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Dear Barry,

This concerns figures 1.6, 2.2, 2.3, 2.4 and 2.5 in your paper [1], that is the fluctuations
of #{p ≤ x : τ(p) > 0} − #p{≤ x : τ(p) < 0}. Here τ(p) are the Fourier coefficients of
Ramanujan’s form 4(z) and p always denotes a prime. Let

λ(p) = τ(p)
/
p11/2 = αp + βp, (1)

with
αp = eiθp , βp = e−iθp

and
θp ∈ [0, π] . (2)

For n ≥ 1 the symmetric power L-function for π = 4 is given by

L(s, π, symn) := Π
p

n

Π
j=0

(1− αn−j
p βj

p p−s)−1 . (3)

Hence
− L′

L
(s, π, symn) =

∑
p

log p

ps

(
n∑

j=0

αn−j
p βj

p

)
+
∑

p

log p

p2s

(
n∑

j=0

α2n−2j
p β2j

j

)
+ · · ·

(4)

=
∑

p

log p

ps
Un(θp) +

∑
p

log p

p2s
Un(2θp) + · · · (5)

where

Un(θ) =
sin(n + 1)θ

sin θ
. (6)

Hence by Riemann-Von-Mangolt;∑
p≤x

log p Un(θp) +
∑

p2≤x

log p Un(2θp)

= −
∑
ρj,n

xρj,n

ρj,n

+ Oε

(
x1/3+ε

)
,

(7)

where ρj,n range over the nontrivial zeros of L(s, π, symn). We assume further that

(a) L(s, π, symn) extends to an entire function in s and satisfies an expected functional
equation (see below). Actually this and some parts of what we claim below would
follow from the meromorphicity (such as is known by Taylor if π = πE corresponds
to an elliptic curve over Q), in that case the sum is also over the possible poles of
L(s, π, symn).
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(b) L(s, π, symn) satisfies the Riemann Hypothesis so that ρj,n = 1
2

+ i γj,n with γj,n ∈ R.

First we examine the second term in (7) which is one source of the “bias”. For V (θ) a smooth
function on [0, π] consider ∑

p≤x

log p V (θp) . (8)

We have that ∑
p≤x

log p V (θp) =
∑
p≤x

log p

∞∑
n=0

〈V, Un〉Un(θp) . (9)

Here

〈V1, V2〉 =
2

π

π∫
0

V1(θ)V2(θ) sin2 θdθ (10)

and note that Un, n = 0, 1, 2, . . . are an orthonomal basis for L2[0, π] with this inner product.
Hence ∑

p≤x

log p V (θp) =
∞∑

n=0

〈V, Un〉
∑
p≤x

log p Un(θp)

and by our assumption that L(s, π, symn) has no pole at s = 1 for n ≥ 1, we deduce that∑
p≤x

log p V (θp) ∼ 〈V, V0〉x , as x →∞ . (11)

We apply this to V (θ) = Um(2θ) for which

〈V, U0〉 =
2

π

π∫
0

Um(2θ) sin2 θdθ = (−1)m . (12)

Hence from (7) we have∑
p≤x

log p Un(θp) = (−1)n+1 x1/2 −
∑
ρj,n

xρj,n

ρj,n

+ small. (13)

We separate out the zeros ρj,n = 1
2

which occur with multiplicity denoted by Mn

(
1
2

)
, to get∑

p≤x

log p Un(θp) =

(
−2Mn

(
1

2

)
+ (−1)n+1

)
x1/2 −

∑
γj,n 6=0

xρj,n

ρj,n

. (14)

Again if V is a smooth function on [0, π] for which 〈V, U0〉 = 0, we have

V (θ) =
∞∑

n=1

An Un(θ) (15)
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An = 〈V, Un〉 (16)

as a rapidly convergent expansion. Then

1√
x

∑
p≤x

log p V (θp) =
∞∑

n =1

An

(
−2Mn

(
1

2

)
+ (−1)n+1

)

−
∞∑

n =1

An

∑
γj,n 6=0

xiγj,n

1
2

+ iγj,n

(17)

It follows as in the analysis in [2] that

SV (x) :=
log x√

x

∑
p≤x

V (θp) (18)

has a limiting distribution µV , w.r.t. dx
/
x. That is, for f ∈ C(R) and bounded

1

log X

X∫
2

f(SV (x))
dx

x
→
∫
R

f(x)dµV
(x) , as X → ∞ . (19)

The measure µV contains all the information about the fluctuations of SV and of any bias.
The mean E(SV ) of µV is given by

E(SV ) =
∞∑

n =1

An

(
−2Mn

(
1

2

)
+ (−1)n+1

)
. (20)

To examine µV further we make the working hypothesis:

(c) The numbers γn,j > 0, n ≥ 1 and j ≥ 1 are linearly independent over Q.

While we have no means of verifying such an assumption, computing a large number of
these γn,j > 0 will lead to a verification (under (a) and (b)) to any order of accuracy, of the
following conclusion:

Assuming (a), (b) and (c) the Fourier transform of µV is given by

µ̂V (ξ) = e−i E(SV )ξ
∞
Π

n =0
Π

γj,n>0
J0

 2|An|ξ√
1
4

+ γ2
n,j

 (21)

where

J0(z) =
∞∑

m =0

(−1)m(z
/
2)2m

(m!)
. (22)



Letter to: Barry Mazur on “Chebyshev’s bias” for τ(p) - November, 2007 5

The product in (21) converges absolutely and one concludes that the measure µV is symmetric
about its mean E(SV ), it is smooth and has support all of (−∞,∞). Moreover, its variance
is given by

V (SV ) =
∞∑

n =1

∑
γj,n > 0

|An|2
1
4

+ γ2
j,n

. (23)

Applying this to V (θ) = U , yields a limiting distribution, µ1 for

S1(x) :=
log x√

x

∑
p≤x

λp . (24)

Now m1

(
1
2

)
= 0 so

E(S1) = 1 . (25)

Thus the weighted sum over τ(p)
/
p11/2 has a definite bias to being positive.

One can apply the above analysis to π = πE, the automorphic cusp form of weight 2
corresponding to an elliptic curve E/Q. If S1,E(x) are the sums

S1,E(x) =
log x√

x

∑
p≤x

aE(p)
√

p
, (26)

then S1,E(x) has a limiting distribution µ1,E with mean

E(S1,E) = −2r(E) + 1 (27)

where r(E) is the rank of E, and variance

V (S1,E) =
∑

γj,E>0

1
1
4

+ γ2
j,E

. (28)

Here 1
2

+ iγj,E are the nontrivial zeros of L(S, πE). So if r(E) > 0 then S1,E has a definite bias
to being negative, while if r(E) = 0 it has a bias to being positive. If N(E) is the conductor
of E then standard winding number arguments show that

V (S1,E) ∼ c log N(E) (29)

for a fixed positive constant c. So while most of us believe that r(E) can be made as large
as we like by varying E, this rank will be much smaller than log N(E) as N(E) →∞. That
is to say that while for any E for which r(E) > 0, there is a bias for S1,E(x) to be negative
precisely δ ({x : S1,E(x) < 0}) > 1

2
. where δ is the logarithmic density of the set. This bias

will dissolve (i.e. δ → 1
2
) as N(E) →∞.
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We return to λ(p) = τ(p)
/
p11/2 and examine your sums in Figure 1.6. Let H(θ) be the

Heavy side function

H(θ) =


1 if θ ∈ [0, π/2)

−1 if θ ∈ (π
2
, π]

(30)

Then ∑
p≤x

H(θp) =
∑
p≤ x

τ(p) > 0

1 −
∑
p≤ x

τ(p) < 0

1. (31)

For n > 0,
An(H) = 〈H, Un〉

= 1
π

 π/2∫
0

Un(θ) sin+2 θ dθ −
π∫

π/2

Un(θ) sin−2 θ dθ


=


0 if n is even

(−1)(n−1)/22
π

[
1
n

+ 1
n+2

]
if n is odd .

(32)

As far as Mn

(
1
2

)
, we know that M1

(
1
2

)
= 0 and we extend our working hypothesis for this

example of π = 4, to;

Mn

(
1

2

)
=

1 − ε
(

1
2
, π, symn

)
2

(33)

where ε
(

1
2
, π, symn

)
is the global root number of L(S, π, symn). For this case of π = 4 which

is unramified at all finite places and is a discrete series of weight k = 12 at infinity, this root
number can be computed easily (Shahidi) and equals

ε

(
1

2
, π, symn

)
=


1 if n ≡ 0, 1, 2, 4, 6, 7 mod 8

−1 if n ≡ 3, 5 mod 8 .
(34)

So for n odd

Mn

(
1

2

)
=


0 if n ≡ 1,−1 mod 8

1 if n ≡ 3, 5 mod 8
(35)

For N ≥ 1 let

VN(θ) =
N∑

n=1

An(H) Un(θ) . (36)

So VN is a smoothed out version of H(θ) and VN(θ) → H(θ) as N →∞.

SN(x) =
log x√

x

∑
p≤x

VN(θp) . (37)
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is a smooth version of what we want, viz

S(x) :=
log x√

x

∑
p≤x

H(θp) . (38)

Applying (18), (19), (20), (21) to VN yields that SN(x) has a limiting distribution µN with
mean

E(SN) =
2

π

N∑
n odd

(−1)
n−1

2

[
1

n
+

1

n + 2

]
(1 − 2 I3,5(n)) (39)

and variance

V (SN) =
N∑

n odd

4

π2

(
1

n
+

1

n + 2

)2 ∑
γj,n>0

1
1
4

+ γ2
j,n

. (40)

Here

I3,5(n) =


1 if n ≡ 3, 5(8)

0 if n ≡ 1, 7(8)

Let N →∞ in (39) and summing the infinite series one finds that the bias tends to

E(SN) → E(S) =
2

π

1 + 2

1∫
0

x2

1 + x4
dx

 . (41)

This then should be the mean in your graph in Figure 1.6 (after scaling by log x
/√

x). It
agrees quite well.

However, as N → ∞ there is a new feature with the variance which has to do with
L(s, π, symn) being the L-function of an automorphic form on GLn+1! An analysis of the
zeros of height say less than 100 with n large using the method in [3] (after computing the
archimedian factors L(S, π∞, symn)) shows that

#{0 ≤ γj,n ≤ 100} ≥ c1n (42)

(here c1 > 0 is fixed). This will suffice for our purposes but in fact one can give a lower bound
of cn log n in (42)(∗). It follows that there is c2 > 0 s.t.

V (SN) ≥ c2

∑
n odd
n≤N

n

n2
� log N . (43)

This indicates that for S in (38)
V (S) = ∞ .

That is for your fluctuations in (1.6), while the mean is positive the fluctuations are big
enough to dissolve the bias. Put another way δ({x : S(x) > 0}) = 1

2
. The same applies
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to any elliptic curve E
/
Q and to your graphs 2.2 to 2.5, as long as the curve is not CM.

In these cases the variance will be infinite and wipe out the bias from the mean which can
be computed in terms of the rank of E and the Epsilon factors in L(s, πE, symn). For a CM
elliptic curve the number of zeros of the symmetric power L-functions up to a fixed height
grows only like log n. Hence the variance will remain bounded and a definite bias will remain
(and can be computed) for S(x).

Best regards,

Peter Sarnak

1. B. Mazur, “Finding meaning in error terms,” BAMS 45, 185-228, (2009).

2. M. Rubinstein & P. Sarnak, “Experimental Math.”, Vol. 3, 173-197, (1994).

3. S. D. Miller, Duke Math. Journal, Vol. 112, 83-116, (2000).

August 12, 2008: PS/gpp.
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Added - January, 2008

Here is a more detailed statement about the density of zeroes of L(s,4, symn) in (42)∗

above. The exact archimedian factor of L(s,4, symn) is (see [G] for example) given by

L(s,4∞, symn) = Π
0≤ j < n−1

2

ΓC

(
s +

(n− 2j) + 1

2

)
if n is odd

and
= ΓR(s + 12) Π

0≤ j≤n
2

ΓC (s + 11j) if n is even.

(i)

Hence the “analytic conductor” c(t,4, symn) in [I-S] see also [I-K], satisfies

log c(t,4, symn) ∼ n log(n(2 + |t|)) (ii)

for t ∈ R, n ≥ 1.

The analytic conductors controls the density of zeroes of L(s,4, symn) as follows:

Proposition For t ∈ R, n ≥ 1, 100
log n

≤ ε ≤ 1 we have

ε log c(t,4, symn) �
∑

|γj,n−t| ≤ ε

1 � ε log(c(t,4, symn)) ,

the implied constant is universal.

This follows using positivity with a carefully chosen test function in the explicit formula
(Theorem 5.12, page 109 of [I-K]). (42)∗ follows immediately from the Proposition as does the
fact that the zeroes of the individual L(s,4, symn) becoming dense in <(s) = 1

2
, as n →∞.

Note that the latter is not true for any sequence πn of automorphic forms on GLn as n →∞,
as the example of (ζ(s))n shows. However, if the πn’s are cuspidal then I would bet it is true
for the standard L-functions L(s, πn).

In connection with these oscillatory sums, (31) has the largest fluctuations while (26) is
smoothed out but still has large fluctuations. One can consider the further smoothed sums
(for say an elliptic curve)

G(x) =
∑
p≤x

aE(p)

p
(iii)

and

F (x) =
∑
p≤x

aE(p) log p

p
(iv)

As we show below these are of historical interest.
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Now

F (x) =
1

2πi

∫
<(s)= 1

L′

L

(
s +

1

2
, E

)
xs ds

s
+ c1(E) + o(1) (v)

as x →∞. Here c1(E) is a constant. Shifting the contour to the left of <(s) = 0 yields

F (x) = r log x + c2(E) +
∑
ρ 6= 1

2

xiγ

iγ
+ o(1) (vi)

where ρ = 1
2

+ iγ runs of the zeroes of L(s, E) and r is the order of vanishing of L(s, E) at
s = 1/2.

Thus, for F (x) the secondary term still oscillates unboundly. However, for G(x) the
behavior is probably different.

G(x) =

x∫
2

dF (t)

log t

=

x∫
2

1

log t

r dt

t
+

x∫
2

dS(t)

log t

where

S(x) =
∑
ρ 6= 1

2

xiγ

iγ
. (vii)

Hence

G(x) = r log log x + c3(E) +
S(x)

log x

−
x∫

2

S(t)
d

dt

(
1

log t

)
dt (viii)

= r log log x + c3(E) +
S(x)

log x

−
∑
ρ 6= 1

2

1

iγ

∞∫
2

eiγy

y2
dy + o(1) (ix)

= r log log x + c4(E) +
S(x)

log x
+ o(1) (x)

Thus
G(x) = r log log x + c4(E) + o(1)
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iff
S(x) = o(log x) (xi)

It is hard to imagine that the second condition in (xi) is not true since this would require
a remarkable uniform lining up of the phases γ log x. Hence for G(x) I (and I think most
others) would expect that the oscillations tend to zero with x.

The historal significance of this is its connection with the original two Conjectures of Birch
and Swinnerton-Dyer [B-SD]. In this first paper they make two conjectures

Conjecture 1: If Np(E) is the number of points in E over Fp then as x →∞

Π
p≤x

Np

p
∼ c(E)(log x)r

r = rank (E
/
Q .

Conjecture 2: The usual B-SD conjecture in terms of the order of vanishing of L(s, E) at
s = 1/2 being the rank.

Conjecture 1 was the starting point for their numerical investigation as it is the analogue
for an elliptic curve of Siegel’s mass formula. Today, Conjecture 2 is the important one in
terms of what is proven. Are these Conjectures equivalent (assuming GRH as we are)? The
answer is yes iff the second part of (xi) holds. Indeed Conjecture 1 is, on taking logs equivalent
to ∑

p≤x

ap

p
= r log log x + c5(E) + o(1) , as x →∞ .

The equivalence of Conjectures 1 and 2 under a hypothesis equivalent to S(x) = o(log x),
was recently established in [Co] and [K-M].
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