we see to the variance (in terms of the percentage t), and

� the size of the modulus q,

we can determine the range for the third parameter from equation (3.21).

For example, as c tends to 0, the right-hand side of equation (3.21) is asymptotically

64p2

ðlog2 q þ 16p2Þ log q
:

So if we want to see an increase in variance of 10%, an approximation for the range of q

for which this might be possible is given by setting 64p2=ðlog2 q þ 16p2Þ log q ¼ 0:1 and
solving for q, which gives log q ¼ 15:66 or about q ¼ 6,300,000. This assumes that c tends
to 0—in other words, that Lðs; w1Þ has an extremely low zero. However, even taking
c ¼ 1=3 on the right-hand side of equation (3.21) and setting the resulting expression equal
to 0.1 yields about q ¼ 1,600,000. In other words, having a zero that is only a third as high
as the average zero, for example, will give a ‘‘noticeable’’ (at least 10%) lift to the variance
up to roughly q ¼ 1,600,000.
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It turns out that unusually low zeros of this sort are not particularly rare.
The Katz–Sarnak model predicts that the proportion of L-functions in the family
fLðs; wÞ : w primitive of order 2g having a zero as low as c � 2p=log q is asymptotically
2p2c3=9 as c tends to 0. Continuing with our example value c ¼ 1=3, we see that roughly
8% of the moduli less than 1,600,000 will have a 10% lift in the variance Vðq;N;RÞ coming
from the lowest-lying zero.

Well-known examples of L-functions having low-lying zeros are the Lðs; w1Þ corre-
sponding to prime moduli q for which the class number hð�qÞ equals 1, as explained in
[2] with the Chowla–Selberg formula for q ¼ 163. For this modulus, the imaginary part
of the lowest-lying zero is 0:202901 . . . ¼ 0:16449 . . . � 2p=log 163. According to our ap-
proximations, this low-lying zero increases the variance by roughly t ¼ 56%; considering
this increased variance in equation (3.20) explains why the value of dð163;N;RÞ is excep-
tionally low. The actual value of dð163;N;RÞ, along with some neighboring values, are
shown in Table 2.

Other Dirichlet L-functions having low-lying zeros are the Lðs; w1Þ corresponding to
prime moduli q for which the class number hð�qÞ is relatively small; a good summary of
the first few class numbers is given in [2], Table VI.

Notice that in principle, racing quadratic residues against quadratic nonresidues
makes sense for any modulus q for which rðqÞ ¼ 2, which includes powers of odd primes
and twice these powers. However, being a quadratic residue modulo a prime q is exactly
equivalent to being a quadratic residue modulo any power of q, and also (for odd numbers)
exactly equivalent to being a quadratic residue modulo twice a power of q. Therefore

dðq;N;RÞ ¼ dðqk;N;RÞ ¼ dð2qk;N;RÞ

for every odd prime q. The only other modulus for which rðqÞ ¼ 2 is q ¼ 4, which has been
previously studied: Rubinstein and Sarnak [14] calculated that

dð4;N;RÞ ¼ dð4; 3; 1ÞA0:9959:

4. Fine-scale di¤erences among races to the same modulus

In this section we probe the e¤ect that the specific choice of residue classes a and b has
on the density dðq; a; bÞ. We begin by proving Corollary 1.9, which isolates the quantitative

q dðq;N;RÞ

151 0.745487
157 0.750767
163 0.590585
167 0.780096
173 0.659642

Table 2. Values of dðq;N;RÞ for q ¼ 163 and nearby primes.
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influence of dðq; a; bÞ on a and b from its dependence on q, in Section 4.1. We then dissect
the relevant influence, namely the function Dðq; a; bÞ, showing how particular arithmetic
properties of the residue classes a and b predictably a¤ect the density; three tables of com-
putational data are included to illustrate these conclusions. In Section 4.2 we develop this
theme even further, proving Theorem 4.2 and hence its implication Theorem 1.10, which
establishes a lasting ‘‘meta-bias’’ among these densities. Finally, in Section 4.3 we apply
our techniques to the seemingly unrelated ‘‘mirror image phenomenon’’ observed by Bays
and Hudson, explaining its existence with a similar analysis.

4.1. The impact of the residue classes a and b. The work of the previous sections has
provided us with all the tools we need to establish Corollary 1.9.

Proof of Corollary 1.9. We begin by showing that the function

Dðq; a; bÞ ¼ Kqða � bÞ þ iqð�ab�1Þ log 2 þLðr1Þ
r1

þLðr2Þ
r2

þ Hðq; a; bÞ

defined in equation (1.4) is bounded above by an absolute constant (the fact that it is
nonnegative is immediate from the definitions of its constituent parts). It has already
been remarked in Definition 1.5 that Kq is uniformly bounded, as is iq. We also have
LðrÞ=re ðlog rÞ=r, and this function is decreasing for rf 3, so the third and fourth terms
are each uniformly bounded as well. Finally, from Definition 1.8, we see that

hðq; p; rÞ ¼ 1

fðpnÞ
log p

peðq;p; rÞ e
1

p � 1

log p

p1
;

and so Hðq; a; bÞ <
P

p

2ðlog pÞ=pðp � 1Þ is uniformly bounded by a convergent sum as
well.

We now turn to the main assertion of the corollary. By Theorems 1.4 and 1.7, we
have

Vðq; a; bÞ ¼ 2fðqÞ
�
LðqÞ þ Kqða � bÞ þ iqð�ab�1Þ log 2

�
þ 2M �ðq; a; bÞ

¼ 2fðqÞ

0
@LðqÞ þ Kqða � bÞ þ iqð�ab�1Þ log 2 þLðr1Þ

r1

þLðr2Þ
r2

þ Hðq; a; bÞ þ O
log2 q

q

 !1A

¼ 2fðqÞ LðqÞ þ Dðq; a; bÞ þ O
log2 q

q

 !0
@

1
A

¼ 2fðqÞLðqÞ 1 þ Dðq; a; bÞ
LðqÞ þ O

log q

q

� � !
:
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Since Dðq; a; bÞ is bounded while LðqÞ@ log q, we see that VðqÞ@ 2fðqÞ log q; moreover,

the power series expansion of ð1 þ tÞ�1=2 around t ¼ 0 implies that

Vðq; a; bÞ�1=2 ¼
�
2fðqÞLðqÞ

��1=2
1 � Dðq; a; bÞ

2LðqÞ þ O
Dðq; a; bÞ2

LðqÞ2
þ log q

q

 !0
@

1
A

¼
�
2fðqÞLðqÞ

��1=2
1 � Dðq; a; bÞ

2LðqÞ þ O
1

log2 q

� � !
:

(Recall that we are assuming that qf 43, which is enough to ensure that LðqÞ is positive.)
Together with the last assertion of Theorem 1.1, this formula implies that

dðq; a; bÞ ¼ 1

2
þ rðqÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðqÞLðqÞ

p 1 � Dðq; a; bÞ
2LðqÞ þ O

1

log2 q

� � !
þ O

rðqÞ3

Vðq; a; bÞ3=2

 !
:

Since the last error term is fe qe=
�
fðqÞ log q

�3=2
, it can be subsumed into the first error

term, and the proof of the corollary is complete. r

Corollary 1.9 tells us that larger values of Dðq; a; bÞ lead to smaller values of the
density dðq; a; bÞ. Computations of the values of dðq; a; bÞ (using methods described in
Section 5.4) illustrate this relationship nicely. Since dðq; a; bÞ ¼ dðq; ab�1; 1Þ when b is a
square ðmod qÞ, we restrict our attention to densities of the form dðq; a; 1Þ.

We begin by investigating a prime modulus q, noting that

Dðq; a; 1Þ ¼ iqð�aÞ log 2 þLðaÞ
a

þLða�1Þ
a�1

þ 2 log q

qðq � 1Þ

when q is prime (here a�1 denotes the smallest positive integer that is a multiplicative inverse
of a ðmod qÞ). Therefore we obtain the largest value of Dðq; a; bÞ when a1�1 ðmod qÞ, and
the next largest values are when a is a small prime, so that the LðaÞ=a term is large. (These
next large values also occur when a�1 is a small prime, and in fact we already know that
dðq; a; 1Þ ¼ dðq; a�1; 1Þ. When q is large, it is impossible for both a and a�1 to be small.)
Notice that LðaÞ=a is generally decreasing on primes a, except that Lð3Þ=3 > Lð2Þ=2.
Therefore the second, third, and fourth-largest values of Dðq; a; 1Þ will occur for a congru-
ent to 3, 2, and 5 ðmod qÞ, respectively.

This e¤ect is quite visible in the calculated data. We use the prime modulus q ¼ 163
as an example, since the smallest 12 primes, as well as �1, are all nonsquares ðmod 163Þ.
Table 3 lists the values of all densities of the form dð163; a; 1Þ (remembering that
dðq; a; 1Þ ¼ dðq; a�1; 1Þ and that the value of any dðq; a; bÞ is equal to one of these). Even
though the relationship between Dðq; a; 1Þ and dðq; a; 1Þ given in Corollary 1.9 involves an
error term, the data is striking. The smallest ten values of dðq; a; 1Þ are exactly in the order
predicted by our analysis of Dðq; a; 1Þ: the smallest is a ¼ 1621�1 ðmod 163Þ, then a ¼ 3
and a ¼ 2, then the seven next smallest primes in order. (This ordering, which is clearly
related to Theorem 1.10, will be seen again in Figure 2.)
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One can also probe more closely the e¤ect of the term Mðq; a; 1Þ upon the density
dðq; a; 1Þ. Equation (3.10) can be rewritten as the approximation

Mðq; a; 1Þ
fðqÞ þ 2

P
ney

n11 ðmod qÞ

LðnÞ
n

A
P

ney
n1a ðmod qÞ

LðnÞ
n

þ
P

ney

n1a�1 ðmod qÞ

LðnÞ
n

ð4:1Þ

(where we are ignoring the exact form of the error term). Taking y ¼ q recovers the ap-
proximation Mðq; a; 1ÞAfðqÞ

�
LðaÞ=a þLða�1Þ=a�1

�
used in the definition of Dðq; a; bÞ,

but taking y larger would result in a better approximation.

We examine this e¤ect on the calculated densities for the medium-sized prime modu-
lus q ¼ 101. In Table 4, the second group of columns records the first four prime powers
that are congruent to a or a�1 ðmod 101Þ. The second-to-last column gives the value of
the right-hand side of equation (4.1), computed at y ¼ 106. Note that smaller prime powers
in the second group of columns give large contributions to this second-to-last column, a
trend that can be visually confirmed. Finally, the last column lists the values of the densities
dðq; a; bÞ, according to which the rows have been sorted in ascending order. The correlation
between larger values of the second-to-last column and smaller values of dðq; a; bÞ is almost
perfect (the adjacent entries a ¼ 40 and a ¼ 10 being the only exception): the existence of
smaller primes and prime powers in the residue classes a and a�1 ðmod 101Þ really does
contribute positively to the variance Vðq; a; 1Þ and hence decreases the density dðq; a; 1Þ.

q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ

163 162 162 0.524032 163 30 125 0.526809
163 3 109 0.525168 163 76 148 0.526815
163 2 82 0.525370 163 92 101 0.526829
163 5 98 0.525428 163 86 127 0.526869
163 7 70 0.525664 163 128 149 0.526879
163 11 89 0.525744 163 129 139 0.526879
163 13 138 0.526079 163 80 108 0.526894
163 17 48 0.526083 163 114 153 0.526898
163 19 103 0.526090 163 117 124 0.526900
163 23 78 0.526213 163 20 106 0.526906
163 31 142 0.526378 163 42 66 0.526912
163 67 73 0.526437 163 28 99 0.526914
163 37 141 0.526510 163 44 63 0.526925
163 29 45 0.526532 163 12 68 0.526931
163 27 157 0.526578 163 72 120 0.526941
163 32 107 0.526586 163 112 147 0.526975
163 59 105 0.526620 163 110 123 0.526981
163 8 102 0.526638 163 122 159 0.526996
163 79 130 0.526682 163 50 75 0.526997
163 94 137 0.526746 163 52 116 0.527002
163 18 154 0.526768

Table 3. The densities dðq; a; 1Þ computed for q ¼ 163.

175Fioril l i and Martin, Inequities in the Shanks–Rényi prime number race



(Note that the e¤ect of the term i101ð�aÞ log 2 is not present here, since 101 is a prime
congruent to 1 ðmod 4Þ and hence �1 is not a nonsquare.)

Finally we investigate a highly composite modulus q to witness the e¤ect of the term
Kqða � 1Þ ¼ L

�
q=ðq; a � 1Þ

�
=f
�
q=ðq; a � 1Þ

�
�LðqÞ=fðqÞ on the size of Dðq; a; 1Þ. This ex-

pression vanishes unless a � 1 has such a large factor in common with q that the quotient
q=ðq; a � 1Þ is a prime power. Therefore we see a larger value of Dðq; a; 1Þ, and hence
expect to see a smaller value of dðq; a; 1Þ, when q=ðq; a � 1Þ is a small prime, for example
when a ¼ q=2 þ 1.

Table 5 confirms this observation with the modulus q ¼ 420. Of the six smallest
densities dð420; a; 1Þ, five of them correspond to the residue classes a (and their inverses)
for which q=ðq; a � 1Þ is a prime power; the sixth corresponds to a1�1 ðmod 420Þ, echo-
ing the e¤ect already seen for q ¼ 163. Moreover, the ordering of these first six densities are
exactly as predicted: even the battle for smallest density between a1�1 ðmod 420Þ and
a ¼ 420=2 � 1 is appropriate, since both residue classes cause an increase in Dð420; a; 1Þ

q a a�1 first four prime powers RHS of (4.1) dð101; a; 1Þ

101 7 29 7 29 433 512 0.563304 0.534839
101 2 51 2 103 709 859 0.554043 0.534928
101 3 34 3 337 811 1013 0.528385 0.535103
101 11 46 11 349 617 1021 0.383090 0.536123
101 8 38 8 109 139 311 0.332888 0.536499
101 53 61 53 61 263 457 0.329038 0.536522
101 12 59 59 113 463 719 0.276048 0.536955
101 67 98 67 199 269 401 0.271567 0.536993
101 41 69 41 243 271 647 0.268766 0.537013
101 28 83 83 331 487 937 0.235130 0.537284
101 15 27 27 128 229 419 0.235035 0.537293
101 66 75 167 277 479 571 0.230291 0.537340
101 18 73 73 523 881 1129 0.215281 0.537463
101 50 99 151 353 503 757 0.211209 0.537500
101 55 90 191 257 661 797 0.205833 0.537537
101 42 89 89 547 1153 1301 0.202289 0.537586
101 44 62 163 347 751 769 0.199652 0.537607
101 72 94 173 397 577 599 0.196417 0.537623
101 32 60 32 739 941 1171 0.191447 0.537660
101 26 35 127 439 641 733 0.190601 0.537688
101 39 57 241 443 461 1049 0.187848 0.537708
101 40 48 149 343 1151 1361 0.178698 0.537780
101 10 91 293 313 919 1303 0.180422 0.537792
101 74 86 389 983 1399 1601 0.165153 0.537900
101 63 93 467 1103 1709 2083 0.146466 0.538067

Table 4. The e¤ect of medium-sized prime powers on the densities dðq; a; 1Þ, illustrated

with q ¼ 101 and y ¼ 106.
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of size exactly log 2. (Since 420 is divisible by the four smallest primes, the largest e¤ect that
the LðaÞ=a term could have on Dðq; a; bÞ is ðlog 11Þ=11, and so these e¤ects are not nearly
as large.) The magnitude of this e¤ect is quite significant: note that the di¤erence between
the first and seventh-smallest values of dð420; a; 1Þ (from a ¼ 211 to a ¼ 17) is larger than
the spread of the largest 46 values (from a ¼ 17 to a ¼ 391).

4.2. The predictability of the relative sizes of densities. The specificity of our asymp-
totic formulas to this point suggests comparing, for fixed integers a1 and a2, the densities
dðq; a1; 1Þ and dðq; a2; 1Þ as q runs through all moduli for which both a1 and a2 are non-
squares. (We have already seen that every density is equal to one of the form dðq; a; 1Þ.)
Theorem 1.10, which we will derive shortly from Corollary 4.3, is a statement about exactly
this sort of comparison.

In fact we can investigate even more general families of race games: fix two rational
numbers r and s, and consider the family of densities dðq; r þ sq; 1Þ as q varies. We need
r þ sq to be an integer and relatively prime to q for this density to be sensible; we further

q a a�1 ðq; a� 1Þ Kqða� 1Þ dðq; a; 1Þ q a a�1 ðq; a� 1Þ Kqða� 1Þ dðq; a; 1Þ

420 211 211 210 log 2 0.770742 420 113 197 28 0 0.807031
420 419 419 2 0 0.772085 420 149 389 4 0 0.807209
420 281 281 140 ðlog 3Þ=2 0.779470 420 103 367 6 0 0.807284
420 253 337 84 ðlog 5Þ=4 0.788271 420 223 307 6 0 0.807302
420 61 241 60 ðlog 7Þ=6 0.788920 420 83 167 2 0 0.807505
420 181 181 60 ðlog 7Þ=6 0.789192 420 151 331 30 0 0.809031
420 17 173 4 0 0.795603 420 59 299 2 0 0.809639
420 47 143 2 0 0.796173 420 137 233 4 0 0.809647
420 29 29 28 0 0.796943 420 139 139 6 0 0.810290
420 13 97 12 0 0.797669 420 73 397 12 0 0.811004
420 187 283 6 0 0.797855 420 157 313 12 0 0.811197
420 53 317 4 0 0.798207 420 251 251 10 0 0.811557
420 11 191 10 0 0.798316 420 349 349 12 0 0.811706
420 107 263 2 0 0.798691 420 323 407 14 0 0.811752
420 41 41 20 0 0.800067 420 179 359 2 0 0.811765
420 19 199 6 0 0.800937 420 229 409 12 0 0.811776
420 43 127 42 0 0.801609 420 131 311 10 0 0.811913
420 23 347 2 0 0.802681 420 277 373 12 0 0.812052
420 37 193 12 0 0.803757 420 239 239 14 0 0.812215
420 79 319 6 0 0.804798 420 247 403 6 0 0.812215
420 89 269 4 0 0.804836 420 227 383 2 0 0.812777
420 101 341 20 0 0.805089 420 221 401 20 0 0.813594
420 71 71 70 0 0.805123 420 293 377 4 0 0.813793
420 67 163 6 0 0.805196 420 379 379 42 0 0.813818
420 31 271 30 0 0.806076 420 209 209 4 0 0.815037
420 257 353 4 0 0.806638 420 391 391 30 0 0.815604

Table 5. The densities dðq; a; 1Þ computed for q ¼ 420, together with the values of

Kqða � 1Þ ¼ L
�
420=ð420; a � 1Þ

�
=f
�
420=ð420; a � 1Þ

�
.
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desire r þ sq to be a nonsquare ðmod qÞ, or else dðq; r þ sq; 1Þ simply equals 1=2. Therefore,
we define the set of qualified moduli

Qðr; sÞ ¼ fq A N : r þ sq A Z; ðr þ sq; qÞ ¼ 1; there are no solutions to x2 1 r þ sq ðmod qÞg:

(Note that translating s by an integer does not change the residue class of r þ sq ðmod qÞ, so
one could restrict s to the interval ½0; 1Þ without losing generality if desired.)

It turns out that every pair ðr; sÞ of rational numbers can be assigned a ‘‘rating’’
Rðr; sÞ that dictates how the densities in the family dðq; r þ sq; 1Þ compare to other densities
in similar families.

Definition 4.1. Define a rating function Rðr; sÞ as follows:

� Suppose that the denominator of s is a prime power pk (k f 1).

– If r is a power p j of the same prime, then Rðr; sÞ ¼ ðlog pÞ=fðp jþkÞ.

– If r ¼ 1 or r ¼ 1=p j for some integer 1e j < k, then Rðr; sÞ ¼ ðlog pÞ=fðpkÞ.

– If r ¼ 1=pk, then Rðr; sÞ ¼ ðlog pÞ=pk.

– Otherwise Rðr; sÞ ¼ 0.

� Suppose that s is an integer.

– If r ¼ �1, then Rðr; sÞ ¼ log 2.

– If r is a prime power p j ð j f 1Þ, then Rðr; sÞ ¼ ðlog pÞ=p j.

– Otherwise Rðr; sÞ ¼ 0.

� Rðr; sÞ ¼ 0 for all other values of s. U

Theorem 4.2. Let Dðq; a; bÞ be defined as in equation (1.4). For fixed rational num-

bers r and s,

Dðq; r þ sq; 1Þ ¼ Rðr; sÞ þ Or; s
log q

q

� �

as q tends to infinity within the set Qðr; sÞ.

We will be able to prove this theorem at the end of the section; first, however, we note
an interesting corollary.

Corollary 4.3. Assume GRH and LI. If r1, s1, r2, s2 are rational numbers such that

Rðr1; s1Þ > Rðr2; s2Þ, then

dðq; r1 þ s1q; 1Þ < dðq; r2 þ s2q; 1Þ for all but finitely many q A Qðr1; s1ÞXQðr2; s2Þ:
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Proof. We may assume that qf 43. Inserting the conclusion of Theorem 4.2 into
the formula for dðq; a; bÞ in Corollary 1.9, we obtain

dðq; r þ sq; 1Þ ¼ 1

2
þ rðqÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðqÞLðqÞ

p 1 � Rðr; sÞ
2LðqÞ þ O

1

log2 q

� � !
ð4:2Þ

for any q A Qðr; sÞ. Therefore for all q A Qðr1; s1ÞXQðr2; s2Þ,

dðq; r1 þ s1q; 1Þ � dðq; r2 þ s2q; 1Þ ¼ �Rðr1; s1Þ þ Rðr2; s2Þ
2LðqÞ þ O

1

log2 q

� � !
rðqÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðqÞLðqÞ

p :

Since the constant �Rðr1; s1Þ þ Rðr2; s2Þ is negative by hypothesis, we see that the di¤erence
dðq; r1 þ s1q; 1Þ � dðq; r2 þ s2q; 1Þ is negative when q is su‰ciently large in terms of r1, s1, r2,
and s2. r

Notice, from the part of Definition 4.1 where s is an integer, that Theorem 1.10 is
precisely the special case of Corollary 4.3 where s1 ¼ s2 ¼ 0. Therefore we have reduced
Theorem 1.10 to proving Theorem 4.2.

Theorem 1.10 itself is illustrated in Figure 2, using the computed densities for prime
moduli to most clearly observe the relevant phenomenon. For each prime q up to 1000, and
for every nonsquare a ðmod qÞ, the point

q;
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðqÞLðqÞ3

q
rðqÞ dðq; a; 1Þ � 1

2

� �
�LðqÞ

0
@

1
Að4:3Þ

¼ q;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðq � 1Þ

p
log

q

2peg0

� �3=2

dðq; a; 1Þ � 1

2

� �
� log

q

2peg0

 !

has been plotted; the values corresponding to certain residue classes have been emphasized
with the listed symbols. The motivation for the seemingly strange (though order-preserving)
normalization in the second coordinate is equation (4.2), which shows that the value in
the second coordinate is �Rða; 0Þ=2 þ Oð1=log qÞ. In other words, on the vertical axis the
value 0 corresponds to dðq; a; bÞ being exactly the ‘‘default’’ value 1=2þrðqÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðqÞLðqÞ

p
,

the value �0:05 corresponds to dðq; a; bÞ being less than the default value by

0:05rðqÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pfðqÞLðqÞ3

q
, and so on. We clearly see in Figure 2 the normalized values cor-

responding to dðq;�1; 1Þ, dðq; 3; 1Þ, dðq; 2; 1Þ, and so on sorting themselves out into rows
converging on the values �ðlog 2Þ=2, �ðlog 3Þ=6, �ðlog 2Þ=4, and so on.

We need to establish several lemmas before we can prove Theorem 4.2. The recurring
theme in the following analysis is that solutions to linear congruences ðmod qÞ with fixed
coe‰cients must be at least a constant times q in size, save for specific exceptions that can
be catalogued.
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Lemma 4.4. Let r and s be rational numbers. If r3�1 or if s is not an integer,
then there are only finitely many positive integers q such that r þ sq is an integer and

r þ sq1�1 ðmod qÞ.

Proof. Write r ¼ a

b
and s ¼ c

d
. The congruence

a

b
þ c

d
q1�1 ðmod qÞ implies that

ad

b
þ cq1�d ðmod qÞ, which means that q must divide

ad

b
þ d. This only happens for

finitely many q unless
ad

b
þ d ¼ 0, which is equivalent (since d 3 0) to

a

b
¼ �1. In this case

the congruence is
c

d
q1 0 ðmod qÞ, which can happen only if

c

d
is an integer. r

Lemma 4.5. Let r and s be rational numbers. Suppose that q is a positive integer such

that r þ sq is an integer. If r3 1, then Kqðr þ sq � 1Þfr; s ðlog qÞ=q.

Proof. We first note that LðtÞ=fðtÞf ðlog tÞ=t for all positive integers t: if LðtÞ
is nonzero, then t is a prime power, which means fðtÞf t=2. Therefore it su‰ces to
show that ðq; r þ sq � 1Þ is bounded, since then q=ðq; r þ sq � 1Þgr; s q and consequently

Kqðr þ sq � 1Þfr; s ðlog qÞ=q since ðlog tÞ=t is decreasing for tf 3. But writing r ¼ a

b
and

s ¼ c

d
, we have

q;
a

b
þ c

d
q � 1

� �				 �q; dða � bÞ þ bcq
�
¼
�
q; dða � bÞ

� 		 dða � bÞ:

Since r3 1, we see that dða � bÞ is nonzero, and hence ðq; r þ sq � 1Þe dja � bjfr; s 1 as
required. r

Lemma 4.6. Let r and s be rational numbers. Assume that r is not a positive integer

or s is not an integer. If q and y are positive integers such that r þ sq is an integer and

y1 r þ sq ðmod qÞ, then ygr; s q.

Figure 2. Normalized densities dðq; a; 1Þ for primes q, using the normalization (4.3).
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Proof. Suppose first that s is not an integer, and write s ¼ c=d where d > 1.
Then s is at least 1=d away from the nearest integer, so that sq is at least q=d away
from the nearest multiple of q. Since y ¼ r þ sq � mq for some integer m, we have
yf jsq � mqj � jrjf q=d � jrjgr; s q when q is su‰ciently large in terms of r and s.

On the other hand, if s is an integer, then r must also be an integer. If r is nonpositive,
then the least integer y congruent to r ðmod qÞ is q � jrjgr q when q is su‰ciently large in
terms of r. r

Lemma 4.7. Let r and s be rational numbers. Assume that either r is not the reciprocal

of a positive integer or that s=r is not an integer. Suppose that positive integers q and y are

given such that r þ sq is an integer and ðr þ sqÞy1 1 ðmod qÞ. Then ygr; s q.

Proof. Write r ¼ a

b
and s ¼ c

d
with ða; bÞ ¼ ðc; dÞ ¼ 1 and b; d > 0. We may assume

that q > 2d 2, for if qe 2d 2, then yf 1f
q

2d 2
gs q. Note that a3 0, since 0 þ c

d
q ¼ c

q

d

cannot be invertible modulo q when q > d. The assumption that r þ sq is an integer implies

that dðr þ sqÞ ¼ ad

b
þ cq is also an integer; since ða; bÞ ¼ 1, this implies that b j d. Therefore

we may write d ¼ bd for some integer d. Similarly, it must be true that bðr þ sqÞ ¼ a þ cq

d
is an integer; since ðc; dÞ j ðc; dÞ ¼ 1, this implies that q is a multiple of d.

Case 1. Suppose first that d ¼ 1. If a ¼ 1, then r ¼ 1=b would be the reciprocal of a

positive integer and
s

r
¼ c=b

1=b
would be an integer, contrary to assumption; therefore a3 1.

The condition ðr þ sqÞy1 1 ðmod qÞ, when multiplied by b, becomes ay1 b ðmod qÞ. Now
if a ¼ �1, then the congruence in question is equivalent to y1�b ðmod qÞ; since b > 0,
this implies that yf q � bgr q as desired. Therefore for the rest of Case 1, we can assume
that jaj > 1.

Since any common factor of a and q would consequently be a factor of b as well, but
ða; bÞ ¼ 1, we must have ða; qÞ ¼ 1. Thus we may choose u such that uq1�1 ðmod aÞ,
so that y0 ¼ bðuq þ 1Þ=a is an integer. We see by direct calculation that y0 is a solution
to ay1 b ðmod qÞ, and all other solutions di¤er from this one by a multiple of q=ðb; qÞ,

which is certainly a multiple of q=b. In other words, y ¼ q
bu

a
þ z

b

� �
þ b

a
for some integer z.

If
bu

a
þ z

b
¼ 0, then �z ¼ b

bu

a
þ z

b

� �
� z ¼ b2u

a
would be an integer, but this is impossible

since both b and u are relatively prime to a (here we use jaj3 1). Therefore
bu

a
þ z

b

				
				f 1

jajb ,

and so yf
q

jajb � b

jaj ; since q > 2d 2 ¼ 2b2, this gives yf
q

2jajb gr; s q.

Case 2. Suppose now that d > 1. The condition
a

b
þ c

d
q

� �
y1 1 ðmod qÞ

forces ðy; qÞ ¼ 1 and so ðy; dÞ ¼ 1 as well. Multiplying the condition by b yields

ay þ cy
q

d
1 b ðmod qÞ, which we write as

cyq

d
� qm ¼ b � ay for some integer m. But
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notice that ðcy; dÞ ¼ 1, so that
cy

d
is at least

1

d
away from every integer (here we use

d > 1); therefore
cyq

d
is at least

q

d
away from the nearest multiple of q. Therefore

q

d
e

cyq

d
� qm

			 			¼ jb � ayje b þ jajy, and hence yf ðq � bdÞ=jajd; since q > 2d ¼ 2bd,

this gives yf
q

2jajd gr; s q. r

Corollary 4.8. Let r and s be rational numbers, and let q be a positive integer such that

r þ sq is an integer.

(a) Assume that r is not a positive integer or s is not an integer. Suppose that y is a

positive integer such that y1 r þ sq ðmod qÞ. Then LðyÞ=yfr; s ðlog qÞ=q.

(b) Assume that either r is not the reciprocal of a positive integer or that s=r is not

an integer. Suppose that y is a positive integer such that ðr þ sqÞy1 1 ðmod qÞ. Then

LðyÞ=yfr; s ðlog qÞ=q.

Proof. Since LðyÞ=ye ðlog yÞ=y, which is a decreasing function for yf 3, this
follows from Lemmas 4.6 and 4.7. r

Lemma 4.9. Let r and s be rational numbers. Let q be a positive integer such that

r þ sq is an integer, and let p be a prime such that pn k q with nf 1.

(a) Suppose that e is a positive integer such that pe 1 r þ sq ðmod q=pnÞ. Then either

pe ¼ r or pe gr; s q=pn.

(b) Suppose that e is a positive integer such that peðr þ sqÞ1 1 ðmod q=pnÞ. Then

either pe ¼ 1=r or pe gr; s q=pn.

Notice that if pe ¼ r in (a), then spn is an integer; also, if pe ¼ 1=r in (b), then speþn

is an integer. In both cases, it is necessary that the denominator of s be a power of p as
well.

Proof. We may assume that q=pn is su‰ciently large in terms of r and s, for other-
wise any positive integer is gr; s q=pn. We have two cases to examine.

(a) We are assuming that pe 1 r þ sq ðmod q=pnÞ. Suppose first that spn is an integer.
Then sq is an integer multiple of q=pn, and so pe 1 r ðmod q=pnÞ. This means that either
pe ¼ r or pe f q=pn þ rgr q=pn, since q=pn is su‰ciently large in terms of r.

On the other hand, suppose that spn is not an integer. Then

pe 1 r þ sq ¼ r þ ðspnÞq=pn 1 r þ ðspn � bspncÞq=pn ðmod q=pnÞ:

If the denominator of s is d, then the di¤erence spn � bspnc is at least 1=d, and therefore
pe f q=dpn þ rgr; s q=pn as well, since q=pn is su‰ciently large in terms of r and s.

182 Fioril l i and Martin, Inequities in the Shanks–Rényi prime number race



(b) We are assuming that peðr þ sqÞ1 1 ðmod q=pnÞ. We apply Lemma 4.7 with q=pn

in place of q and with y ¼ pe, which yields the desired lower bound pe gr; s q=pn unless r

is the reciprocal of a positive integer and s=r is an integer. In this case, multiplying the
assumed congruence by the integer 1=r gives peð1 þ qs=rÞ1 1=r ðmod q=pnÞ, which implies
pe 1 1=r ðmod q=pnÞ since s=r is an integer. Therefore, since q=pn is su‰ciently large in
terms of r, either pe ¼ 1=r or pe f q=pn þ 1=r > q=pn. r

The next two lemmas involve the functions hðq; p; rÞ and Hðq; a; bÞ that were defined
in Definition 1.8. Since we are dealing with rational numbers, we make the following
clarification: when we say ‘‘power of p’’, we mean pk for some positive integer k (so p2

and p1 are powers of p, but neither 1 nor p�1 is).

Lemma 4.10. Let r and s be rational numbers, and suppose that q is a positive integer

such that r þ sq is an integer that is relatively prime to q. Let p be a prime dividing q, and

choose nf 1 such that pn k q.

(a) If both r and the denominator of s are powers of p (note that if the denominator of s

equals pk, these conditions imply n ¼ k), then

h
�
q; p; ðr þ sqÞ�1� ¼ log p

rfðpnÞ þ Or; s
log p

q

� �
;

otherwise h
�
q; p; ðr þ sqÞ�1�fr; s ðlog pÞ=q.

(b) If both 1=r and the denominator of s are powers of p (note that if r ¼ 1=p j and the

denominator of s equals pk, these conditions imply n ¼ k � j), then

hðq; p; r þ sqÞ ¼ r log p

fðpnÞ þ Or; s
log p

q

� �
;

otherwise hðq; p; r þ sqÞfr; s ðlog pÞ=q.

Proof. (a) Assume pe 1 r þ sq ðmod q=pnÞ. By Lemma 4.9, we have that either
r ¼ pe (which implies that the denominator of s is a power of p), or else
h
�
q; p; ðr þ sqÞ�1�fr; s ðlog pÞ=q. So we only need to compute h

�
q; p; ðr þ sqÞ�1� in the

case where r is any power of p (say r ¼ pe) and where s has a denominator which is a
power of p (say s ¼ c=pz, where ze n since q is a multiple of the denominator of s).

In this case the congruence pe 1 r þ sq ðmod q=pnÞ is satisfied. Furthermore, e is the
minimal such positive integer if q is su‰ciently large in terms of r and s. If e is minimal, we
have h

�
q; p; ðr þ sqÞ�1� ¼ ðlog pÞ=fðpnÞpe ¼ ðlog pÞ=rfðpnÞ by definition; if e is not mini-

mal, we have h
�
q; p; ðr þ sqÞ�1�fr; s ðlog pÞ=q since there are only finitely many possible

values of q. In both cases, the proposition is established (the ‘‘main term’’ ðlog pÞ=rfðpnÞ
is actually dominated by the error term in the latter case).
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(b) Assume peðr þ sqÞ1 1 ðmod q=pnÞ. By Lemma 4.9, we have that either 1=r ¼ pe

(which implies that the denominator of s is a power of p), or else

hðq; p; r þ sqÞfr; s ðlog pÞ=q:

So we only need to compute hðq; p; r þ sqÞ in the case where 1=r is any power of p (say
1=r ¼ p j) and where s has a denominator which is a power of p (say s ¼ c=pk, where
k � j ¼ n > 0).

In this case the congruence p jðr þ sqÞ1 1 ðmod q=pnÞ is satisfied (since
p jsq1 0 ðmod q=pnÞ). We can rewrite this congruence as p j 1 1=r ðmod q=pnÞ. As above,
either j is the minimal such positive integer, in which case

hðq; p; r þ sqÞ ¼ ðlog pÞ=fðpnÞpe ¼ ðr log pÞ=fðpnÞ

by definition, or else q is bounded in terms of r and s, in which case

hðq; p; r þ sqÞfr; s ðlog pÞ=q:

In both cases, the proposition is established. r

Corollary 4.11. Let r and s be rational numbers, and suppose that q is a positive

integer such that r þ sq is an integer that is relatively prime to q.

(a) Suppose both r and the denominator of s are powers of the same prime p. Then

Hðq; r þ sq; 1Þ ¼ log p

fðp jþkÞ þ Or; s
log q

q

� �
;

where r ¼ p j and the denominator of s is pk.

(b) Suppose both 1=r and the denominator of s are powers of the same prime p, with

1=r < s. Then

Hðq; r þ sq; 1Þ ¼ log p

fðpkÞ þ Or; s
log q

q

� �
;

where the denominator of s is pk.

(c) If neither of the above sets of conditions holds, then Hðq; r þ sq; 1Þfr; s ðlog qÞ=q.

Proof. We sum the conclusion of Lemma 4.10 over all prime divisors p of q (and,
according to Definition 1.8, over both residue classes r þ sq and ðr þ sqÞ�1 for each prime
divisor). For each such p there is a contribution of Or; s

�
ðlog pÞ=q

�
from error terms, and

the sum of all these terms is fr; s q�1
P
p j q

log pe ðlog qÞ=q. The only remaining task is to
consider the possible main terms.

If r ¼ p j and the denominator pk of s are powers of the same prime p, then this
prime p must divide any q for which r þ sq is an integer; hence by Lemma 4.10, we have
pk k q and the term h

�
q; p; ðr þ sqÞ�1� contributes ðlog pÞ=rfðpnÞ ¼ ðlog pÞ=fðp jþkÞ to
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Hðq; r þ sq; 1Þ. Similarly, if r ¼ 1=p j and the denominators pk of s are powers of the
same prime p with j < k, then this prime p must divide any q for which r þ sq is an integer
(this would be false if j ¼ k); hence by Lemma 4.10, we have pk�j k q and so the term
hðq; p; r þ sqÞ contributes rðlog pÞ=fðpnÞ ¼ ðlog pÞ=fðpkÞ to Hðq; r þ sq; 1Þ. For other pairs
ðr; sÞ, no main term appears, and so the corollary is established. r

Proof of Theorem 4.2. From the definition (1.4) of Dðq; a; bÞ, we have

Dðq; r þ sq; 1Þ ¼ iq
�
�ðr þ sqÞ

�
log 2 þ Kqðr þ sq � 1Þ þLðr1Þ

r1
þLðr2Þ

r2
þ Hðq; r þ sq; 1Þ;

where r1 and r2 are the least positive integers congruent to r þ sq and ðr þ sqÞ�1, respec-
tively, modulo q. The results in this section allow us to analyze each term individually:

� If r ¼ �1 and s is an integer, then iq
�
�ðr þ sqÞ

�
log 2 ¼ log 2. Otherwise, we have

iq
�
�ðr þ sqÞ

�
log 2 ¼ 0 for all but finitely many (depending on r and s) integers q by Lemma

4.3, whence in particular iq
�
�ðr þ sqÞ

�
log 2fr; s ðlog qÞ=q.

� If r ¼ 1, then ðr þ sq � 1; qÞ ¼ ðsq; qÞ ¼ q=d where d is the denominator of s, and
so Kqðr þ sq � 1Þ ¼ LðdÞ=fðdÞ by Definition 1.5. Otherwise, Kqðr þ sq � 1Þfr; s ðlog qÞ=q

by Lemma 4.5; this bound also holds if the denominator d of s is not a prime power, since
then LðdÞ=fðdÞ ¼ 0.

� If r is a positive integer and s is an integer, then r1 ¼ r for all but finitely many q,
in which case Lðr1Þ=r1 ¼ LðrÞ=r. Otherwise Lðr1Þ=r1 fr; s ðlog qÞ=q by Corollary 4.8; this
bound also holds if r is not a prime power, since then LðrÞ=r ¼ 0.

Similarly, if r ¼ 1=b is the reciprocal of a positive integer and s=r ¼ bs is an integer,
then bðr þ sqÞ ¼ 1 þ ðbsÞq1 1 ðmod qÞ; moreover, b will be the smallest positive integer
(for all but finitely many q) such that bðr þ sqÞ1 1 ðmod qÞ, and so Lðr2Þ=r2 ¼ LðbÞ=b.
Otherwise Lðr2Þ=r2 fr; s ðlog qÞ=q by Corollary 4.8; this bound also holds if the reciprocal
b of r is not a prime power, since then LðbÞ=b ¼ 0. Note also that if b is a prime power,
then the denominator of s must be the same prime power, since bs and r þ sq are both
integers.

� Corollary 4.11 tells us exactly when we have a contribution from Hðq; r þ sq; 1Þ
other than the error term Or; s

�
ðlog qÞ=q

�
: the denominator of s must be a prime power,

and r must be either a power of the same prime or else the reciprocal of a smaller power
of the same prime.

In summary, there are six situations in which there is a contribution to Dðq; r þ sq; 1Þ
beyond the error term Or; s

�
ðlog qÞ=q

�
: four situations when the denominator of s is a prime

power and two situations when s is an integer. All six situations are disjoint, and the con-
tribution to Dðq; r þ sq; 1Þ in each situation is exactly Rðr; sÞ as defined in Definition 4.1.
This establishes the theorem. r

4.3. The Bays–Hudson ‘‘mirror image phenomenon’’. In 1983, Bays and Hudson [3]
published their observations of some curious phenomena in the prime number race among
the reduced residue classes modulo 11. They graphed normalized error terms corresponding
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to pðx; 11; 1Þ; . . . ; pðx; 11; 10Þ, much like the functions Eðx; 11; aÞ discussed in this paper,
and from the graph they saw that the terms corresponding to the nonsquare residue classes
tended to be positive, while the terms corresponding to the square residue classes tended
to be negative, as Chebyshev’s bias predicts. Unexpectedly, however, they noticed ([3],
Figure 1) that the graph corresponding to pðx; 11; 1Þ had a tendency to look like a mirror
image of the graph corresponding to pðx; 11; 10Þ, and similarly for the other pairs pðx; 11; aÞ
and pðx; 11; 11 � aÞ. They deemed this observation the ‘‘additive inverse phenomenon’’; we
use the physically suggestive name ‘‘mirror image phenomenon’’.

This prompted them to graph the various normalized error terms corresponding to the
sums pðx; 11; aÞ þ pðx; 11; bÞ where a is a nonsquare ðmod 11Þ and b is a square ðmod 11Þ;
all such normalized sums have the same mean value. They witnessed a noticable di¤erence
between the cases a þ b ¼ 11, when the graph corresponding to the sum was typically quite
close to the average value (as in [3], Figure 2), and all other cases which tended to result in
more spread-out graphs.

The ideas of the current paper can be used to explain this phenomenon. We con-
sider more generally the limiting logarithmic distributions of the sums of error terms
Eðx; q; aÞ þ Eðx; q; bÞ, where a is a nonsquare ðmod qÞ and b is a square ðmod qÞ. The
methods of Section 2.1 are easily modified to show (under the usual assumptions of GRH
and LI) that this distribution has variance

Vþðq; a; bÞ ¼
P

w ðmod qÞ
w3w0

jwðaÞ þ wðbÞj2bðwÞ:ð4:4Þ

Following the method of proof of Theorem 1.4, one can show that for any modulus q and
any pair a, b of reduced residues modulo q, we have

Vþðq; a; bÞ ¼ 2fðqÞ
�

log q �
P
p j q

log p

p � 1
�LðqÞ

fðqÞ � ðg0 þ log 2pÞð4:5Þ

� Kqða � bÞ � iqð�ab�1Þ log 2

�

þ 2Mþðq; a; bÞ � 4bðw0Þ;

where

Mþðq; a; bÞ ¼
P

w ðmod qÞ
w3w0

jwðaÞ þ wðbÞj2 L 0ð1; w�Þ
Lð1; w�Þ :

In particular, we note the term �iqð�ab�1Þ log 2; many of the other terms vanish or sim-
plify in the special case that q is prime. We also note that the primary contribution to
Mþðq; a; bÞ is the expression �Lðr1Þ=r1 �Lðr2Þ=r2, where r1 and r2 are the least positive
residues of ab�1 and ba�1 ðmod qÞ. Both of these expressions are familiar to us from our
analysis of Vðq; a; bÞ, although their signs are negative in the current setting rather than
positive as before.

We see that the variance Vþðq; a; bÞ of this distribution Eðx; q; aÞ þ Eðx; q; bÞ is
somewhat smaller than the typical size if there is a small prime congruent to ab�1 or
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ba�1 ðmod qÞ; more importantly, it is smallest of all if �ab�1 1 1 ðmod qÞ, which is pre-
cisely the situation a þ b ¼ q. In other words, we see very explicitly that the cases where
a þ b ¼ q yield distributions with smaller-than-normal variance, as observed for q ¼ 11 by
Bays and Hudson. In particular, our theory predicts that for any prime q1 3 ðmod 4Þ (so
that exactly one of a and �a is a square), the graphs of Eðx; q; aÞ and Eðx; q; q � aÞ will
tend to resemble mirror images of each other, more so than the graphs of two functions
Eðx; q; aÞ and Eðx; q; bÞ where a and b are unrelated. On the other hand, the contribution
of the iq term is in a secondary main term, and so the theory predicts that this mirror-image
tendency becomes weaker as q grows larger.

We can use the numerical data in the case q ¼ 11, computed first by Bays and
Hudson, to confirm our theoretical evaluation of these variances. We computed the values
of each of the twenty-five functions Eðx; 11; aÞ þ Eðx; 11; bÞ, where a is a square and b a
nonsquare ðmod qÞ, on 400 logarithmically equally spaced points spanning the interval
½103; 107�. We then computed the variance of our sample points for each function, in order
to compare them with the theoretical variance given in equation (4.5), which we computed
numerically. It is evident from equation (4.4) that multiplying both a and b by the same
factor does not change Vþðq; a; bÞ, and therefore there are only three distinct values
for these theoretical variances: the functions Eðx; q; aÞ þ Eðx; q; bÞ where a þ b ¼ 11 all
give the same variance, as do the functions where ab�1 1 2 or ab�1 1 2�1 1 6 ðmod 11Þ,
and the functions where ab�1 1 7 or ab�1 1 7�1 1 8 ðmod 11Þ. Table 6 summarizes our
calculations, where the middle column reports the mean of the variances calculated for
the functions in each set.

Looking directly at the definition (4.4) of V þðq; a; bÞ, we see that when
a1�b ðmod qÞ, the only characters that contribute to the sum are the even characters,
since we have

wðaÞ þ wðbÞ ¼ wðaÞ þ wð�1ÞwðaÞ ¼ 0

when wð�1Þ ¼ �1. As seen earlier in Lemma 3.5, the quantity bðwÞ is smaller for even
characters than for odd characters, which is another way to express the explanation of the
Bays–Hudson observations.

5. Explicit bounds and computations

We concern ourselves with explicit numerical bounds and computations of the den-
sities dðq; a; bÞ in this final section. We begin in Section 5.1 by establishing auxiliary bounds

set of functions
Eðx; 11; aÞ þ Eðx; 11; bÞ

average variance calculated
from sampled data

theoretical
variance

a þ b ¼ 11 5.60 5.31
fab�1; ba�1g1 f2; 6g ðmod 11Þ 7.10 6.82
fab�1; ba�1g1 f7; 8g ðmod 11Þ 9.59 9.06

Table 6. Observed and theoretical variances for Eðx; 11; aÞ þ Eðx; 11; bÞ.

187Fioril l i and Martin, Inequities in the Shanks–Rényi prime number race



for GðzÞ, for
L 0

L
ðs; wÞ, and for the number of zeros of Lðs; wÞ near a given height. In Section

5.2 we use these explicit inequalities to provide the proofs of two propositions stated in
Section 3.3; we also establish computationally accessible upper and lower bounds for the
variance Vðq; a; bÞ. Explicit estimates for the density dðq; a; bÞ are proved in Section 5.3,
including two theorems that give explicit numerical upper bounds for dðq; a; bÞ for q above
1000. Finally, in Section 5.4 we describe the two methods we used to calculate numerical
values for dðq; a; bÞ; we include some sample data from these calculations, including the 120
largest density values that ever occur.

5.1. Bounds for classical functions. The main goals of this section are to bound the

number of zeros of Lðs; wÞ near a particular height and to estimate the size of
L 0

L
ðs; wÞ

inside the critical strip, both with explicit constants. To achieve this, we first establish some
explicit inequalities for the Euler Gamma function.

Proposition 5.1. If Re zf
1

8
, then

logGðzÞ � z � 1

2

� �
log z þ z � 1

2
log 2p

				
				e 1

4jzj

and

G 0ðzÞ
GðzÞ � logðz þ 1Þ þ 1

2z þ 2
þ 1

z

				
				< 0:2:

Proof. The first inequality follows from [9], equations (1) and (9) of Section 1.3,
both taken with n ¼ 1. As for the second inequality, we begin with the identity [16],
equation (21), taken with a ¼ 1:

Cðz þ 1Þ ¼ logðz þ 1Þ � 1

2ðz þ 1Þ þ f 0
1 ðzÞ:

Here CðzÞ ¼ G 0

G
ðzÞ has its usual meaning; we use the identity

G 0ðzÞ
GðzÞ þ 1

z
¼ G 0ðz þ 1Þ

Gðz þ 1Þ to
obtain

G 0ðzÞ
GðzÞ þ 1

z
� logðz þ 1Þ þ 1

2ðz þ 1Þ ¼ f 0
1 ðzÞ;

and therefore it su‰ces to show that j f 0
1 ðzÞje 0:2 when ReðzÞf 1=8. The notation

f1ðzÞ ¼ log F1;1=2ðzÞ

is defined in [16], equation (9), and therefore

f 0
1 ðzÞ ¼ F 0

1;1=2ðzÞ=F1;1=2ðzÞ:
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By [16], Lemma 1.1.1, the denominator F1;1=2ðzÞ is bounded below in modulus by
ffiffiffiffiffiffiffiffi
e=p

p
;

by [16], Lemma 2.2.1, taken with a ¼ n ¼ 1, the numerator is bounded above in modulus
by

jF 0
1;1=2ðzÞj < log

x þ 1

x þ 1=2
� 1

2x þ 2
;

where x ¼ Re z (unfortunately [16], equation (27), contains the misprint f
ðnÞ

a;1=2 where F
ðnÞ
a;1=2

is intended). The right-hand side of this inequality is a decreasing function of x, and its
value at x ¼ 1=8 is logð9=5Þ � 4=9. We conclude that for Re zf 1=8, we have

j f 0
1 ðzÞje log

9

5
� 4

9

� �� ffiffiffiffiffiffiffiffi
e=p

p
< 0:2;

as needed. r

Lemma 5.2. Let a ¼ 0 or a ¼ 1. For any real numbers
1

4
e se 1 and T , we have

G 0 1

2
ðsþ iT þ aÞ

� �

G
1

2
ðsþ iT þ aÞ

� � �
G 0 1

2
ð2 þ iT þ aÞ

� �

G
1

2
ð2 þ iT þ aÞ

� �
								

								
< 7:812:ð5:1Þ

Proof. By symmetry we may assume that T f 0. We first dispose of the case T e 3.
When a ¼ 0, a computer calculation shows that the maximum value of the left-hand side of
equation (5.1) in the rectangle fsþ iT : 1=4e se 1; 0eT e 3g occurs at s ¼ 1=4 and
T ¼ 0: the value of the left-hand side at that point is a bit less than 7.812. When a ¼ 1,
a similar calculation shows that the left-hand side of equation (5.1) is always strictly less
than 7.812.

For the rest of the proof, we may therefore assume that T f 3. By Proposition 5.1,

G 0 1

2
ðsþ iT þ aÞ

� �

G
1

2
ðsþ iT þ aÞ

� � �
G 0 1

2
ð2 þ iT þ aÞ

� �

G
1

2
ð2 þ iT þ aÞ

� �

¼ log
sþ iT þ a þ 2

2
� 1

sþ iT þ a þ 2
� 2

sþ iT þ a

� log
4 þ iT þ a

2
þ 1

4 þ iT þ a
þ 2

2 þ iT þ a
þ Oð0:4Þ;

and therefore
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G 0 1

2
ðsþ iT þ aÞ

� �

G
1

2
ðsþ iT þ aÞ

� � �
G 0 1

2
ð2 þ iT þ aÞ

� �

G
1

2
ð2 þ iT þ aÞ

� �
								

								
e log 1 � 2 � s

4 þ iT þ a

� �				
				þ 2 � s

ðsþ iT þ a þ 2Þð4 þ iT þ aÞ

				
				

þ 2
2 � s

ðsþ iT þ aÞð2 þ iT þ aÞ

				
				þ 0:4:

Under the assumptions on s, a, and T , we always have the inequality

2 � s

4 þ iT þ a

				
				e 1

2
:

The maximum modulus principle implies the inequality
1

z
logð1 � zÞ

				
				e log 4 for jzje 1

2
,

and so

G 0 1

2
ðsþ iT þ aÞ

� �

G
1

2
ðsþ iT þ aÞ

� � �
G 0 1

2
ð2 þ iT þ aÞ

� �

G
1

2
ð2 þ iT þ aÞ

� �
								

								
e

2 � s

4 þ iT þ a

				
				 log 4 þ 2 � s

ðsþ iT þ a þ 3Þð5 þ iT þ aÞ

				
				

þ 2
2 � s

ðsþ iT þ aÞð2 þ iT þ aÞ

				
				þ 0:4:

Finally we use the inequalities on s, a, and T to conclude that

G 0 1

2
ðsþ iT þ aÞ

� �

G
1

2
ðsþ iT þ aÞ

� � �
G 0 1

2
ð2 þ iT þ aÞ

� �

G
1

2
ð2 þ iT þ aÞ

� �
								

								
e

2

5
log 4 þ 2

5
ffiffiffiffiffi
13

p þ 4

3
ffiffiffiffiffi
13

p þ 0:4 < 1:4353;

which amply su‰ces to finish the proof. r

We turn now to estimates for quantities associated with Dirichlet L-functions. The
next few results do not require GRH to be true, and in fact their proofs cite identities
from the literature that hold more generally no matter where the zeros of Lðs; wÞ might
lie. Accordingly, we use the usual notation r ¼ b þ ig to denote a nontrivial zero of
Lðs; wÞ, and all sums in this section of the form

P
r

denote sums over all such nontrivial
zeros of the Dirichlet L-function.

Lemma 5.3. Let qf 2, and let w be a nonprincipal character ðmod qÞ. For any real

number T ,

P
r

1

j2 þ iT � rj2
<

1

2
log
�
0:609qðjT j þ 5Þ

�
:
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Proof. It su‰ces to prove the lemma for primitive characters. For w primitive, it is
known ([11], equation (10.37)) that as meromorphic functions on the complex plane,

L 0ðs; wÞ
Lðs; wÞ ¼ � 1

2
log

q

p
� 1

2

G 0 1

2
ðs þ aÞ

� �

G
1

2
ðs þ aÞ

� � þ BðwÞ þ
P
r

1

s � r
þ 1

r

� �
;ð5:2Þ

where the constant BðwÞ was described earlier in the proof of Lemma 3.5, and where a ¼ 0
if wð�1Þ ¼ 1 and a ¼ 1 if wð�1Þ ¼ �1. Taking real parts of both sides and using the iden-
tity (3.3), we obtain after rearrangement

Re
P
r

1

s � r
¼ Re

L 0ðs; wÞ
Lðs; wÞ þ 1

2
log

q

p
þ 1

2
Re

G 0 1

2
ðs þ aÞ

� �

G
1

2
ðs þ aÞ

� � :ð5:3Þ

If we put z ¼ 1

2
ðs þ aÞ in Proposition 5.1, we see that for Re sf

1

8
,

Re

G 0 1

2
ðs þ aÞ

� �

G
1

2
ðs þ aÞ

� � ¼ Re log
s þ a þ 2

2
� Re

1

s þ a þ 2
� Re

2

s þ a
þ 0:2

e logjs þ a þ 1j � log 2 þ 0 þ 0:2e logjs þ 3j � 0:493:

Inserting this bound into equation (5.3) and putting s ¼ 2 þ iT ,

Re
P
r

1

2 þ iT � r
eRe

L 0ð2 þ iT ; wÞ
Lð2 þ iT ; wÞ þ 1

2
log

q

p
þ 1

2
logj5 þ iT j � 0:246:

Now notice that

L 0ð2 þ iT ; wÞ
Lð2 þ iT ; wÞ

				
				¼
				�Py

n¼1

wðnÞLðnÞ
n2þiT

				ePy
n¼1

LðnÞ
n2

¼ � z 0ð2Þ
zð2Þ < 0:57;ð5:4Þ

and therefore

Re
P
r

1

2 þ iT � r
e 0:57 þ 1

2
log

q

p
þ 1

2
logj5 þ iT j � 0:246

e
1

2
log q þ 1

2
logðjT j þ 5Þ þ 0:57 � 1

2
logp� 0:246

e
1

2
log
�
qðjT j þ 5Þ

�
� 0:248e

1

2
log
�
0:609qðjT j þ 5Þ

�
:
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We obtain finally

P
r

1

j2 þ iT � rj2
<
P
r

2 � b

j2 þ iT � rj2
ð5:5Þ

¼ Re
P
r

1

2 þ iT � r
e

1

2
log
�
0:609qðjT j þ 5Þ

�

as claimed. r

Proposition 5.4. For any nonprincipal character w and any real number T , we have

Kfr : jT � Im rje 2ge 4 log
�
0:609qðjT j þ 5Þ

�
:

Proof. This follows immediately from equation (5.5) and the inequalities

P
r

jT�gje2

1e 8
P
r

1

ð2 � sÞ2 þ ðT � gÞ2
e 8

P
r

2 � b

j2 þ iT � rj2
: r

Lemma 5.5. Let s ¼ sþ iT with
1

4
e se 1. For any primitive character w ðmod qÞ

with qf 2, if Lðs; wÞ3 0, then

				L 0ðs; wÞ
Lðs; wÞ �

P
r

jT�gje2

1

s � r

				e ffiffiffi
2

p
log
�
0:609qðjT j þ 5Þ

�
þ 4:48:

Proof. Applying equation (5.2) at s ¼ sþ iT and again at 2 þ iT , we obtain

L 0ðs; wÞ
Lðs; wÞ � L 0ð2 þ iT ; wÞ

Lð2 þ iT ; wÞ ¼ 1

2

G 0 1

2
ð2 þ iT þ aÞ

� �

G
1

2
ð2 þ iT þ aÞ

� � � 1

2

G 0 1

2
ðs þ aÞ

� �

G
1

2
ðs þ aÞ

� �

þ
P
r

1

s � r
� 1

2 þ iT � r

� �
;

which implies

				L 0ðs; wÞ
Lðs; wÞ �

P
r

jT�gje2

1

s � r

				e L 0ð2 þ iT ; wÞ
Lð2 þ iT ; wÞ

				
				þ 1

2

G 0 1

2
ð2 þ iT þ aÞ

� �

G
1

2
ð2 þ iT þ aÞ

� � �
G 0 1

2
ðs þ aÞ

� �

G
1

2
ðs þ aÞ

� �
								

								
þ

P
r

jT�gj>2

1

s � r
� 1

2 þ iT � r

				
				þ P

r
jT�gje2

1

j2 þ iT � rj :

Using equation (5.4) and Lemma 5.2 to bound the first two terms on the right-hand side,
we see that
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				L 0ðs; wÞ
Lðs; wÞ �

P
r

jT�gje2

1

s � r

				 < 0:57 þ 3:906 þ
P
r

jT�gj>2

2 � s

js � rj j2 þ iT � rjð5:6Þ

þ
P
r

jT�gje2

1

j2 þ iT � rj :

To prepare the last two sums for an application of Lemma 5.3, we note that when
jT � gj > 2,

2 � s

js � rj j2 þ iT � rj < 2
j2 þ iT � rj

js � rj
1

j2 þ iT � rj2
< 2

ffiffiffi
2

p 1

j2 þ iT � rj2
;

on the other hand, when jT � gje 2,

1

j2 þ iT � rj ¼
j2 þ iT � rj
j2 þ iT � rj2

<
2
ffiffiffi
2

p

j2 þ iT � rj2
:

Therefore equation (5.6) becomes, by Lemma 5.3,				L 0ðs; wÞ
Lðs; wÞ �

P
r

jT�gje2

1

s � r

				 < 0:57 þ 3:906 þ 2
ffiffiffi
2

p P
r

1

j2 þ iT � rj2

< 4:48 þ
ffiffiffi
2

p
log
�
0:609qðjT j þ 5Þ

�
as claimed. r

We restore the assumption of GRH for the last proposition of this section, which is
used in the proof of Lemma 5.10 below.

Proposition 5.6. Assume GRH. Let s ¼ sþ iT with
1

4
e se 1, s3

1

2
. If w is any

nonprincipal character ðmod qÞ, then

L 0ðs; wÞ
Lðs; wÞ

				
				e 4

s� 1=2j j þ
ffiffiffi
2

p� �
log
�
0:609qðjT j þ 5Þ

�
þ 4:48 þ log q

2s � 1
:

Furthermore, if w is primitive and qf 2, then the summand ðlog qÞ=ð2s � 1Þ can be omitted

from the upper bound.

Proof. Assume first that w is primitive. Lemma 5.5 tells us that				L 0ðs; wÞ
Lðs; wÞ

				e P
r

jT�gje2

1

js � rj þ
ffiffiffi
2

p
log
�
0:609qðjT j þ 5Þ

�
þ 4:48

e
1

s� 1

2

				
				
Kfr : jT � gje 2g þ

ffiffiffi
2

p
log
�
0:609qðjT j þ 5Þ

�
þ 4:48
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under the assumption of GRH; the proposition for primitive w now follows immediately
from Proposition 5.4.

If w is not primitive, then Lðs; wÞ ¼ Lðs; w�Þ
Q
p j q

1 � w�ðpÞ
ps

� �
; we then have the

identity

L 0ðs; wÞ
Lðs; wÞ ¼ L 0ðs; w�Þ

Lðs; w�Þ þ
P
p j q

w�ðpÞ log p

ps � w�ðpÞ :

Therefore

				L 0ðs; wÞ
Lðs; wÞ � L 0ðs; w�Þ

Lðs; w�Þ

				eP
p j q

log p

ps � 1
e

1

2s � 1

P
p j q

log pe
log q

2s � 1
;

which finishes the proof of the proposition in full. r

5.2. Bounds for the variance V(q; a, b). This section has two main purposes. First,
we provide the proofs of Propositions 3.10 and 3.11, two statements involving smoothed
sums of the von Mangoldt function which were stated in Section 3.3. Second, we establish
two sets of upper and lower bounds for the variance Vðq; a; bÞ, one when q is prime and one
valid for all q. All of these results are stated with explicit constants and are valid for explicit
ranges of q.

Lemma 5.7. For any real number t, we have
d

dt
G � 1

2
þ it

� �				
				

				
				e G 0 � 1

2
þ it

� �				
				.

Proof. We show more generally that if f ðtÞ is any di¤erentiable complex-
valued function that never takes the value 0, then j f ðtÞj is also di¤erentiable and
d

dt
j f ðtÞj

				
				e j f 0ðtÞj; the lemma then follows since G never takes the value 0. Write

f ðtÞ ¼ uðtÞ þ ivðtÞ where u and v are real-valued; then

d

dt
j f ðtÞj ¼ d

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðtÞ2 þ vðtÞ2

q
¼ uðtÞu 0ðtÞ þ vðtÞv 0ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðtÞ2 þ vðtÞ2
q

while j f 0ðtÞj ¼ ju 0ðtÞ þ iv 0ðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 0ðtÞ2 þ v 0ðtÞ2

q
. The asserted inequality is therefore equiv-

alent to juðtÞu 0ðtÞ þ vðtÞv 0ðtÞje
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðtÞ2 þ vðtÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 0ðtÞ2 þ v 0ðtÞ2

q
, which is a consequence of

the Cauchy–Schwarz inequality. r

Lemma 5.8. We have jGðsÞje jGðRe sÞj for all complex numbers s.

Note that this assertion is trivially true if Re s is a nonpositive integer, under the
convention jGð�nÞj ¼ y for nf 0.

Proof. We prove that the assertion holds whenever Re s > �n, by induction on n.

The base case n ¼ 0 can be derived from the integral representation GðsÞ ¼
Ðy
0

ts�1e�t dt,
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which gives

jGðsÞje
Ðy
0

jts�1je�t dt ¼
Ðy
0

tRe s�1e�t dt ¼ GðRe sÞ:

Now assume that the assertion holds whenever Re s > �n. Given a complex number s for
which Re s > �ðn þ 1Þ, we use the identity Gðs þ 1Þ ¼ sGðsÞ and the induction hypothesis
to write

jGðsÞj ¼ jGðs þ 1Þj
jsj e

jGðRe s þ 1Þj
jsj ¼ jRe sj

jsj jGðRe sÞje jGðRe sÞj;

as desired. r

Lemma 5.9. For any nonprincipal character w,

P
g AR

Lð1=2þig;wÞ¼0

G � 1

2
þ ig

� �				
				e 14:27 log q þ 16:25:

We remark that this lemma does not assume GRH, since the sum on the left-hand
side only decreases if some of the zeros of Lðs; wÞ lie o¤ the critical line.

Proof. First, by Proposition 5.4 applied with T ¼ 0, the number of zeros of Lðs; wÞ
with jgje 2 is at most 4 logð3:045qÞ; thus by Lemma 5.8,

P
jgje2

Lð1=2þig;wÞ¼0

G � 1

2
þ ig

� �				
				e G � 1

2

� �				
				 P

jgje2
Lð1=2þig;wÞ¼0

1ð5:7Þ

e 8
ffiffiffi
p

p
logð3:045qÞe 14:18 log q þ 15:79:

We can write the remainder of the sum using Riemann–Stieltjes integration as

P
jgj>2

Lð1=2þig;wÞ¼0

G � 1

2
þ ig

� �				
				 ¼ Ðy

2

G � 1

2
þ it

� �				
				d�Nðt; wÞ � Nð2; wÞ

�

¼ �
Ðy
2

�
Nðt; wÞ � Nð2; wÞ

� d

dt
G � 1

2
þ it

� �				
				 dt;

the vanishing of the boundary terms is justified by the upper bound Nðt; wÞfq t log t

(see Proposition 2.15 for example) and the exponential decay of GðsÞ on vertical lines. We
conclude from Lemma 5.7 that

P
jgje2

Lð1=2þig;wÞ¼0

G � 1

2
þ ig

� �				
				e Ðy

2

Nðt; wÞ G 0 � 1

2
þ it

� �				
				 dt

e
Ðy
2

t

p
þ 0:68884

� �
log

qt

2pe
þ 10:6035

 !
G 0 � 1

2
þ it

� �				
				 dt
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by Proposition 2.15. Since logðqt=2peÞ ¼ log q þ logðt=2peÞ, the right-hand side is simply a
linear function of log q; using numerical integration, we see that

P
jgje2

Lð1=2þig;wÞ¼0

G � 1

2
þ ig

� �				
				e 0:09 log q þ 0:46:

Combining this upper bound with the bound in equation (5.7) establishes the lemma. r

Lemma 5.10. Assume GRH. For any nonprincipal character w,

Ð�3=4þiy

�3=4�iy

L 0ðs þ 1; wÞ
Lðs þ 1; wÞ GðsÞ
				

				 dse 101 log q þ 112:

Proof. Proposition 5.6 with s ¼ 1

4
tells us that for any real number t,

L 0 1

4
þ it; w

� �

L
1

4
þ it; w

� �
								

								
e 17:42 log

�
0:609qðjtj þ 5Þ

�
þ 4:48 þ log q

0:1892

e 22:71 log q þ 17:42 logðjtj þ 5Þ � 4:159;

and therefore

Ð�3=4þiy

�3=4�iy

L 0ðs þ 1; wÞ
Lðs þ 1; wÞ GðsÞ
				

				 dse
Ðy

�y

�
22:71 log q þ 17:42 logðjtj þ 5Þ � 4:159

�
G � 3

4
þ it

� �				
				 dt:

Again this integral is a linear function of log q, and a numerical calculation establishes the
particular constants used in the statement of the lemma. r

With these lemmas in hand, we are now able to provide the two proofs deferred until
now from Section 3.3.

Proof of Proposition 3.10. We begin with the Mellin transform formula, valid for
any real number c > 0,

�
Py
n¼1

wðnÞLðnÞ
n

e�n=y ¼ 1

2pi

Ðcþiy

c�iy

L 0ðs þ 1; wÞ
Lðs þ 1; wÞ GðsÞys ds

(see [11], equations (5.24) and (5.25)). We move the contour to the left, from the vertical
line Re s ¼ c to the vertical line Re s ¼ �3=4, picking up contributions from the pole of G
at s ¼ 0 as well as from each nontrivial zero of Lðs; wÞ. The result is
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�
Py
n¼1

wðnÞLðnÞ
n

e�n=y ¼ L 0ð1; wÞ
Lð1; wÞ þ

P
g AR

Lð1=2þig;wÞ¼0

G � 1

2
þ ig

� �
y�1=2þigð5:8Þ

þ 1

2pi

Ð�3=4þiy

�3=4�iy

L 0ðs þ 1; wÞ
Lðs þ 1; wÞ GðsÞys ds

since we are assuming GRH. (Strictly speaking, we should consider truncations of these
infinite integrals; however, the exponential decay of GðsÞ in vertical strips implies that the
contributions at large height do vanish in the limit.)

The sum on the right-hand side can be bounded by

				 P
g AR

Lð1=2þig;wÞ¼0

G � 1

2
þ ig

� �
y�1=2þig

				e y�1=2 P
g AR

Lð1=2þig;wÞ¼0

G � 1

2
þ ig

� �				
				

e
14:27 log q þ 16:25

y1=2

by Lemma 5.9, while the integral can be bounded by

				 1

2pi

Ð�3=4þiy

�3=4�iy

L 0ðs þ 1; wÞ
Lðs þ 1; wÞ GðsÞys ds

				e 1

2py3=4

Ð�3=4þiy

�3=4�iy

L 0ðs þ 1; wÞ
Lðs þ 1; wÞ GðsÞ
				

				 ds

e
101 log q þ 112

2py3=4

by Lemma 5.10. Using these two inequalities in equation (5.8) establishes the proposition.
r

Proof of Proposition 3.11. Since 1e a < q, we may write

P
n1a ðmod qÞ

LðnÞ
n

e�n=q2ð5:9Þ

¼ LðaÞ
a

e�a=q2 þ O

� P
qeneq2

n1a ðmod qÞ

LðnÞ
n

þ
P

n>q2

n1a ðmod qÞ

LðnÞ
n

e�n=q2

�
:

Since LðnÞ=ne ðlog nÞ=n, which is a decreasing function of n for nf 3, we have

P
n>q2

n1a ðmod qÞ

LðnÞ
n

e�n=q2

e
log q2

q2

Py
j¼q

e�ðq jþaÞ=q2

e
2 log q

q2
e�1Py

k¼0

e�j=q ¼ 2 log q

q2
e�1 1

1 � e�1=q
;
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note here that 1e a < q so qf 2. As the function t=ð1 � e�tÞ is bounded by 1=2ð1 � e�1=2Þ
for 0 < te 1=2, we conclude that

P
n>q2

n1a ðmod qÞ

LðnÞ
n

e�n=q2

e
2 log q

q
e�1 1

2ð1 � e�1=2Þ < 0:935
log q

q
:

We bound the second term of equation (5.9) crudely:

P
qeneq2

n1a ðmod qÞ

LðnÞ
n

e ðlog q2Þ
Pq�1

j¼1

1

qj þ a
e

2 log q

q

Pq�1

j¼1

1

j
e

2 log q

q
ðlog q þ 1Þ:

Finally, for the first term of equation (5.9), the estimate e�t ¼ 1 þ OðtÞ for tf 0 allows us
to write

LðaÞ
a

e�a=q ¼ LðaÞ
a

1 þ O
a

q

� � !
¼ LðaÞ

a
þ O

log q

q

� �
:

Using these three deductions transforms equation (5.9) into the statement of the prop-
osition. r

We now turn to the matter of giving explicit upper and lower bounds for Vðq; a; bÞ. In
the case where q is prime, we are already able to establish such estimates.

Proposition 5.11. If qf 150 is prime, then

2ðq � 1Þðlog q � 2:42Þ � 47:238 log2 qeVðq; a; bÞe2ðq � 1Þðlog q � 0:99Þ þ 47:238 log2 q:

Proof. Combining Theorem 1.4 with Proposition 3.12, we see that

Vðq; a; bÞ ¼ 2fðqÞ
�
LðqÞ þ Kqða � bÞ þ iqð�ab�1Þ log 2

�
þ 2M �ðq; a; bÞð5:10Þ

¼ 2fðqÞ
 
LðqÞ þ Kqða � bÞ þ iqð�ab�1Þ log 2

þLðr1Þ
r1

þLðr2Þ
r2

þ H0ðq; a; bÞ
!

þ O
47:238fðqÞ log2 q

q

 !

for any qf 150, where r1 and r2 denote the least positive residues of ab�1 and ba�1 ðmod qÞ.
Since we are assuming q is prime, both Kqða � bÞ and H0ðq; a; bÞ vanish, and we have

Vðq; a; bÞ ¼ 2ðq � 1Þ log
q

2peg0
þ iqð�ab�1Þ log 2 þLðr1Þ

r1
þLðr2Þ

r2

� �
þ Oð47:238 log2 qÞ:
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The function LðnÞ=n is nonnegative and bounded above by ðlog 3Þ=3, and the function iq
takes only the values 0 and 1; therefore the quantity in large parentheses satisfies the
bounds

log q � 2:42e log
q

2peg0
þ iqð�ab�1Þ log 2 þLðr1Þ

r1
þLðr2Þ

r2
e log q � 0:99;

which establishes the proposition. r

We require two additional lemmas before we can treat the case of general (possibly
composite) q.

Lemma 5.12. With H0 defined in Definition 3.8, we have

�ð4 log qÞ=qeH0ðq; a; bÞe 4:56

for any reduced residues a and b ðmod qÞ.

Proof. Since eðq; p; rÞf 1 always, we have

h0ðq; p; rÞ ¼ 1

fðpnÞ
log p

peðq;p; rÞð1 � p�eðq;p;1ÞÞ e
1

p � 1

log p

p � 1
e 4

log p

p2
:

Therefore

H0ðq; a; bÞe
P
p j q

�
h0ðq; p; ab�1Þ þ h0ðq; p; ba�1Þ

�
e 8

P
p j q

log p

p2

< 8
Py
n¼1

LðnÞ
n2

¼ 8
z 0ð2Þ
zð2Þ

				
				e 4:56;

which establishes the upper bound. On the other hand, note that peðq;p;1Þ is an integer larger
than 1 that is congruent to 1 ðmod q=pnÞ. Therefore peðq;p;1Þ f q=pn þ 1, and so

H0ðq; a; bÞf�2
P
p j q

h0ðq; p; 1Þ ¼ �2
P
p j q

1

fðpnÞ
log p

peðq;p;1Þ � 1

f�2
P
p j q

1

pnð1 � 1=pÞ
log p

q=pn
f� 4

q

P
p j q

log pf� 4 log q

q
;

which establishes the lower bound. r

Lemma 5.13. If qf 2 is any integer, then

P
p j q

log p

p � 1
e 1:02 log log q þ 3:04:
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Proof. We separate the sum into two intervals at the point 1 þ log q. The contribu-
tion from the larger primes is at worst

P
p j q

pf1þlog q

log p

p � 1
e

1

log q

P
p j q

log pe
log q

log q
¼ 1:

For the smaller primes, recall the usual notation yðtÞ ¼
P
pet

log p. We will use the explicit

bound yðtÞe 1:01624t for t > 0 from Theorem 9 of [13] , and so the contribution from the
smaller primes is bounded by

P
p j q

p<1þlog q

log p

p � 1
e

P
p<1þlog q

log p

p � 1

¼
Ð1þlog q

2�

dyðtÞ
t � 1

¼ yð1 þ log qÞ
log q

þ
Ð1þlog q

2

yðtÞ
ðt � 1Þ2

dt

e 1:01624

�
1 þ log q

log q
þ

Ð1þlog q

2

t dt

ðt � 1Þ2

�

¼ 1:01624 1 þ 1

log q
þ log log q � 1

log q
þ 1

� �

¼ 1:01624 log log q þ 2:03248;

which finishes the proof of the lemma. r

Proposition 5.14. If qf 500, then

2fðqÞðlog q � 1:02 log log q � 7:34ÞeVðq; a; bÞe 2fðqÞðlog q þ 6:1Þ:

Proof. We begin with equation (5.10), expanding the functions L and Kq according
to Definition 1.5:

Vðq; a; bÞ ¼ 2fðqÞ

0
@log

q

2peg0
�
P
p j q

log p

p � 1
þ
L
�
q=ðq; a � bÞ

�
f
�
q=ðq; a � bÞ

� þ iqð�ab�1Þ log 2ð5:11Þ

þLðr1Þ
r1

þLðr2Þ
r2

þ H0ðq; a; bÞ þ O
23:62 log2 q

q

 !1A:

The last term on the first line is nonnegative and bounded above by log 2, while the first
three terms on the second line are nonnegative and bounded together by log 2 þ ð2 log 3Þ=3
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as in the proof of Proposition 5.11. The term H0ðq; a; bÞ is bounded above by 4.56 and
below by ð�4 log qÞ=q by Lemma 5.12. Therefore

2fðqÞ log q � log 2peg0 �
P
p j q

log p

p � 1
� 4 log q

q
þ O

23:62 log2 q

q

 !0
@

1
Að5:12Þ

eVðq; a; bÞ

e 2fðqÞ

0
@log q � log 2peg0 þ log 2 þ log 2 þ 2

3
log 3 þ 4:56

þ O
23:62 log2 q

q

 !1A:

The sum being subtracted on the top line is bounded above by 1:02 log log q þ 3:04
by Lemma 5.13. Lastly, a calculation shows that the O error term is at most 1:83 for
qf 500, and therefore

2fðqÞ log q � log 2peg0 � ð1:02 log log q þ 3:04Þ � 4 log q

q
� 1:83

� �

eVðq; a; bÞ

e 2fðqÞ log q � log 2peg0 þ log 2 þ log 2 þ 2

3
log 3 þ 4:56 þ 1:83

� �
;

which implies the assertion of the proposition. r

5.3. Bounds for the density d(q; a, b). We use the results of the previous section to
obtain explicit upper and lower bounds on dðq; a; bÞ; from these bounds, we can prove in
particular that all of the largest values of these densities occur when the modulus q is less
than an explicit bound. In the proof of Theorem 1.1, we expanded several functions, includ-
ing an instance of sin, into their power series at the origin. While this yielded an excellent
theoretical formula, for numerical purposes we will take a slightly di¤erent approach

involving the error function ErfðzÞ ¼ 2ffiffiffi
p

p
Ðz
0

e�t2

dt. The following two lemmas allow us to

write the density dðq; a; bÞ in terms of the error function.

Lemma 5.15. For any constants v > 0 and r,

Ðy
�y

t4e�vt2=2 dt ¼ 3
ffiffiffiffiffiffi
2p

p

v5=2
and

Ðy
�y

sin rt

t
e�vt2=2 dt ¼ pErf

rffiffiffiffiffi
2v

p
� �

:

Proof. For the first identity, a change of variables gives

Ðy
y

t4e�vt2=2 dt ¼ v�5=2
Ðy
y

w4e�w2=2 dw ¼ v�5=2M2ðyÞ ¼ 3
ffiffiffiffiffiffi
2p

p

v5=2
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by Lemma 2.21. Our starting point for the second identity is [1], equation (7.4.6): for any
constants a > 0 and x,

Ðy
0

e�at2

cos 2xt dt ¼ 1

2

ffiffiffi
p

a

r
e�x2=a;

which can be rewritten as

ffiffiffi
p

a

r
e�x2 ¼

Ðy
�y

e�at2

cosð2xt
ffiffiffi
a

p
Þ dt:

Integrating both sides from x ¼ 0 to x ¼ w yields

p

2
ffiffiffi
a

p ErfðwÞ ¼
Ðy

�y
e�at2

�Ðw
0

cosð2xt
ffiffiffi
a

p
Þ dx

�
dt ¼

Ðy
�y

e�at2 sinð2wt
ffiffiffi
a

p
Þ

2t
ffiffiffi
a

p dt

(the interchanging of the integrals in the middle expression is justified by the absolute con-
vergence of the integral). Setting a ¼ v=2 and w ¼ r=

ffiffiffiffiffi
2v

p
, we obtain

pffiffiffiffiffi
2v

p Erf
rffiffiffiffiffi
2v

p
� �

¼
Ðy

�y
e�vt2=2 sin rt

t
ffiffiffiffiffi
2v

p dt;

which establishes the lemma. r

Lemma 5.16. Assume GRH and LI. Let a be a nonsquare ðmod qÞ and let b be a

square ðmod qÞ. If Vðq; a; bÞf 531, then

dðq; a; bÞ ¼ 1

2
þ 1

2
Erf

rðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vðq; a; bÞ

p
 !

þ O
47:65rðqÞ

Vðq; a; bÞ3=2
þ 0:03506

e�9:08fðqÞ

fðqÞ þ 63:68rðqÞe�Vðq;a;bÞ1=2=2

 !
:

Proof. From Definition 2.11, we know that

logFq;a;bðxÞ ¼
P

w ðmod qÞ

P
g>0

Lð1=2þig;wÞ¼0

log J0
2jwðaÞ � wðbÞjxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p

 !

¼ 1

2

P
w ðmod qÞ

P
g AR

Lð1=2þig;wÞ¼0

log J0
2jwðaÞ � wðbÞjxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=4 þ g2
p

 !
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by the functional equation for Dirichlet L-functions. If jxje 1=4, then the argument of J0 is

at most 2 � 2 � 1

4

�
1

2
¼ 2 in absolute value. Since the Taylor expansion

log J0ðxÞ ¼ �x2=4 þ Oð:0311x4Þ

is valid for jxje 2, we see that

logFq;a;bðxÞð5:13Þ

¼ 1

2

P
w ðmod qÞ

P
g AR

Lð1=2þig;wÞ¼0

� jwðaÞ � wðbÞj2x2

1=4 þ g2
þ O :0311

16jwðaÞ � wðbÞj4x4

ð1=4 þ g2Þ2

 ! !

¼ � 1

2
x2 P

w ðmod qÞ

P
g AR

Lð1=2þig;wÞ¼0

jwðaÞ � wðbÞj2

1=4 þ g2

þ O

 
1

2
x4 P

w ðmod qÞ

P
g AR

Lð1=2þig;wÞ¼0

:0311
16 � 4jwðaÞ � wðbÞj2

1=4ð1=4 þ g2Þ

!

¼ � 1

2
Vðq; a; bÞx2 þ O

�
39:81Vðq; a; bÞx4

�

when jxje 1=4. Moreover, the error term in the expansion log J0ðxÞ ¼ �x2=4 þ Oð:0311x4Þ
is always nonpositive as a consequence of Lemma 2.8 (c), and hence the same is true for
the recently obtained error term O

�
39:81Vðq; a; bÞx4

�
. This knowledge allows us to use

the expansion et ¼ 1 þ OðtÞ for te 0, which yields

Fq;a;bðxÞ ¼ e�Vðq;a;bÞx2=2
�
1 þ O

�
39:81Vðq; a; bÞx4

��

when jxje 1=4.

Proposition 2.18 says that when Vðq; a; bÞf 531,

dðq; a; bÞ ¼ 1

2
þ 1

2p

ÐVðq;a;bÞ�1=4

�Vðq;a;bÞ�1=4

sin rðqÞx
x

Fq;a;bðxÞ dx

þ O 0:03506
e�9:08fðqÞ

fðqÞ þ 63:67rðqÞe�Vðq;a;bÞ1=2=2

� �
:

Notice that Vðq; a; bÞ�1=4
e 531�1=4 < 1=4, and so we may use our approximation for

Fq;a;bðxÞ to deduce that
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dðq; a; bÞ ¼ 1

2
þ 1

2p

ÐVðq;a;bÞ�1=4

�Vðq;a;bÞ�1=4

sin rðqÞx
x

ð5:14Þ

� e�Vðq;a;bÞx2=2
�
1 þ O

�
39:81Vðq; a; bÞx4

��
dx

þ O 0:03506
e�9:08fðqÞ

fðqÞ þ 63:67rðqÞe�Vðq;a;bÞ1=2=2

� �
:

The main term can be evaluated by the second identity of Lemma 5.15:

1

2p

ÐVðq;a;bÞ�1=4

�Vðq;a;bÞ�1=4

sin rðqÞx
x

e�Vðq;a;bÞx2=2 dx

¼ 1

2p

Ðy
�y

sin rðqÞx
x

e�Vðq;a;bÞx2=2 dx þ O

�
1

p

Ðy
Vðq;a;bÞ�1=4

sin rðqÞx
x

				
				e�Vðq;a;bÞx2=2 dx

�

¼ 1

2
Erf

rðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vðq; a; bÞ

p
 !

þ O

�
1

p

Ðy
Vðq;a;bÞ�1=4

rðqÞVðq; a; bÞ1=4
xe�Vðq;a;bÞx2=2 dx

�

¼ 1

2
Erf

rðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vðq; a; bÞ

p
 !

þ O
rðqÞ

pVðq; a; bÞ3=4
e�Vðq;a;bÞ1=2=2

 !
:

The error term in the integral in equation (5.14) can be estimated by the first identity of
Lemma 5.15:

1

2p

ÐVðq;a;bÞ�1=4

�Vðq;a;bÞ�1=4

sin rðqÞx
x

				
				e�Vðq;a;bÞx2=239:81Vðq; a; bÞx4 dx

e 6:336rðqÞVðq; a; bÞ
Ðy

�y
x4e�Vðq;a;bÞx2=2 dxe 19:008

ffiffiffiffiffiffi
2p

p
� rðqÞVðq; a; bÞ�3=2:

Therefore equation (5.14) becomes

dðq; a; bÞ ¼ 1

2
þ 1

2
Erf

rðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vðq; a; bÞ

p
 !

þ O
rðqÞ

pVðq; a; bÞ3=4
e�Vðq;a;bÞ1=2=2

 !

þ O
47:65rðqÞ

Vðq; a; bÞ3=2
þ 0:03506

e�9:08fðqÞ

fðqÞ þ 63:67rðqÞe�Vðq;a;bÞ1=2=2

 !
:

Since 1=pVðq; a; bÞ3=4
e 1=pð531Þ3=4 < 0:01, this last estimate implies the statement of the

lemma. r

We are now ready to bound dðq; a; bÞ for all large prime moduli q.

Theorem 5.17. Assume GRH and LI. If qf 400 is prime, then dðq; a; bÞ < 0:5262 for

all reduced residues a and b ðmod qÞ. If qf 1000 is prime, then dðq; a; bÞ < 0:51.
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Proof. We may assume that a is a nonsquare ðmod qÞ and b is a square ðmod qÞ, for
otherwise dðq; a; bÞe 1=2. When qf 331 is prime, Proposition 5.11 and a quick calculation
yield

Vðq; a; bÞf 2ðq � 1Þðlog q � 2:42Þ � 47:238 log2 qð5:15Þ

f 2qðlog q � 2:42Þ � 48 log2 qf 531:

Therefore Lemma 5.16 applies, yielding (since rðqÞ ¼ 2 and fðqÞ ¼ q � 1)

dðq; a; bÞ ¼ 1

2
þ 1

2
Erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Vðq; a; bÞ

s !

þ O
95:3

Vðq; a; bÞ3=2
þ 0:03506

e�9:08q

q � 1
þ 127:36e�Vðq;a;bÞ1=2=2

 !

e
1

2
þ 1

2
Erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2qðlog q � 2:42Þ � 48 log2 q

s !

þ 95:3�
2qðlog q � 2:42Þ � 48 log2 q

�3=2
þ 0:03506

e�9:08q

q � 1

þ 127:36e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðlog q�2:42Þ=2�12 log2 q

p
;

using the second inequality in equation (5.15). This upper bound is decreasing for qf 331,
and so calculating it at q ¼ 400 and q ¼ 1000 establishes the inequalities given in the
theorem. r

A similar bound for composite moduli q requires one last estimate.

Lemma 5.18. For all qf 3, we have rðqÞe 2q1:04=log log q.

Proof. We first record some explicit estimates on the prime counting functions

pðyÞ ¼
P

pey

1 and yðyÞ ¼
P

pey

log p:

Rosser and Shoenfeld ([13], Corollary 1 and Theorems 9 and 10) give, for yf 101, the
bounds 0:84ye yðyÞe 1:01624y and pðyÞe 1:25506y=log y. Therefore

pðyÞe 1:25506y

log y
e

1:25506yðyÞ=0:84

log yðyÞ � log 1:01624
e

1:5yðyÞ
log yðyÞð5:16Þ

(a calculation shows that the last inequality holds for yðyÞf 61, which is valid in the range
yf 101).
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Now consider integers of the form

qðyÞ ¼
Q

pey

p;

so that o
�
qðyÞ

�
¼ pðyÞ and log qðyÞ ¼ yðyÞ. Equation (5.16) becomes

o
�
qðyÞ

�
e 1:5

�
log qðyÞ

�
=log log qðyÞ;

while the derivation was valid for yf 101, one can calculate that the inequality holds for
3e ye 101 as well. The following standard argument then shows that

oðqÞe 1:5 log q

log log q
ð5:17Þ

holds for all integers qf 3: if q has k distinct prime factors, then choose y to be the kth
prime. Then the inequality (5.17) has been shown to hold for qðyÞ, and therefore it holds
for q as well, since the left-hand side is k in both cases while the right-hand side is at least as
large for q as it is for qðyÞ.

(This argument uses the fact that the right-hand side is an increasing function, which
holds only for qf ee; therefore technically we have proved (5.17) only for numbers with at
least three distinct prime factors, since only then does the corresponding qðyÞ exceed ee.
However, the right-hand side of (5.17) is always at least 4 in the range qf 3, and so num-
bers with one or two distinct prime factors easily satisfy the inequality.)

Finally, the inequality rðqÞe 2oðqÞþ1 that was noted in Definition 1.2 allows us to

conclude that rðqÞe 21þ1:5ðlog qÞ=log log q < 2q1:04=log log q for all qf 3, as desired. r

Theorem 5.19. Assume GRH and LI. If q > 480 and q B f840; 1320g, then

dðq; a; bÞ < 0:75

for all reduced residues a and b ðmod qÞ.

Proof. Again we may assume that a is a nonsquare ðmod qÞ and b is a square
ðmod qÞ. First we restrict to the range qf 260000; by Proposition 5.14 we have
Vðq; a; bÞ > 531. Using Lemma 5.16, together with the upper bound for rðqÞ from
Lemma 5.18 and the lower bound for Vðq; a; bÞ from Proposition 5.14, we have

dðq; a; bÞð5:18Þ

e
1

2
þ 1

2
Erf

2q1:04=log log q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðqÞðlog q � 1:02 log log q � 7:34Þ

p
 !

þ 33:7q1:04=log log q

fðqÞ3=2ðlog q � 1:02 log log q � 7:34Þ3=2
þ 0:03506

e�9:08fðqÞ

fðqÞ

þ 127:36q1:04=log log q exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðqÞ

2
log q � 1:02 log log q � 7:34ð Þ

r !
:
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Rosser and Schoenfeld ([13], Theorem 15) have given the bound

fðqÞ > q

eg0 log log q þ 2:50637=log log q
ð5:19Þ

for qf 3. When this lower bound is substituted for fðqÞ in the upper bound (5.18), the
result is a smooth function of q that is well-defined and decreasing for qf 260000, and its
value at q ¼ 260000 is less than 0.75.

We now turn to the range 1000e qe 260000. We first compute explicitly, for each
such modulus q, the lower bound for Vðq; a; bÞ in equation (5.12); the value of this sharper
lower bound turns out always to exceed 531 in this range. Consequently, we may use
Lemma 5.16 together with the lower bound for Vðq; a; bÞ from equation (5.12), obtaining

dðq; a; bÞe 1

2
þ 1

2
Erf

rðqÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðqÞ

�
log q � log 2peg0 �

P
p j q

log p

p � 1
� 4 log q

q
� 23:62 log2 q

q

�s
0
BB@

1
CCA

þ 17:85rðqÞ

fðqÞ3=2

�
log q � log 2peg0 �

P
p j q

log p

p � 1
� 4 log q

q
� 23:62 log2 q

q

�3=2
þ 0:03506

e�9:08fðqÞ

fðqÞ

þ 63:68rðqÞ exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðqÞ

2

�
log q � log 2peg0 �

P
p j q

log p

p � 1
� 4 log q

q
� 23:62 log2 q

q

�vuut
0
@

1
A:

This upper bound can be computed exactly for each q in the range 1000e qe 260000; the
only five moduli for which the upper bound exceeds 0.75 are 1020, 1320, 1560, 1680, and
1848.

Finally, we use the methods described in Section 5.4, computing directly every value
of dðq; a; bÞ for the moduli 480 < qe 1000 and q A f1020; 1320; 1560; 1680; 1848g and ver-
ifying the inequality dðq; a; bÞ < 0:75 holds except for q ¼ 840 and q ¼ 1320, to complete
the proof of the theorem. r

5.4. Explicit computation of the densities. Throughout this section, we assume GRH
and LI, and we let a denote a nonsquare ðmod qÞ and b a square ðmod qÞ. In this section we
describe the process by which we computed actual values of the densities dðq; a; bÞ, resulting
for example in the data given in the tables and figures of this paper. In fact, we used two
di¤erent methods for these computations, one that works for ‘‘small q’’ and one that works
for ‘‘large q’’. For ease of discussion, we define the sets

S1 ¼ f3e qe 1000 : qE 2 ðmod 4Þ and fðqÞ < 80g;

S2 ¼ f101; 103; 107; 109; 113; 115; 119; 121; 123; 125; 129; 133; 141; 143; 145; 147; 153;

155; 159; 164; 165; 171; 172; 175; 176; 177; 183; 184; 188; 189; 195; 196; 200; 208;

212; 220; 224; 225; 231; 232; 236; 255; 260; 264; 276; 280; 288; 300; 308; 312; 324;

336; 348; 360; 372; 396; 420g;
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S3 ¼ f3e qe 1000 : qE 2 ðmod 4Þ and fðqÞf 80gnS2;

S4 ¼ f1020; 1320; 1560; 1680; 1848g:

We omit integers congruent to 2 ðmod 4Þ from these sets, since for odd q the prime number
race ðmod 2qÞ is identical to the prime number race ðmod qÞ.

For the moduli q in the set S1 WS2, we numerically evaluated the integral in equation
(2.10) directly; this method was used by Feuerverger and Martin [5] and is analogous
to, and indeed based upon, the method used by Rubinstein and Sarnak [14]. We first used
Rubinstein’s computational package lcalc to calculate, for each character w ðmod qÞ, the
first NðqÞ nontrivial zeros of Lðs; wÞ lying above the real axis. The term Fq;a;b in the
integrand is a product of functions of the form Fðz; wÞ, which is indexed by infinitely
many zeros of Lðs; wÞ; we approximated Fðz; wÞ by its truncation at NðqÞ zeros, multiplied
by a compensating quadratic polynomial as in [14], Section 4.3. With this approximation to
the integral (2.10), we truncated the range of integration to an interval ½�CðqÞ;CðqÞ� and
then discretized the truncated integral, replacing it by a sum over points spaced by eðqÞ as
in [14], Section 4.1. The result is an approximation to dðq; a; bÞ that is valid up to at least 8
decimal places, provided we choose NðqÞ, CðqÞ, and eðqÞ carefully to get small errors. (All
of these computations were performed using the computational software Mathematica.)
Explicitly bounding the error in this process is not the goal of the present paper; we refer
the interested reader to [14] for rigorous error bounds of this kind, corresponding to their
calculation of dðq;N;RÞ for q A f3; 4; 5; 7; 11; 13g.

For the moduli q in the set S3 WS4 (and for any other moduli larger than 1000 we
wished to address), we used an approach based on our asymptotic formulas for dðq; a; bÞ.
We now outline a variant of the asymptotic formulas described earlier in this paper, one
that was optimized somewhat for the actual computations rather than streamlined for the-
oretical purposes.

We first note that a slight modification of the proof of Proposition 2.18 yields the es-
timate, for any 0e ke 5=24,

dðq; a; bÞ ¼ 1

2
þ 1

2p

Ðk
�k

sin rðqÞx
x

Fq;a;bðxÞ dxð5:20Þ

þ O

 
1

p

Ð5=24

k

rðqÞjFq;a;bðxÞj dx þ 0:03506
e�9:08fðqÞ

fðqÞ

þ 63:67rðqÞ Fq;a;b
5

24

� �				
				
!

as long as Vðq; a; bÞf 531. In addition we have, for jxj < 3=10, the inequalities

� 1

2
Vðq; a; bÞx2 � Uðq; a; bÞx4 � 15:816Uðq; a; bÞx6

e logFq;a;bðxÞe� 1

2
Vðq; a; bÞx2 � Uðq; a; bÞx4;
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where for convenience we have defined Uðq; a; bÞ ¼ W2ðq; a; bÞVðq; a; bÞ; these inequalities
can be proved using an argument similar to the calculation in equation (5.13), but employ-
ing the more precise estimate log J0ðzÞ ¼ �z2=4 � z4=64 þ Oð0:00386z6Þ for jzje 2. Using
the methods of Section 3.4, we also obtain the formula

Uðq; a; bÞ ¼ fðqÞ
2

�
3 þ iqða2b�2Þ

��
log

q

2pe�g0
�
P
p j q

log p

p � 1
� zð2Þ

2

�
ð5:21Þ

þ fðqÞ
2

�
4
L
�
q=ðq; a � bÞ

�
f
�
q=ðq; a � bÞ

� �L
�
q=ðq; a2 � b2Þ

�
f
�
q=ðq; a2 � b2Þ

�
�
�
iqð�a2b�2Þ � 4iqð�ab�1Þ

�
log 2 þ zð2Þ

4

� ��

þ 1

4

P
w ðmod qÞ

jwðaÞ � wðbÞj4 2
L 0ð1; wÞ
Lð1; wÞ � L 00ð1; wÞ

Lð1; wÞ þ L 0ð1; wÞ
Lð1; wÞ

� �2
 !

:

If we define kðq; a; bÞ ¼ min p=rðqÞ;Vðq; a; bÞ�1=4
� 

, then we know that
kðq; a; bÞe 5=24 because of the lower bound Vðq; a; bÞf 531, and also that

�
sin rðqÞx

�
=x

is nonnegative for jxje kðq; a; bÞ. Hence, equation (5.20) and the subsequent discussion
establishes the following proposition:

Proposition 5.20. Assume GRH and LI, and let a be a nonsquare ðmod qÞ and b a

square ðmod qÞ. If Vðq; a; bÞf 531, then

1

2
þ 1

2p

Ðkðq;a;bÞ

�kðq;a;bÞ

sin rðqÞx
x

e�Vðq;a;bÞx2=2�Uðq;a;bÞx4�15:816Uðq;a;bÞx6

dx � Yðq; a; bÞ

e dðq; a; bÞe 1

2
þ 1

2p

Ðkðq;a;bÞ

�kðq;a;bÞ

sin rðqÞx
x

e�Vðq;a;bÞx2=2�Uðq;a;bÞx4

dx þ Y ðq; a; bÞ;

where

Yðq; a; bÞ ¼ rðqÞ
p

Ð5=24

kðq;a;bÞ
e�Vðq;a;bÞx2=2�Uðq;a;bÞx4

dx

þ 0:03506
e�9:08fðqÞ

fðqÞ þ 63:67rðqÞe�25Vðq;a;bÞ=1152�ð5=24Þ4Uðq;a;bÞ

and formulas for Vðq; a; bÞ and Uðq; a; bÞ are given in Theorem 1.4 and equation (5.21),
respectively.

The inequalities in Proposition 5.20 give accurate evaluations of dðq; a; bÞ when fðqÞ
is large; we chose the inequality fðqÞf 80 to be our working definition of ‘‘large’’. For
each of the moduli q in the set S3 WS4, we computed every possible value of Vðq; a; bÞ
and verified that they all exceed 531, so that Proposition 5.20 can be used. (The reason
that the moduli in S2 were calculated using the first method, rather than this one, is because
at least one variance Vðq; a; bÞ was less than 531 for each of the moduli in S2.) We then
calculated the upper and lower bounds of Proposition 5.20, using numerical integration
in pari/gp, to obtain all values of dðq; a; bÞ. The calculation of Vðq; a; bÞ and Uðq; a; bÞ
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involve the analytic terms Lð1; wÞ, L 0ð1; wÞ, and L 00ð1; wÞ; we used the pari/gp package
computeL (see [4]) to obtain these values accurate to 16 decimal places.

Table 7 gives a sample of the data we calculated with this second method, including
the error bounds obtained. The error bounds are stronger for when q and fðqÞ are large,
explaining why the error bounds for the large prime q ¼ 997 are so much better than for
the smaller composite number q ¼ 244.

We also take this opportunity to reinforce the patterns described in Section 4.1. For
q ¼ 244, the residue class a ¼ 123 has the property that q=ðq; a � 1Þ ¼ 2; thus the contribu-
tion of K244ð122Þ to Dð244; 123; 1Þ reduces the density dð244; 123; 1Þ. We see also the famil-
iar small densities corresponding to a ¼ 2431�1 ðmod 244Þ and to small prime values
of a. For q ¼ 997, the small prime values of a (among those that are nonsquares modulo
997) appear in perfect order. We point out that the residue class a ¼ 8 is almost in its
correct limiting position, since the contribution to Dð997; a; 1Þ is inversely correlated to
LðaÞ

a
, and

Lð41Þ
41

>
Lð43Þ

43
>

Lð8Þ
8

>
Lð47Þ

47
.

We mention that we undertook the exercise of calculating values dðq; a; bÞ by both
methods, for several intermediate values of q, as a way to verify our computations. For ex-
ample, the calculations of dð163; a; bÞ (see Table 3) were done using the integral formula
(2.10) as described above. We calculated these same densities using Proposition 5.20; the
error bounds obtained were all at most 4:6 � 10�6, and the results of the first calculation
all lay comfortably within the intervals defined by the second calculation.

q a a�1 dðq; a; 1Þ error bound q a a�1 dðq; a; 1Þ error bound

244 243 243 0.558910 0.000022 997 2 499 0.508116457 0.000000014
244 123 123 0.559000 0.000018 997 5 399 0.508142372 0.000000015
244 3 163 0.562304 0.000020 997 7 285 0.508184978 0.000000015
244 7 35 0.563216 0.000022 997 11 272 0.508238549 0.000000016
244 31 63 0.563543 0.000022 997 17 176 0.508279881 0.000000016
244 153 185 0.563804 0.000021 997 29 722 0.508329803 0.000000016
244 11 111 0.564069 0.000024 997 37 512 0.508345726 0.000000016
244 29 101 0.564124 0.000024 997 41 535 0.508351018 0.000000016
244 17 201 0.564321 0.000023 997 8 374 0.508353451 0.000000016
244 33 37 0.564436 0.000024 997 43 371 0.508355411 0.000000016
244 19 167 0.564741 0.000024 997 47 297 0.508358709 0.000000016
244 23 191 0.564786 0.000023 997 61 474 0.508368790 0.000000016
244 107 187 0.565310 0.000024 997 163 367 0.508392448 0.000000016
244 69 145 0.565319 0.000022 997 103 242 0.508392587 0.000000016
244 53 221 0.565376 0.000022 997 113 150 0.508395577 0.000000016
244 85 89 0.565606 0.000022 997 181 661 0.508397690 0.000000016
244 129 157 0.565683 0.000021 997 127 840 0.508402416 0.000000016
244 173 189 0.565707 0.000023 997 157 870 0.508404812 0.000000016
244 177 193 0.565859 0.000023 997 283 613 0.508406794 0.000000016
244 103 199 0.565861 0.000024 997 179 518 0.508406994 0.000000016

Table 7. The 20 smallest values of dð244; a; 1Þ and of dð997; a; 1Þ, calculated using Proposition 5.20.
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q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ

24 5 5 0.999988 8 7 7 0.998939 60 19 19 0.986459
24 11 11 0.999983 24 13 13 0.998722 120 89 89 0.986364
12 11 11 0.999977 12 7 7 0.998606 120 79 79 0.986309
24 23 23 0.999889 8 5 5 0.997395 120 101 101 0.984792
24 7 7 0.999834 4 3 3 0.995928 15 2 8 0.983853
24 19 19 0.999719 120 71 71 0.988747 120 13 37 0.980673
8 3 3 0.999569 120 59 59 0.988477 40 19 19 0.980455
12 5 5 0.999206 60 11 11 0.987917 60 7 43 0.979323
24 17 17 0.999125 60 29 29 0.986855 120 23 47 0.979142
3 2 2 0.999063 120 109 109 0.986835 15 14 14 0.979043

q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ

120 17 113 0.978762 120 91 91 0.975051 15 7 13 0.964719
120 7 103 0.978247 120 83 107 0.975001 120 31 31 0.963190
48 23 23 0.978096 120 29 29 0.974634 60 13 37 0.963058
120 43 67 0.978013 120 19 19 0.974408 60 59 59 0.962016
60 17 53 0.977433 120 11 11 0.971988 40 31 31 0.960718
48 41 41 0.977183 48 31 31 0.970470 48 5 29 0.960195
40 29 29 0.977161 40 7 23 0.969427 40 3 27 0.960099
20 3 7 0.976713 40 13 37 0.969114 16 7 7 0.959790
120 53 77 0.976527 120 73 97 0.967355 48 11 35 0.959245
60 23 47 0.975216 20 19 19 0.966662 120 119 119 0.957182

q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ

15 11 11 0.955226 40 11 11 0.945757 20 11 11 0.931367
120 41 41 0.955189 40 39 39 0.942554 168 139 139 0.931362
48 19 43 0.952194 60 31 31 0.941802 168 55 55 0.931346
5 2 3 0.952175 48 7 7 0.939000 48 47 47 0.929478
20 13 17 0.948637 16 5 13 0.938369 168 67 163 0.928944
120 61 61 0.948586 168 125 125 0.936773 84 71 71 0.928657
60 41 41 0.947870 168 155 155 0.935843 168 41 41 0.927933
16 3 11 0.947721 168 47 143 0.932099 84 55 55 0.927755
48 13 37 0.946479 168 61 157 0.931981 168 71 71 0.927349
40 17 33 0.946002 84 41 41 0.931702 16 15 15 0.926101

q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ q a a�1 dðq; a; 1Þ

168 65 137 0.923960 168 59 131 0.917874 56 31 47 0.906135
168 53 149 0.923937 168 23 95 0.917718 84 67 79 0.905578
168 83 83 0.923868 168 31 103 0.917278 168 13 13 0.904525
21 5 17 0.923779 168 29 29 0.915514 168 97 97 0.904162
168 79 151 0.922597 72 53 53 0.913533 72 35 35 0.903755
40 21 21 0.922567 21 2 11 0.911872 84 47 59 0.902413
168 37 109 0.922359 168 19 115 0.911412 56 37 53 0.900863
168 17 89 0.920542 168 11 107 0.909850 84 53 65 0.899063
48 17 17 0.918910 168 73 145 0.908239 28 11 23 0.898807
56 27 27 0.918015 168 5 101 0.908206 168 127 127 0.898647

Table 8. The top 120 most unfair prime number races.
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Finally, the upper bounds for dðq; a; bÞ in Theorems 5.17 and 5.19, together with the
explicit calculation of the densities dðq; a; bÞ for q A S1 WS2 WS3 WS4, allow us to deter-
mine the most biased possible two-way races, that is, the largest values of dðq; a; bÞ among
all possible choices of q, a, and b. In particular, we verified Theorem 1.11 in this way, and
we list the 120 largest densities in Table 8; there are precisely 117 distinct densities above
9=10. (It is helpful to recall here that dðq; a; 1Þ ¼ dðq; a�1; 1Þ and that dðq; a; 1Þ ¼ dðq; ab; bÞ
for any nonsquare a and square b modulo q.)
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Copyright of Journal für die Reine und Angewandte Mathematik is the property of De Gruyter and its content

may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express

written permission. However, users may print, download, or email articles for individual use.


