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THE SHANKS–RÉNYI PRIME NUMBER RACE WITH
MANY CONTESTANTS

Youness Lamzouri

Abstract. Under certain plausible assumptions, M. Rubinstein and P. Sarnak solved

the Shanks–Rényi race problem by showing that the set of real numbers x ≥ 2 such that
π(x; q, a1) > π(x; q, a2) > · · · > π(x; q, ar) has a positive logarithmic density δq;a1,...,ar .
Furthermore, they established that if r is fixed, δq;a1,...,ar → 1/r! as q → ∞. In this
paper, we investigate the size of these densities when the number of contestants r tends

to infinity with q. In particular, we deduce a strong form of a recent conjecture of
Feuerverger and Martin which states that δq;a1,...,ar = o(1) in this case. Among our
results, we prove that δq;a1,...,ar ∼ 1/r! in the region r = o(

√
log q) as q → ∞. We also

bound the order of magnitude of these densities beyond this range of r. For example, we
show that when log q ≤ r ≤ φ(q), δq;a1,...,ar 	ε q−1+ε.

1. Introduction

A classical problem in analytic number theory is the so-called “Shanks–Rényi prime
number race” which concerns the distribution of prime numbers in arithmetic pro-
gressions. As colorfully described by Knapowski and Turán in [11], let q ≥ 3 and
2 ≤ r ≤ φ(q) be positive integers, and denote by Ar(q) the set of ordered r-tuples
of distinct residue classes (a1, a2, . . . , ar) modulo q which are coprime to q. For
(a1, a2, . . . , ar) ∈ Ar(q) consider a game with r players called “1” through “r”, where
at time x, the player “j” has a score of π(x; q, aj) (where π(x; q, a) denotes the number
of primes p ≤ x with p ≡ a mod q). As x → ∞, will all r! orderings of the players
occur for infinitely many integers x?

It is generally believed that the answer to this question is yes for all q and all
(a1, a2, . . . , ar) ∈ Ar(q). An old result of Littlewood [14] shows that this is indeed
true in the special cases (q, a1, a2) = (4, 1, 3) and (q, a1, a2) = (3, 1, 2). Since then,
this problem has been extensively studied by many authors, including Knapowski and
Turán [11], Bays and Hudson [1, 2], Kaczorowski [8–10], Feuerverger and Martin [4],
Martin [15], Ford and Konyagin [6, 7], Fiorilli and Martin [5], and Lamzouri [12]
and [13].

A major breakthrough was made in 1994 by Rubinstein and Sarnak who completely
solved this problem in [16], conditionally on the two following assumptions:

• The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet
L-functions have real part equal 1/2.
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• The Linear Independence Hypothesis (LI) (also known as the Grand Simplic-
ity Hypothesis): the nonnegative imaginary parts of the nontrivial zeros of
Dirichlet L-functions attached to primitive characters are linearly indepen-
dent over Q.

Rubinstein and Sarnak [16] proved, under these two hypotheses, the stronger result
that for any (a1, . . . , ar) ∈ Ar(q) the set of real numbers x ≥ 2 such that

π(x; q, a1) > π(x; q, a2) > · · · > π(x; q, ar),

has a positive logarithmic density, which shall be denoted throughout this paper by
δq;a1,...,ar . (Recall that the logarithmic density of a subset S of R is defined as

δS := lim
x→∞

1
log x

∫
t∈S∩[2,x]

dt

t
,

provided that this limit exists.) To establish this result, they constructed an absolutely
continuous measure μq;a1,...,ar for which

(1.1) δq;a1,...,ar =
∫
x1>x2>···>xr

dμq;a1,...,ar (x1, . . . , xr).

Among the results they derived on these densities, Rubinstein and Sarnak [16]
showed that in an r-way race with r fixed, all biases disappear when q → ∞. More
specifically they proved

(1.2) lim
q→∞ max

(a1,...,ar)∈Ar(q)
|r!δq;a1,...,ar − 1| = 0.

Recently, Fiorilli and Martin [5] established an asymptotic formula for the density
in a two-way race, which allows them to determine the exact rate at which δq;a1,a2

converges to 1/2 as q grows. Shortly after, the author [12] obtained an asymptotic
formula for δq;a1,...,ar for any fixed r ≥ 3 as q → ∞, in which the rate of convergence
to 1/r! is surprisingly different from the case r = 2.

However, as far as the author of the present paper knows, no results have been
obtained on the size of the densities δq;a1,...,ar if r → ∞ as q → ∞. In [4], Feuerverger
and Martin conjectured that in this case we should have δq;a1,...,ar = o(1). They
also asked whether one can prove a uniform version of the result of Rubinstein and
Sarnak (1.2), namely that this statement holds in a certain range r ≤ r0(q) for some
r0(q) → ∞ as q → ∞.

Conjecture 1.1 (Feuerverger–Martin). We have

lim
q→∞ max

(a1,...,ar)∈Ar(q)
δq;a1,...,ar = 0,

for any arbitrary function r = r(q) tending to infinity with q.

In the present paper, we investigate the order of magnitude of δq;a1,...,ar when the
number of contestants r → ∞ as q → ∞. In particular, answering the question of
Feuerverger and Martin, we establish a uniform version of (1.2), and obtain a strong
quantitative form of Conjecture 1.1.
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Theorem 1.1. Assume GRH and LI. Let q be a large positive integer. Then, for any
integer r such that 2 ≤ r ≤ √

log q we have

δq;a1,...,ar =
1
r!

(
1 +O

(
r2

log q

))
,

uniformly for all r-tuples (a1, . . . , ar) ∈ Ar(q).

As a consequence, Theorem 1.1 implies that (1.2) holds true in the range r =
o(
√

log q) as q → ∞. Indeed in this region of r, all biases disappear when q → ∞,
namely

(1.3) δq;a1,...,ar ∼
1
r!
,

uniformly for all r-tuples (a1, . . . , ar) ∈ Ar(q). Moreover, one can also deduce that if
c0 > 0 is a suitably small constant and r ≤ c0

√
log q, then uniformly for all r-tuples

(a1, . . . , ar) ∈ Ar(q) we have

(1.4) δq;a1,...,ar 

1
r!
.

Note that 1/r! = exp(−r log r+ r+O(log r)) by Stirling’s formula. Our next result
shows that the densities δq;a1,...,ar have roughly the same asymptotic decay in the
range

√
log q � r ≤ (1 − ε) log q/ log log q, for any ε > 0.

Theorem 1.2. Assume GRH and LI. For any ε > 0, if q is large and
√

log q � r ≤
(1 − ε) log q/ log log q is an integer, then

δq;a1,...,ar = exp
(
−r log r + r +O

(
log r +

r2

log q

))
,

uniformly for all r-tuples (a1, . . . , ar) ∈ Ar(q).

It would be interesting to determine the order of magnitude of the densities
δq;a1,...,ar beyond the region r ≤ (1−ε) log q/ log log q. Unfortunately, this range seems
to be the limit of what can be achieved using our method. Nevertheless, we can use
Theorem 1.2 to obtain an upper bound for δq;a1,...,ar beyond this range of r.

Theorem 1.3. Assume GRH and LI. For any ε > 0, if q is large and r is a positive
integer such that (1 − ε/2) log q/ log log q ≤ r ≤ φ(q), then

max
(a1,...,ar)∈Ar(q)

δq;a1,...,ar �ε
1

q1−ε
.

The paper is organized as follows. In Section 2, following the work of Rubinstein
and Sarnak, we shall construct the measure μq;a1,...,ar as a probability distribution
corresponding to a certain random vector and study its covariance matrix and large
deviations. In Section 3, we investigate the Fourier transform of μq;a1,...,ar and show
that in a certain range μ̂q;a1,...,ar can be approximated by the Fourier transform of
a multivariate normal distribution having the same covariance matrix. In Section 4
we study properties of multivariate normal distributions and prove Theorems 1.1, 1.2
and 1.3.
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2. The measure μq;a1,...,ar

We begin by developing the necessary notation to construct the measure μq;a1,...,ar ,
following the work of Rubinstein and Sarnak [16]. For (a1, a2, . . . , ar) ∈ Ar(q) we
introduce the vector-valued function

Eq;a1,...,ar (x) := (E(x; q, a1), . . . , E(x; q, ar)),

where

E(x; q, a) :=
log x√
x

(φ(q)π(x; q, a) − π(x)) .

The normalization is such that, if we assume GRH,Eq;a1,...,ar (x) varies roughly bound-
edly as x varies. Moreover, for a nontrivial character χ modulo q, we denote by {γχ}
the sequence of imaginary parts of the nontrivial zeros of L(s, χ). Let χ0 denote
the principal character modulo q and define S = ∪χ �=χ0 mod q{γχ}. Furthermore, let
{U(γχ)}γχ∈S be a sequence of independent random variables uniformly distributed
on the unit circle.

Rubinstein and Sarnak established, under GRH and LI, that the vector-valued
function Eq;a1,...,ar has a limiting distribution μq;a1,...,ar , where μq;a1,...,ar is the prob-
ability measure corresponding to the random vector

Xq;a1,...,ar = (X(q, a1), . . . , X(q, ar)),

where

X(q, a) = −Cq(a) +
∑
χ �=χ0
χ mod q

∑
γχ>0

2Re(χ(a)U(γχ))√
1
4 + γ2

χ

,

and
Cq(a) := −1 +

∑
b2≡a mod q

1≤b≤q

1.

Note that for (a, q) = 1 the function Cq(a) takes only two values: Cq(a) = −1 if a is
a non-square modulo q, and Cq(a) = Cq(1) if a is a square modulo q. Furthermore,
an elementary argument shows that Cq(a) < d(q) �ε q

ε for any ε > 0, where d(q) =∑
m|q 1 is the usual divisor function.
To investigate the distribution of the random vector Xq;a1,...,ar we shall first com-

pute its covariance matrix Covq;a1,...,ar (the covariance matrix generalizes the notion
of variance to multiple dimensions). Recall that the j, k entry of the covariance matrix
corresponds to the covariance between the j-th and k-th entry of the random vector.

Lemma 2.1. The entries of Covq;a1,...,ar are

Covq;a1,...,ar (j, k) =

{
Var(q) if j = k

Bq(aj , ak) if j = k,

where

Var(q) := 2
∑
χ �=χ0
χ mod q

∑
γχ>0

1
1
4 + γ2

χ

, and Bq(a, b) :=
∑
χ �=χ0
χ mod q

∑
γχ>0

χ
(
b
a

)
+ χ

(
a
b

)
1
4 + γ2

χ

.
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Proof. First, note that E(X(q, a)) = −Cq(a) since E(U(γχ)) = 0 for all γχ. Therefore,
Covq;a1,...,ar (j, k) equals

E

((
X(q, aj) + Cq(aj)

)(
X(q, ak) + Cq(ak)

))

= E

⎛
⎜⎜⎜⎜⎝

∑
χ �=χ0
χ mod q

∑
γχ>0

∑
ψ �=χ0
ψ mod q

∑
γ̃ψ>0

(
χ(aj)U(γχ) + χ(aj)U(γχ)

)
(
ψ(ak)U(γ̃ψ) + ψ(ak)U(γ̃ψ)

)
√

1
4 + γ2

χ

√
1
4 + γ̃2

ψ

⎞
⎟⎟⎟⎟⎠ .

Since E(U(γχ)U(γ̃ψ)) = 0 for all γχ, γ̃ψ and

E

(
U(γχ)U(γ̃ψ)

)
=

{
1 if χ = ψ and γχ = γ̃ψ,

0 otherwise,

we deduce that

Covq;a1,...,ar (j, k) =
∑
χ �=χ0
χ mod q

∑
γχ>0

χ (aj/ak) + χ (ak/aj)
1
4 + γ2

χ

,

which implies the result. �

Our next lemma gives the asymptotic behavior of Var(q) along with the maximal
order of Bq(aj , ak). This was established in [12], and we should also note that it follows
implicitly from the results of [5].

Lemma 2.2. Assume GRH. Then

(2.1) Var(q) = φ(q) log q +O(φ(q) log log q),

and

(2.2) max
(a,b)∈A2(q)

Bq(a, b) 
 φ(q).

Proof. First, the asymptotic formula (2.1) is proved in Lemma 3.1 of [12]. Now, the
fact that Bq(aj , ak) � φ(q) is proved in Corollary 5.4 of [12], while Proposition 5.1
of [12] implies Bq(a,−a) � φ(q). �

Here and throughout we shall use the notations ‖t‖ =
√∑r

j=1 t
2
j and |t|∞ =

max1≤j≤r |tj | for the Euclidean norm and the maximum norm of t ∈ Rr, respectively.
Our next result is an upper bound for the tail of the distribution μq;a1,...,ar . This was
established in Proposition 4.1 of [12] in the case where r is fixed.

Lemma 2.3. Let q be large and 2 ≤ r ≤ φ(q) be a positive integer. Then for R ≥√
φ(q) log q we have

μq;a1,...,ar (|x|∞ > R) ≤ 2r exp
(
− R2

4φ(q) log q

)
,

uniformly for all (a1, . . . , ar) ∈ Ar(q).



654 YOUNESS LAMZOURI

Proof. First, we have

μq;a1,...,ar (|x|∞ > R) = P(|Xq;a1,...,ar |∞ > R)

≤
r∑
j=1

P(X(q, aj) > R) +
r∑
j=1

P(X(q, aj) < −R).

We shall bound only P(X(q, aj) > R), since the corresponding bound for
P(X(q, aj) < −R) can be obtained similarly. Let s > 0 and (a, q) = 1. Then we
have

E

(
esX(q,a)

)
= e−sCq(a)

∏
χ �=χ0
χ mod q

∏
γχ>0

E

⎛
⎝2sRe(χ(a)U(γχ))√

1
4 + γ2

χ

⎞
⎠

= e−sCq(a)
∏
χ �=χ0
χ mod q

∏
γχ>0

I0

⎛
⎝ 2s√

1
4 + γ2

χ

⎞
⎠ ,

where I0(t) :=
∑∞
n=0(t/2)2n/n!2 is the modified Bessel function of order 0. Hence,

using the Chernoff bound along with the fact that I0(s) ≤ exp(s2/4) for all s ∈ R we
derive

P(X(q, a) > R) ≤ e−sRE

(
esX(q,a)

)
≤ exp

(
−sR− sCq(a) +

s2

2
Var(q)

)
.

The lemma follows upon choosing s = R/(φ(q) log q), since Cq(a) = qo(1) and Var(q) ∼
φ(q) log q by Lemma 2.2. �

3. The Fourier transform μ̂q;a1,...,ar

Throughout the remaining part of the paper we shall assume both GRH and LI.
Moreover, we will use the following normalization for the Fourier transform of an
integrable function f : Rn → C

f̂(t1, . . . , tn) =
∫

Rn

e−i(t1x1+···+tnxn)f(x1, . . . , xn)dx1 . . . dxn.

Then if f̂ is integrable on Rn we have the Fourier inversion formula

f(x1, . . . , xn) = (2π)−n
∫

Rn

ei(t1x1+···+tnxn)f̂(t1, . . . , tn)dt1 . . . dtn.

Similarly we write

ν̂(t1, . . . , tn) =
∫

Rn

e−i(t1x1+···+tnxn)dν(x1, . . . , xn)

for the Fourier transform of a finite measure ν on Rn.
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Rubinstein and Sarnak [16] established the following explicit formula for the Fourier
transform of μq;a1,...,ar :

μ̂q;a1,...,ar (t1, . . . , tr) = exp

⎛
⎝i

r∑
j=1

Cq(aj)tj

⎞
⎠ ∏

χ �=χ0
χ mod q

∏
γχ>0

J0

⎛
⎝2

∣∣∣∑r
j=1 χ(aj)tj

∣∣∣√
1
4 + γ2

χ

⎞
⎠ ,

(3.1)

where J0(z) =
∑∞
m=0(−1)m(z/2)2m/m!2 is the Bessel function of order 0.

Our first result shows that in the range ‖t‖ ≤ Var(q)−1/2+o(1), the Fourier trans-
form μ̂q;a1,...,ar (t1, . . . , tr) is very close to the Fourier transform of a multivariate
normal distribution whose covariance matrix equals Covq;a1,...,ar .

Proposition 3.1. Let q be large, 2 ≤ r ≤ log q be a positive integer, and (a1, . . . , ar) ∈
Ar(q). Then in the range ‖t‖ ≤ Var(q)−1/2 log2 q we have

μ̂q;a1,...,ar (t1, . . . , tr) = exp
(
−1

2
tTCovq;a1,...,art

)(
1 +O

(
d(q) log3 q√

q

))
.

Proof. First, the explicit formula (3.1) yields

log μ̂q;a1,...,ar (t1, . . . , tr) =
∑
χ �=χ0
χ mod q

∑
γχ>0

log J0

⎛
⎝2

∣∣∣∑r
j=1 χ(aj)tj

∣∣∣√
1
4 + γ2

χ

⎞
⎠

+O

⎛
⎝‖t‖

r∑
j=1

|Cq(aj)|
⎞
⎠ .

Using Lemma 2.2 along with the standard estimate φ(q) � q/ log log q, we deduce
that the error term above is � q−1/2d(q) log3 q. On the other hand note that

2
∣∣∣∑r

j=1 χ(aj)tj
∣∣∣√

1
4 + γ2

χ

� r‖t‖ ≤ 1

if q is large enough. Hence, using that log J0(z) = −z2/4+O(z4) for |z| ≤ 1 we obtain

log μ̂q;a1,...,ar (t1, . . . , tr) = −
∑
χ �=χ0
χ mod q

∑
γχ>0

∣∣∣∑r
j=1 χ(aj)tj

∣∣∣2
1
4 + γ2

χ

(3.2)

+O

⎛
⎜⎜⎝r4‖t‖4

∑
χ �=χ0
χ mod q

∑
γχ>0

1(
1
4 + γ2

χ

)2 +
d(q) log3 q√

q

⎞
⎟⎟⎠ .

Since
∑

χ �=χ0
χ mod q

∑
γχ>0 1/

(
1
4 + γ2

χ

)2 � Var(q), it follows that the error term in the

above estimate is � q−1/2d(q) log3 q. On the other hand, the main term on the RHS
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of (3.2) equals

−
∑
χ �=χ0
χ mod q

∑
γχ>0

1
1
4 + γ2

χ

∑
1≤j,k≤r

χ(aj)χ(ak)tjtk = −1
2

∑
1≤j,k≤r

Covq;a1,...,ar (j, k)tjtk

= −1
2
tTCovq;a1,...,art,

by Lemma 2.1. �
Next, we show that μ̂q;a1,...,ar (t1, . . . , tr) is rapidly decreasing in the range ‖t‖ ≥

Var(q)−1/2. In particular, the following result is a refinement of Proposition 3.2 of [12],
which takes into account the dependence of the upper bounds on r.

Proposition 3.2. There exists a constant c1 > 0 such that, if q is large and 2 ≤ r ≤
c1 log q, then uniformly for all (a1, . . . , ar) ∈ Ar(q) we have

|μ̂q;a1,...,ar (t1, . . . , tr)| ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
−φ(q)

8r
‖t‖
)

if ‖t‖ ≥ 400,

exp
(
− φ(q)

(log q)8

)
if (log q)−2 ≤ ‖t‖ ≤ 400,

exp
(
−φ(q) log q

4
‖t‖2

)
if ‖t‖ ≤ (log q)−2.

Before proving this result we first require the following lemma.

Lemma 3.3. Let q be large and 2 ≤ r ≤ φ(q)/4 be an integer. For a = (a1, . . . , ar) ∈
Ar(q) and t ∈ Rr we denote by Mq,a(t) the set of nontrivial characters χ mod q such

that
∣∣∣∑r

j=1 χ(aj)tj
∣∣∣ ≥ ‖t‖/2. Then

|Mq,a(t)| ≥ φ(q)
2r

.

Proof. Let

S(t) =
∑
χ �=χ0
χ mod q

∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣
2

=
∑

χ mod q

∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣
2

−
⎛
⎝ r∑
j=1

tj

⎞
⎠

2

(3.3)

=
r∑
j=1

r∑
k=1

tjtk
∑

χ mod q

χ(aj)χ(ak) −
⎛
⎝ r∑
j=1

tj

⎞
⎠

2

= φ(q)
r∑
j=1

t2j −
⎛
⎝ r∑
j=1

tj

⎞
⎠

2

≥ (φ(q) − r)‖t‖2,

by the Cauchy–Schwarz inequality. Therefore, using that
∣∣∑r

j=1 χ(aj)tj
∣∣2 ≤(∑r

j=1 |tj |
)2

≤ r‖t‖2, we deduce

S(t) =
∑

χ∈Mq,a(t)

∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣
2

+
∑

χ/∈Mq,a(t)

∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣
2

≤ r|Mq,a(t)|‖t‖2 +
φ(q)

4
‖t‖2.

Combining this estimate with (3.3) completes the proof. �
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Proof of Proposition 3.2. First, assume that ‖t‖ ≥ 400. For any Dirichlet character
χ we define

F (x, χ) :=
∏
γχ>0

J0

⎛
⎝ 2x√

1
4 + γ2

χ

⎞
⎠ .

Then it follows from Lemma 2.16 of [5] that for any nontrivial character χ mod q we
have

(3.4) |F (x, χ)F (x, χ)| ≤ e−x

for x ≥ 200. Moreover, the explicit formula (3.1) implies

|μ̂q;a1,...,ar (t1, . . . , tr)| =
∏
χ �=χ0
χ mod q

∣∣∣∣∣∣F
⎛
⎝
∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣ , χ
⎞
⎠
∣∣∣∣∣∣ .

Note that χ ∈Mq,a(t) if and only if χ ∈Mq,a(t). Hence

(3.5)
∏

χ∈Mq,a(t)

∣∣∣∣∣∣F
⎛
⎝
∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣ , χ
⎞
⎠
∣∣∣∣∣∣ =

∏
χ∈Mq,a(t)

∣∣∣∣∣∣F
⎛
⎝
∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣ , χ
⎞
⎠
∣∣∣∣∣∣ .

Furthermore, if χ ∈Mq,a(t) then
∣∣∣∑r

j=1 χ(aj)tj
∣∣∣ ≥ ‖t‖/2 ≥ 200. Therefore combining

(3.4) and (3.5) along with the trivial bound |F (x, χ)| ≤ 1 (since |J0(x)| ≤ 1) we derive

|μ̂q;a1,...,ar (t1, . . . , tr)|2 ≤
⎛
⎝ ∏
χ∈Mq,a(t)

∣∣∣∣∣∣F
⎛
⎝
∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣ , χ
⎞
⎠
∣∣∣∣∣∣

⎞
⎠

2

=
∏

χ∈Mq,a(t)

∣∣∣∣∣∣F
⎛
⎝
∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣ , χ
⎞
⎠F

⎛
⎝
∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣ , χ
⎞
⎠
∣∣∣∣∣∣

≤ exp

⎛
⎝−

∑
χ∈Mq,a(t)

∣∣∣∣∣∣
r∑
j=1

χ(aj)tj

∣∣∣∣∣∣

⎞
⎠ ≤ exp

(
−1

2
|Mq,a(t)‖|t‖

)
.

Thus, we infer from Lemma 3.3 that

|μ̂q;a1,...,ar (t1, . . . , tr)| ≤ exp
(
−1

4
|Mq,a(t)‖|t‖

)
≤ exp

(
−φ(q)

8r
‖t‖
)
,

as desired.
Let ε = (log q)−2 and suppose that ε ≤ ‖t‖ ≤ 400. If χ ∈Mq,a(t) then

2
∣∣∣∑r

j=1 χ(aj)tj
∣∣∣√

1
4 + γ2

χ

≥ ε√
1
4 + γ2

χ

.

We also note that if q is sufficiently large then ε
(

1
4 + γ2

χ

)−1/2 ≤ 2ε ≤ 1. Therefore,
since J0 is a positive decreasing function on [0, 1] and |J0(z)| ≤ J0(1) for all z ≥ 1,
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we get

|μ̂q;a1,...,ar (t1, . . . , tr)| ≤
∏

χ∈Mq,a(t)

∏
γχ>0

∣∣∣∣∣∣J0

⎛
⎝ ε√

1
4 + γ2

χ

⎞
⎠
∣∣∣∣∣∣ .

Furthermore, using the standard bound |J0(x)| ≤ exp(−x2/4) for |x| ≤ 1, we deduce
that

(3.6) |μ̂q;a1,...,ar (t1, . . . , tr)| ≤ exp

⎛
⎝−ε

2

4

∑
χ∈Mq,a(t)

∑
γχ>0

1
1
4 + γ2

χ

⎞
⎠ .

Let N(T, χ) denote the number of γχ in the interval [0, T ]. Then, we have the classical
estimate (see Chapters 15 and 16 of [3])

N(T, χ) =
T

2π
log

q∗T
2πe

+O(log qT ),

where q∗ is the conductor of χ. Hence, if T = log2 q then N(T, χ) � log2 q. This
yields ∑

γχ>0

1
1
4 + γ2

χ

≥
∑

0<γχ≤log2 q

1
1
4 + γ2

χ

� 1
log2 q

.

The upper bound on |μ̂q;a1,...,ar (t1, . . . , tr)| then follows upon inserting this estimate
in (3.6) and using Lemma 3.3.

Finally assume that ‖t‖ ≤ (log q)−2. If q is large enough then

2
∣∣∣∑r

j=1 χ(aj)tj
∣∣∣√

1
4 + γ2

χ

� r‖t‖ ≤ 1.

Hence, using that |J0(x)| ≤ exp(−x2/4) for |x| ≤ 1 we obtain from the explicit
formula (3.1)

(3.7) |μ̂q;a1,...,ar (t1, . . . , tr)| ≤ exp

⎛
⎜⎜⎝−

∑
χ �=χ0
χ mod q

∑
γχ>0

∣∣∣∑r
j=1 χ(aj)tj

∣∣∣2
1
4 + γ2

χ

⎞
⎟⎟⎠ .

Furthermore, Lemma 2.2 yields

∑
χ �=χ0
χ mod q

∑
γχ>0

∣∣∣∑r
j=1 χ(aj)tj

∣∣∣2
1
4 + γ2

χ

=
∑
χ �=χ0
χ mod q

∑
γχ>0

1
1
4 + γ2

χ

∑
1≤j,k≤r

χ(aj)χ(ak)tjtk

=
Var(q)

2
(
t21 + · · · + t2r

)
+

∑
1≤j<k≤r

Bq(aj , ak)tjtk

=
φ(q) log q

2
‖t‖2

(
1 +O

(
r + log log q

log q

))
,
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since
∑

1≤j<k≤r
|tjtk| ≤

⎛
⎝ r∑
j=1

|tj |
⎞
⎠

2

≤ r‖t‖2,

by the Cauchy–Schwarz inequality. Thus, if r ≤ c1 log q where c1 > 0 is suitably small,
then

∑
χ �=χ0
χ mod q

∑
γχ>0

∣∣∣∑r
j=1 χ(aj)tj

∣∣∣2
1
4 + γ2

χ

≥ φ(q) log q
4

‖t‖2.

Inserting this estimate in (3.7) completes the proof. �

4. The asymptotic behavior of the densities δq;a1,...,ar : Proof of
Theorems 1.1, 1.2 and 1.3

We showed in the previous section that in a small region around 0, the Fourier trans-
form of μq;a1,...,ar can be approximated by the Fourier transform of a multivariate
normal distribution whose covariance matrix equals Covq;a1,...,ar . If we normalize by√

Var(q) then Proposition 3.1 above implies that in the range ‖t‖ ≤ log2 q we have

μ̂q;a1,...,ar

(
t1√

Var(q)
, . . . ,

tr√
Var(q)

)
= exp

(
−1

2
tTCt

)(
1 +O

(
d(q) log3 q√

q

))
,

(4.1)

where C is an r × r symmetric matrix whose entries are

Cjk =

⎧⎪⎨
⎪⎩

1 if j = k,

Bq(aj , ak)
Var(q)

� 1
log q

if j = k.

Let Mr(ε) denote the set of r× r symmetric matrices A = (ajk) such that ajj = 1
for all 1 ≤ j ≤ r and |ajk| ≤ ε for all 1 ≤ j = k ≤ r. In order to prove Theorems 1.1-
1.3, we need to investigate multivariate normal distributions whose covariance ma-
trices belong to Mr(ε) where ε � 1/ log q is small. To this end we shall study the
density function of a multivariate normal distribution, which is given by

(4.2) f(x) =
1

(2π)r/2
√

det(A)
exp

(
−1

2
xTA−1x

)
,

if A is the covariance matrix of the distribution.
Our first lemma shows that the determinant of any matrix A ∈ Mr(ε) is close to

1 if ε is small enough.

Lemma 4.1. If ε ≤ 1/(2r) then for any A ∈ Mr(ε) we have det(A) = 1 +O(ε2r2).

Proof. Let Sr be the set of all permutations σ of {1, . . . , r}. Then we have

(4.3) det(A) =
∑
σ∈Sr

sgn(σ)a1σ(1) · · · arσ(r) = 1 +
∑
σ∈Sr
σ �=1

sgn(σ)a1σ(1) · · · arσ(r),

where 1 denotes the identity permutation. For 0 ≤ k ≤ r let Sr(k) be the set of
permutations σ ∈ Sr such that the equation σ(j) = j has exactly r − k solutions in
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{1, . . . , r}. Then Sr(0) = {1}, Sr(1) = ∅ and more generally one has

|Sr(k)| ≤
(

r

r − k

)
(k − 1)! ≤ rk, for 2 ≤ k ≤ r.

Moreover, note that |a1σ(1) · · · arσ(r)| ≤ εk, for all σ ∈ Sr(k).
Hence, we deduce
∑
σ∈Sr
σ �=1

sgn(σ)a1σ(1) · · · arσ(r) =
r∑

k=2

∑
σ∈Sr(k)

sgn(σ)a1σ(1) · · · arσ(r) �
r∑

k=2

(εr)k � ε2r2.

Inserting this estimate in (4.3) implies the result. �

In order to understand the behavior of the density function f(x) we need to de-
termine the size of the entries {ãjk} of A−1, if A ∈ Mr(ε). The next lemma shows
that if ε is small then the diagonal entries are close to 1 and the off-diagonal ones are
small.

Lemma 4.2. If ε ≤ 1/(2r) then for any A ∈ Mr(ε) we have

ãjk =

{
1 +O(ε2r2) if j = k,

O(ε) if j = k.

Proof. Recall that

ãjk =
1

det(A)
(−1)j+kMkj ,

where Mkj is the minor of the entry akj , which is given by Mkj = det(Akj) and Akj
is the matrix obtained from A by deleting the kth row and the jth column.

First, we determine the size of the diagonal entries ãjj . In this case, remark that
Ajj ∈ Mr−1(ε). Hence, it follows from Lemma 4.1 that

ãjj =
det(Ajj)
det(A)

= 1 +O(ε2r2).

Now, we handle the off-diagonal entries. For 1 ≤ j = k ≤ r, let Bj,k denote the set of
all bijections σ from {1, . . . , r} \ {j} to {1, . . . , r} \ {k}. Then, we have

|Mjk| = | det(Ajk)| ≤
∑

σ∈Bj,k

∏
1≤n �=j≤r

|anσ(n)|.

For 0 ≤ l ≤ r − 1 we define Bj,k(l) to be the set of bijections σ ∈ Bj,k such that the
equation σ(m) = m has exactly r−1− l solutions. Since σ(k) = k then it follows that
Bj,k(0) = ∅, and more generally one has

|Bj,k(l)| ≤
(

r − 2
r − 1 − l

)
(l − 1)! ≤ rl−1, for 1 ≤ l ≤ r − 1.

Hence we obtain

|Mjk| ≤
r−1∑
l=1

∑
σ∈Bj,k(l)

∏
1≤n �=j≤r

|anσ(n)| �
r−1∑
l=1

rl−1εl � ε.

Combining this bound with Lemma 4.1 yield the desired bound ãjk � ε. �
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We know that the Fourier transform of a multivariate Gaussian of covariance ma-
trix A is (up to normalization) a multivariate Gaussian of covariance A−1. The last
ingredient we need to prove Theorems 1.1–1.3 is an approximate version of this state-
ment when A ∈ Mr(ε).

Lemma 4.3. Let r ≥ 2 be a positive integer, R ≥ 10
√
r be a real number and x ∈ Rr.

If ε ≤ 1/(2r) then for any A ∈ Mr(ε) we have

(2π)−r
∫
‖t‖≤R

ei(t1x1+···+trxr) exp
(
−1

2
tTAt

)
dt

=
1

(2π)r/2
√

det(A)
exp

(
−1

2
xTA−1x

)

+O

(
exp

(
−R

2

5

))
.

Proof. Since exp
(−1

2t
TAt

)
is the Fourier transform of the multivariate normal dis-

tribution whose density equals

f(x) =
1

(2π)r/2
√

det(A)
exp

(
−1

2
xTA−1x

)
,

then the Fourier inversion formula yields

(2π)−r
∫
t∈Rr

ei(t1x1+···+trxr) exp
(
−1

2
tTAt

)
dt(4.4)

=
1

(2π)r/2
√

det(A)
exp

(
−1

2
xTA−1x

)
.

Moreover, since |ajk| ≤ 1/(2r) for j = k then
∣∣∣∣∣∣
∑

1≤j �=k≤r
ajktjtk

∣∣∣∣∣∣ ≤
1
2r

⎛
⎝ r∑
j=1

|tj |
⎞
⎠

2

≤ 1
2

r∑
j=1

t2j ,

by the Cauchy–Schwarz inequality. This implies

(4.5) tTAt =
r∑
j=1

r∑
k=1

ajktjtk ≥ 1
2

r∑
j=1

t2j .

Hence, we get

(2π)−r
∫
‖t‖>R

exp
(
−1

2
tTAt

)
dt

≤ (2π)−r
∫
‖t‖>R

exp
(
−1

4
‖t‖2

)
dt � exp

(
−R

2

5

)
,

which in view of (4.4) completes the proof. �
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Proof of Theorem 1.1. To lighten the notation we shall write δq for δq;a1,...,ar and μq
for μq;a1,...,ar . Let R = 3

√
Var(q) log q. First, using Lemma 2.3 we derive

δq =
∫
y1>y2>···>yr

dμq(y1, . . . , yr) =
∫
y1>y2>···>yr

|y|∞≤R
dμq(y1, . . . , yr)(4.6)

+O
(
exp

(−2 log2 q
))
.

Next, we apply the Fourier inversion formula to the measure μq to obtain∫
y1>y2>···>yr

|y|∞≤R
dμq(y1, . . . , yr)

= (2π)−r
∫
y1>y2>···>yr

|y|∞≤R

∫
s∈Rr

ei(s1y1+···+sryr)μ̂q(s1, . . . , sr) ds dy.

Since the Fourier transform μ̂q(s1, . . . , sr) is rapidly decreasing, we shall deduce that
the main contribution to the integral over Rr of ei(s1y1+···+sryr)μ̂q(s1, . . . , sr) comes
from a small ball centered at 0. Indeed, we infer from Proposition 3.2 that∫

s∈Rr

ei(s1y1+···+sryr)μ̂q(s1, . . . , sr)ds =
∫
‖s‖≤ε

ei(s1y1+···+sryr)μ̂q(s1, . . . , sr)ds

+O
(
exp

(−2 log2 q
))
,

where ε = 3(Var(q))−1/2 log q. Hence we obtain

δq = (2π)−r
∫
y1>y2>···>yr

|y|∞≤R

∫
‖s‖≤ε

ei(s1y1+···+sryr)μ̂q(s1, . . . , sr) ds dy(4.7)

+O
(
exp

(− log2 q
))
,

since Rr � exp(r log q). Now, we make the change of variables

tj :=
√

Var(q)sj and xj :=
yj√

Var(q)
, for all 1 ≤ j ≤ r

to obtain

δq = (2π)−r
∫
x1>x2>···>xr
|x|∞≤3 log q

∫
‖t‖≤3 log q

ei(t1x1+···+trxr)μ̂q(4.8)

×
(

t1√
Var(q)

, . . . ,
tr√

Var(q)

)
dtdx +O

(
exp

(− log2 q
))
.

Replacing μ̂q

(
t1√

Var(q)
, . . . , tr√

Var(q)

)
by the approximation (4.1) that we derived in

Proposition 3.1 yields

δq = (2π)−r
∫
x1>x2>···>xr
|x|∞≤3 log q

∫
‖t‖≤3 log q

ei(t1x1+···+trxr) exp
(
−1

2
tTCt

)
dtdx + E1,

where
E1 � q−1/3(log q)3r � q−1/4,
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since d(q) = qo(1) and tTCt ≥ 0 by (4.5). Furthermore, applying Lemma 4.3 we derive

(4.9) δq =
1

(2π)r/2
√

det(C)

∫
x1>x2>···>xr
|x|∞≤3 log q

exp
(
−1

2
xT C−1x

)
dx +O

(
q−1/4

)
.

Since Cjk = Bq(aj , ak)/Var(q) � (log q)−1 for j = k by Lemma 2.2, there exists
an absolute constant α0 > 0 such that C ∈ Mr(β) with β = α0/ log q. Therefore,
appealing to Lemma 4.2 we obtain

xT C−1x =
(

1 +O

(
r2

log2 q

)) r∑
j=1

x2
j +O

⎛
⎜⎝ 1

log q

⎛
⎝ r∑
j=1

|xj |
⎞
⎠

2
⎞
⎟⎠

=
(

1 +O

(
r

log q

))
‖x‖2,

which follows from the Cauchy–Schwarz inequality. Hence we deduce

(4.10) −1
2

(
1 +

α1r

log q

)
‖x‖2 ≤ −1

2
xT C−1x ≤ −1

2

(
1 − α1r

log q

)
‖x‖2,

for some absolute constant α1 > 0. This implies
∫
x1>x2>···>xr
|x|∞>3 log q

exp
(
−1

2
xT C−1x

)
dx

≤
∫
|x|∞>3 log q

exp
(
−1

4
‖x‖2

)
dx � exp

(− log2 q
)
.

Inserting this estimate in (4.9) and using Lemma 4.1 we get

δq =
(

1 +O

(
r2

log2 q

))
1

(2π)r/2

∫
x1>x2>···>xr

exp
(
−1

2
xTC−1x

)
dx +O

(
q−1/4

)
.

(4.11)

Let κ be a real number such that |κ| ≤ α1r/ log q. Since the function ‖x‖2 is symmetric
in the variables {xj}1≤j≤r we obtain

1
(2π)r/2

∫
x1>x2>···>xr

exp
(
−1

2
(1 + κ)‖x‖2

)
dx(4.12)

=
1
r!

(
1√
2π

∫ ∞

−∞
exp

(
−1

2
(1 + κ)y2

)
dy

)r

=
1

r!(1 + κ)r/2
=

1
r!

exp
(
O

(
r2

log q

))
.

The theorem follows upon combining this estimate with (4.10) and (4.11). �

Proof of Theorem 1.2. The result can be obtained by proceeding along the same lines
as the proof of Theorem 1.1, except that we make a different choice of parameters in



664 YOUNESS LAMZOURI

this case. Indeed, choosing R = 5
√

Var(q)r log r and using Lemma 2.3 and Proposi-
tion 3.2, we obtain analogously to (4.8)

δq = (2π)−r
∫
x1>x2>···>xr
|x|∞≤5

√
r log r

∫
‖t‖≤3 log q

ei(t1x1+···+trxr)μ̂q(4.13)

×
(

t1√
Var(q)

, . . . ,
tr√

Var(q)

)
dtdx

+O (exp (−4r log r)) .

Moreover, we infer from (4.1) that
(4.14)

δq = (2π)−r
∫
x1>x2>···>xr
|x|∞≤5

√
r log r

∫
‖t‖≤3 log q

ei(t1x1+···+trxr) exp
(
−1

2
tTCt

)
dtdx + E2,

where

E2 � d(q) log3 q√
q

(2π)−r
∫
x1>x2>···>xr
|x|∞≤5

√
r log r

dx
∫
‖t‖≤3 log q

(4.15)

× exp
(
−1

2
tTCt

)
dt + exp (−4r log r) .

Note that ∫
x1>x2>···>xr
|x|∞≤5

√
r log r

dx =
1
r!

∫
|x|∞≤5

√
r log r

dx =
(10

√
r log r)r

r!

= exp
(
−r log r

2
+O(r log log r)

)
,

by Stirling’s formula. On the other hand, it follows from (4.5) that

1
(2π)r

∫
‖t‖≤3 log q

exp
(
−1

2
tTCt

)
dt ≤ 1

(2π)r

∫
t∈Rr

exp
(
−‖t‖2

4

)
dt =

1
πr/2

.

Therefore, inserting these estimates in (4.15) and using the classical bound d(q) =
exp (O(log q/ log log q)) we deduce

E2 � exp
(
−1

2
(log q + r log r) +O

(
log q

log log q
+ r log log r

))
+ exp (−4r log r) .

Continuing along the same line as in the proof of Theorem 1.1, we obtain analogously
to (4.11)

(4.16) δq =
(

1 +O

(
r2

log2 q

))
1

(2π)r/2

∫
x1>x2>···>xr

exp
(
−1

2
xT C−1x

)
dx + E3,

where

E3 � exp
(
−1

2
(log q + r log r) +O

(
log q

log log q
+ r log log r

))
+ exp (−4r log r) .
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Furthermore, it follows from (4.10) and (4.12) that

1
(2π)r/2

∫
x1>x2>···>xr

exp
(
−1

2
xTC−1x

)
dx

=
1
r!

exp
(
O

(
r2

log q

))

= exp
(
−r log r + r +O

(
log r +

r2

log q

))
,

by Stirling’s formula. Inserting this estimate in (4.16) completes the proof. �

Proof of Theorem 1.3. Since μq;a1,...,ar is absolutely continuous with respect to the
Lebesgue measure, it follows from (1.1) that

δq;a1,...,ar−1 = δq;ar,a1,...,ar−1 + δq;a1,ar,...,ar−1 + · · · + δq;a1,...,ar−1,ar .

Hence, if 2 ≤ s < r ≤ φ(q) are positive integers then

(4.17) max
(a1,...,ar)∈Ar(q)

δq;a1,...,ar < max
(b1,...,bs)∈As(q)

δq;b1,...,bs .

On the other hand, using Theorem 1.2 with s = [(1 − ε/2) log q/ log log q], we get

max
(b1,...,bs)∈As(q)

δq;b1,...,bs = exp
(
−s log s+ s+O

(
log s+

r2

log q

))
�ε

1
q1−ε

.

The theorem follows upon combining this inequality with (4.17). �
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