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1. Introduction

The M€oobius function is de ned for positive integers n by

�ðnÞ ¼
1 if n ¼ 1,

0 if n is not squarefree,

ð�1Þk if n is squarefree and n ¼ p1 . . . pk .

8><
>: ð1Þ

Its summatory function MðxÞ ¼
P

n6x �ðnÞ is closely related to the reciprocal of
the Riemann zeta function. This connection may be observed by the identities

1

�ðsÞ ¼
X1
n¼1

�ðnÞ
ns

¼ s

ð1
1

MðxÞ
xsþ1

dx

valid for ReðsÞ > 1 and

MðxÞ ¼ 1

2�i

ðcþi1
c�i1

xs

s�ðsÞ ds ð2Þ

where c > 1 and x =2Z. In the theorems of this article, we assume the truth of the
Riemann hypothesis (RH) which asserts that all non-real zeros of �ðsÞ take the
form � ¼ 1

2þ i� with � 2 R. At times, we also assume that all zeros of the zeta
function are simple. It is widely expected that all zeros of the zeta function are
simple. Currently, the best unconditional result is that at least two- fths of the
zeros are simple [3]. In the light of (2), sums of the form

J�kðT Þ ¼
X

0<�6T

1

j� 0ð�Þj2k
;

where k 2 R, are important in obtaining information concerning MðxÞ. From
di7erent points of view Gonek [7] and Hejhal [11] independently conjectured that

J�kðT Þ 
 T ðlogT Þðk�1Þ
2

: ð3Þ

Gonek studied Dirichlet polynomial approximations of these moments, whereas
Hejhal studied the value distribution of log � 0ð�Þ employing ideas of Selberg.
Henceforth, the former assumption (3) will be referred to as the Gonek--Hejhal

conjecture. For k ¼ 0 we have J0ðT Þ ¼ NðT Þ where NðT Þ is the number of zeros
in the box with vertices 0; 1; 1þ iT , and iT . Von Mangoldt (see [5, pp. 97--100])
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proved that

J0ðT Þ ¼
T

2�
log

T

2�e
þOðlogT Þ: ð4Þ

For k ¼ 1, Gonek [8] conjectured the asymptotic formula

J�1ðT Þ �
3

�3
T: ð5Þ

Moreover, he proved that J�1ðT Þ � T (see [7]) subject to RH and all zeros of the
Riemann zeta function are simple. Recently, Hughes et al. [13] using random
matrix model techniques conjectured that

X
0<�6T

j� 0ð�Þj2k � G2ðkþ 2Þ
Gð2kþ 3Þ ak

T

2�

�
log

T

2�

	ðkþ1Þ2

ð6Þ

for k > � 3
2 where

ak ¼
Y
p

�
1� 1

p

	k2�X1
m¼0

�
Fðmþ kÞ
m!FðkÞ

	2

p�m
	

and G is Barnes’ function de ned by

Gðzþ 1Þ ¼ ð2�Þz=2 exp
�
� 1

2ðz
2 þ �z2 þ zÞ

	Y1
n¼1

��
1þ z

n

	n

e�zþz
2=2n

	

where � denotes Euler’s constant. One should note that in the above de nition of
ak, one must take an appropriate limit if k ¼ 0 or k ¼ �1. Furthermore, one may
check that Gð1Þ ¼ 1 and a�1 ¼ 6=�2 and hence (6) implies (5) and moreover it
agrees with (4).
One notes that Gonek [8] arrives at conjecture (5) by pursuing ideas of

Montgomery’s concerning the zero spacings (pair-correlation) of the zeta function.
On the other hand, the random matrix technique originated with the work of
Keating and Snaith [17]. Their idea was to model the Riemann zeta function by
the characteristic polynomial of a large random unitary matrix. They computed
moments of these characteristic polynomials averaged over the group of unitary
matrices. These moments are much simpler to evaluate since they may be
transformed into the well-studied Selberg integral. Following the work of Keating
and Snaith, other authors have used this analogy to speculate on the exact nature
of certain families of L-functions. This analogy has been viewed as rather fruitful,
since to date it has always produced conjectures that agree with known theorems.
In this article we deduce results about MðxÞ assuming the Riemann Hypothesis

and the conjectural bound

J�1ðT Þ ¼
X

0<�<T

1

j� 0ð�Þj2
 T: ð7Þ

By making assumption (7), we implicitly assume that all zeros are simple. If there
were a multiple zero of �ðsÞ, J�1ðT Þ would be unde ned for suJciently large T
and (7) would fail to make sense. For a long time, number theorists were
interested in MðxÞ as RH was a consequence of the famous Mertens conjecture
which states that

jMðxÞj6 x1=2 for x> 1:
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For an excellent historical account of work on this problem see [20]. An averaged
version of this conjecture is the weak Mertens conjecture which asserts thatðX

2

�
MðxÞ
x

	2

dx logX: ð8Þ

The weak Mertens conjecture implies the RH, that all zeros of �ðsÞ are simple, and
that

P
�>0 j�� 0ð�Þj�2 converges. These consequences are proven by Titchmarsh in

[23, pp. 376--380]. Not surprisingly, the Mertens conjecture was disproven by
Odlyzko and te Riele [20] as they showed that

lim inf
x!1

MðxÞffiffiffi
x

p < �1:009 and lim sup
x!1

MðxÞffiffiffi
x

p > 1:06:

However, they did not actually provide a speci c counterexample to the Mertens
conjecture. In fact, the Mertens conjecture was put in serious doubt many years
earlier when Ingham [14] proved that

lim inf
x!1

MðxÞffiffiffi
x

p ¼ �1 and lim sup
x!1

MðxÞffiffiffi
x

p ¼ 1

assuming the following conjecture.

Linear Independence Conjecture (LI). Assume �ðsÞ satis es the
Riemann Hypothesis. If its zeros are written as 1

2 þ i�, then the positive imaginary
ordinates of the zeros are linearly independent over Q.

Currently there is very little numerical or theoretical evidence supporting this
conjecture. However, it is considered rather unlikely that the imaginary ordinates
of the zeros of the zeta function satisfy any linear relations. The linear
independence conjecture has been used in the past to get a handle on some
very diJcult problems in number theory (see [14, 18, 22]). For some modest
numerical computations see [1]. Despite the above results, we would like to have a
better understanding of what the upper and lower bounds of x�1=2MðxÞ should be.
The true order of MðxÞ is something of a mystery. In fact, Odlyzko and te Riele
[20, p. 3] comment that ‘No good conjectures about the rate of growth of MðxÞ are
known’. Motivated by this comment, we attempt to give an explanation of the
true behaviour of MðxÞ assuming reasonable conjectures about the zeta function.
We brieMy mention some notation used throughout this article. We will denote

a sequence of e7ectively computable positive constants as c1; c2; c3; . . . . We will
also employ the following notation. Let fðxÞ and gðxÞ be two real-valued functions
with gðxÞ > 0. Then the notation fðxÞ ¼ NþðgðxÞÞ means

lim sup
x!1

fðxÞ
gðxÞ > 0

and fðxÞ ¼ N�ðgðxÞÞ means

lim inf
x!1

fðxÞ
gðxÞ < 0:

We now state our current knowledge of MðxÞ. The best-known unconditional
upper bound is

MðxÞ ¼ Oðx expð�c1 log3=5 xðlog log xÞ�1=5ÞÞ
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for c1 > 0 (see IviOcc [16, pp. 309--315]). However, the Riemann hypothesis is
equivalent to the bound

MðxÞ ¼ O

�
x1=2 exp

�
c2 log x

log log x

		

for c2 > 0 (see [23, p. 371]). The best unconditional omega result for MðxÞ is

MðxÞ ¼ N�ðx1=2Þ:
It should also be noted that if �ðsÞ had a multiple zero of order m> 2 then we
would have

MðxÞ ¼ N�ðx1=2ðlog xÞm�1Þ:
However, if RH is false then

MðxÞ ¼ N�ðx!�"Þ
where ! ¼ sup�;�ð�Þ¼0 Reð�Þ and " is any positive constant (see Ingham [15, p. 90]).
To better understand the behaviour of MðxÞ, it is useful to consider the closely

related function

 ðxÞ � x ¼
X
n6x

PðnÞ � x ð9Þ

where PðnÞ is Von-Mangoldt’s function de ned by

PðnÞ ¼ log p if n ¼ pj; j> 1,
0 otherwise.

�
ð10Þ

Here we review what is known concerning  ðxÞ � x. This may give us some better
idea what type of upper and lower bounds we should expect for MðxÞ. Von Koch
(see [5, p. 116]) showed that RH is equivalent to

 ðxÞ � x ¼ Oðx1=2 log2 xÞ: ð11Þ
Moreover, Gallagher [6] showed that RH implies that

 ðxÞ � x ¼ Oðx1=2ðlog log xÞ2Þ
except on a set of  nite logarithmic measure. On the other hand, Littlewood
demonstrated that

 ðxÞ � x ¼ N�ðx1=2 log log log xÞ
under the assumption of RH (see [15, Chapter V]). Moreover, Montgomery [18]
has given an unpublished probabilistic argument that suggests

lim
 ðxÞ � x

x1=2ðlog log log xÞ2
¼ � 1

2�
ð12Þ

under the assumption of the Riemann hypothesis and the LI conjecture.
Although the Mertens conjecture is false, we can still obtain some averaged

upper bounds for MðxÞ. We prove the following results.

THEOREM 1. The Riemann Hypothesis and J�1ðT Þ  T imply:
(i)

MðxÞ  x1=2ðlog xÞ3=2;
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(ii)

MðxÞ  x1=2ðlog log xÞ3=2

except on a set of �nite logarithmic measure;
(iii) ðX

2

MðxÞ2

x
dx X;

(iv) and the weak Mertens conjecture (8)ðX
2

�
MðxÞ
x

	2

dx logX:

Theorem 1(i) is due to Gonek, but has never been published. The proof of
Theorem 1(ii) follows an argument due to Gallagher [6] and the proofs of Theorem
1(iii), (iv) follow an argument due to CramOeer [4]. We note that by a more careful
calculation we can obtain an asymptotic evaluation in (iv). However, since (iv) is
easily deduced from Lemma 6, we include the argument.
Our study of MðxÞ requires some notions from probability theory. Most

importantly, we make use of distribution functions. A distribution function F ðxÞ
on R satis es the following conditions: F is non-decreasing, F ð�1Þ ¼ 0,
F ð1Þ ¼ 1, F is right-continuous, and F has a limit on the left at each x 2 R.
Recall that if P is a probability measure on R, then FP ðxÞ :¼ P ðð�1; x�Þ is a
distribution function. On the other hand, given a distribution function F ðxÞ, there
is a theorem from probability theory which states that there exists a probability
measure P on R such that F ¼ FP .
In an attempt to understand MðxÞ better, we give a conditional proof of the

existence of a limiting distribution function for 'ðyÞ ¼ e�y=2MðeyÞ. The idea to
prove such a theorem originated with Heath-Brown’s comment [10]: ‘It appears to
be an open question whether

x�1=2MðxÞ ¼ x�1=2
X
n6 x

�ðnÞ

has a distribution function. To prove this one would want to assume the Riemann
Hypothesis and the simplicity of the zeros, and perhaps also a growth condition on
MðxÞ.’ Applying techniques from CramOeer [4] and Rubinstein and Sarnak [22] we
establish the following result.

THEOREM 2. Assume the Riemann Hypothesis and that J�1ðT Þ  T . Then
e�y=2MðeyÞ has a limiting distribution ) on R, that is,

lim
Y!1

1

Y

ðY
0
fðe�y=2MðeyÞÞ dy ¼

ð1
�1

fðxÞ d)ðxÞ ð13Þ

for all bounded Lipschitz continuous functions f on R.

We note that the above theorem may be extended to all bounded continuous
functions fðxÞ by standard approximation techniques. However, we omit these
arguments to keep the exposition simple. Clearly Theorem 2 is useful in studying
MðxÞ. To see this, suppose the above theorem remains valid for indicator
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functions. Let V be a  xed real number and de ne f ¼ 1V where

1V ðxÞ ¼
1 if x>V ,

0 if x < V .

�
With the above choice of fðxÞ; (13) translates to

lim
Y!1

1

Y
measfy 2 ½0; Y � jMðeyÞ> ey=2V g ¼ )ð½V ;1ÞÞ: ð14Þ

As noted in [22, p. 174], the above identity would be true if )ðxÞ were absolutely
continuous. Under the additional assumption of LI, one may show that ) is
absolutely continuous. Moreover, the LI conjecture implies that the Fourier
transform of ) may be computed explicitly.

COROLLARY 1. Assume the Riemann Hypothesis, J�1ðT Þ  T , and LI. Then
the Fourier transform b))ð,Þ ¼ Ð1

�1e
�i,t d)ðtÞ exists and equals

b))ð,Þ ¼ Y
�>0

eJJ0
�

2,

jð 12 þ i�Þ� 0ð 12 þ i�Þj

	
ð15Þ

where eJJ0ðzÞ is the Bessel function

eJJ0ðzÞ ¼ X1
m¼0

ð�1Þmð 12 zÞ
2m

ðm!Þ2
:

Note that we have employed non-standard notation for the Bessel function, so
as not to confuse it with the moments J�kðT Þ. Under the same assumptions as
Corollary 1, we observe that the set

S ¼ fx> 1 j jMðxÞj6
ffiffiffi
x

p
g

has a logarithmic density. Namely,

"ðSÞ ¼ lim
X!1

1

logX

ð
½2;X�\S

dt

t

exists and 0 < "ðSÞ < 1. Since no counterexamples to the Mertens conjecture have
ever been found, we expect this logarithmic density to be very close to 1. In fact,
preliminary calculations indicate this.
In the same spirit as Theorems 1 and 2 we prove that a strong form of the weak

Mertens conjecture is true. This follows CramOeer’s argument [4] subject to the same
assumptions as the previous theorems.

THEOREM 3. Assume the Riemann hypothesis and J�1ðT Þ  T . Then we haveðY
0

�
MðeyÞ
ey=2

	2

dy � /Y ð16Þ

where

/ ¼
X
�>0

2

j�� 0ð�Þj2
: ð17Þ

Note that the assumption J�1ðT Þ  T implies (17) is convergent.
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A change of variable transforms (16) toðX
1

�
MðxÞ
x

	2

dx � / logX: ð18Þ

Also, note that Theorem 3 corresponds to Theorem 2 with fðxÞ ¼ x2. However,
fðxÞ ¼ x2 is not a bounded function and does not fall under the assumptions of
Theorem 2. We further note that the same techniques allow one to establish thatðY

0

MðeyÞ
ey=2

dy ¼ oðY Þ ð19Þ

under the same conditions as Theorem 3. Consequently, (16) and (19) reveal that
the variance of the probability measure constructed in Theorem 2 is /.
As one can see by equation (14) and Theorem 3, the constructed limiting

distribution of Theorem 2 reveals signi cant information concerning MðxÞ. The
above formula (15) for the Fourier transform is crucial in studying the behaviour
of x�1=2MðxÞ. Upon proving Theorem 2, we realized that the constructed
distribution could be used to study large values of MðxÞ. Using Montgomery’s
probabilistic methods we study the tail of this distribution and give a conditional
proof that

expð� expðecc1V 4=5ÞÞ  )ð½V ;1ÞÞ  expð� expðecc2V 4=5ÞÞ
for positive e7ective constants ecc1 and ecc2. We believe that ecc1 ¼ ecc2; however it is
not presently clear what this value should be. Nevertheless, these bounds seem to
suggest the following version of an unpublished conjecture of Gonek’s.

Gonek’s Conjecture. There exists a number B > 0 such that

lim
x!1

MðxÞffiffiffi
x

p ðlog log log xÞ5=4
¼ �B: ð20Þ

After the completion of this work the author learned that Gonek had arrived at
this conjecture at least ten years ago via Montgomery’s techniques. He had
annunciated this conjecture at several conferences in the early 1990 s. We note
that the exponent of the iterated triple logarithm is 5

4 in (20) precisely because of
the Gonek--Hejhal conjecture (3). Montgomery’s conjecture (12) on
ð ðxÞ � xÞ= ffiffiffi

x
p

shows that the corresponding exponent on the iterated triple
logarithm is 2. The di7erence between these cases is due directly to the di7erent
discrete moments ofX

�6T

1

j�j 
 ðlogT Þ2 and
X
�6T

1

j�� 0ð�Þj 
 ðlogT Þ5=4

where the second inequality is currently conjectural.
Finally, we remark that many of the results in this paper may be extended to

the summatory function of the Liouville function. The Liouville function is de ned
as 2ðnÞ ¼ ð�1ÞNðnÞ where NðnÞ denotes the total number of prime factors of n.
POoolya was interested in the summatory function

LðxÞ ¼
X
n6x

2ðnÞ ð21Þ
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since if the inequality LðxÞ6 0 always persisted then the Riemann hypothesis
would follow. Haselgrove [9] showed that this statement cannot be true. By the
methods of this article, we can prove that e�y=2LðeyÞ has a limiting distribution
under the same conditions as Theorems 1--3. The reason we can extend the work
to this case is because

�ð2sÞ
�ðsÞ ¼

X1
n¼1

2ðnÞ
ns

ð22Þ

and thus the only di7erence is the term �ð2sÞ in the numerator. Nevertheless, this
can be treated easily since we understand the zeta function on the ReðsÞ ¼ 1 line.

Acknowledgements. The majority of this article constitutes the last chapter of
my PhD thesis [19]. However, Theorem 3 was proven during a stay at the Institute for
Advanced Study during Spring 2002. I would like to thank my PhD supervisor,
Professor David Boyd, for providing me with academic support and enabling me to
obtain  nancial support during the writing of the thesis and throughout my graduate
studies. I also thank the I.A.S. for its support and excellent working conditions.
Finally, thanks to Professor Steve Gonek for allowing me to include Theorem 1(i)
and also for informing me of his earlier unpublished work.

2. Proof of Theorem 1

Various estimates throughout this article require estimates for averages of sums
containing the expression j� 0ð�Þj�1. This lemma establishes such estimates, subject
to various special cases of the Gonek--Hejhal conjecture (3).

LEMMA 1. (i) The inequality J�1=2ðT Þ ¼
P

0<�<T j� 0ð�Þj�1  T ðlogT Þv implies
that X

0<�<T

1

j�� 0ð�Þj  ðlogT Þvþ1:

(ii) The inequality J�1ðT Þ ¼
P

0<�<T j� 0ð�Þj�2  T implies thatX
T<�<2T

1

j�� 0ð�Þj2
 1

T
:

(iii) The inequality J�1
2
ðT Þ ¼

P
0<�<T j� 0ð�Þj�1  TuðlogT Þv implies thatX

�>T

ðlog �Þa

� bj� 0ð�Þj
 ðlogT Þaþv

T b�u

subject to b > u> 1.

Proof. For part ðiÞ note that

X
0<�<T

1

j�� 0ð�Þj 
X

0<�<T

1

j� 0ð�Þj� ¼
�
J�1=2ðtÞ

t

�T
14

þ
ðT
14

J�1=2ðtÞ
t2

dt

¼ O

�
ðlogT Þv þ

ðT
14

tðlog tÞv

t2
dt

	
¼ OððlogT Þvþ1Þ: ð23Þ
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Observe that we have made use of the fact that all non-trivial zeros � ¼ / þ i� satisfy
j�j> 14. Part (ii) is proven in an analogous fashion. For part (iii) let 'ðtÞ ¼ ðlog tÞat�b
and note that its derivative is ' 0ðtÞ ¼ ðaðlog tÞa�1 � bðlog tÞaÞ=tbþ1. Partial
summation impliesX

�>T

ðlog �Þa

� bj� 0ð�Þj
¼ ½'ðtÞJ�1=2ðtÞ�1T �

ð1
T
J�1=2ðtÞ' 0ðtÞ dt:

The  rst term is  'ðT ÞJ�1=2ðT Þ ¼ ðlogT Þaþv=T b�u. Assuming the bound on
J�1=2ðT Þ, the second term is


ð1
T

ðtuðlog tÞvÞðlog tÞa

t bþ1
dt ¼

ð1
T

ðlog tÞaþv

t b�uþ1
dt ðlogT Þaþv

T b�u

where the last integral is computed by an integration by parts. �

We require Perron’s formula in order to express MðxÞ as the sum of a complex
integral and an error term.

LEMMA 2. Let fðsÞ ¼
P1

n¼1 ann
�s be absolutely convergent for 6 ¼ ReðsÞ > 1

and an  QðnÞ where QðxÞ is positive and non-decreasing, andX1
n¼1

janj
n6

¼ O

�
1

ð6� 1Þ7
	

as 6! 1þ:

Then if w ¼ uþ iv with c > 0, uþ c > 1, T > 0, we have, for all x> 1,X
n6x

an
nw

¼ 1

2�i

ðcþiT
c�iT

fðwþ sÞx
s

s
ds

þO

�
xc

T ðuþ c� 1Þ7 þ
Qð2xÞx1�u logð2xÞ

T
þ Qð2xÞx�u

	
: ð24Þ

Proof. This is a well-known theorem and is proven in [21, pp. 376--379]. �

We need the following technical lemma in order to choose a good contour for
the complex integral obtained by Perron’s formula.

LEMMA 3. Assume the Riemann hypothesis. There exists a sequence of
numbers T ¼ fTng1n¼0 which satis�es

n6Tn6nþ 1 and
1

�ð6þ iT Þ ¼ OðT 9Þ

for all �16 66 2.

Proof. The above fact is proven by Titchmarsh in [23, pp. 357--358] in the range
1
2 6 66 2. It remains to prove the bound in the range �16 6 < 1

2. The asymmetric
form of the functional equation of the zeta function is �ðsÞ ¼ :ðsÞ�ð1� sÞ where
:ðsÞ ¼ �s�1=2Fð 12 ð1� sÞÞ=Fð 12 sÞ. A calculation with Stirling’s formula demonstrates
that j:ð6þ iT Þj 
 T 1=2�6 and therefore we deduce that

j�ðsÞj�1 ¼ j�ð1� sÞ:ðsÞj�1  T 9þ6�1=2  T 9

for �16 6 < 1
2. �
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We now prove an explicit formula for MðxÞ. With the exception of a few minor
changes, the proof follows Theorem 14.27 of [23, pp. 372--374].

LEMMA 4. Assume the Riemann hypothesis and that all zeros of �ðsÞ are
simple. For x> 2 and T 2 T ,

MðxÞ ¼
X
j�j<T

x�

�� 0ð�Þ þ
eEEðx; T Þ

where

eEEðx; T Þ  x log x

T
þ x

T 1�9 log x
þ 1:

Proof. We apply Lemma 2 with fðsÞ ¼ �ðsÞ�1, QðxÞ ¼ 1, 7 ¼ 1, and w ¼ 0
to obtain

MðxÞ ¼ 1

2�i

ðcþiT
c�iT

xs

s�ðsÞ dsþO

�
xc

T ðc� 1Þ þ
x log x

T
þ 1

	
:

Setting c ¼ 1þ ðlog xÞ�1, we see that this becomes

MðxÞ ¼ 1

2�i

ðcþiT
c�iT

xs

s�ðsÞ dsþO

�
x log x

T
þ 1

	
:

We introduce a large negative odd integer U and consider a positively oriented
rectangle BT;U with vertices at c� iT ; cþ iT ;�U þ iT ; and �U � iT . Thus the
integral on the right equals

1

2�i

ð
BT;U

xs

s�ðsÞ ds�
1

2�i

�ð�UþiT
cþiT

þ
ð�U�iT
�UþiT

þ
ðc�iT
�U�iT

	
xs

s�ðsÞ ds:

It is shown by Titchmarsh in [23, p. 373] that the middle integral approaches 0 as
U ! 1. Inside the box BT;U , x

s=ðs�ðsÞÞ has poles at the zeros of the zeta function
and s ¼ 0. By Cauchy’s Residue Theorem, we have

MðxÞ ¼ 1

2�i

X
j�j<T

x�

�� 0ð�Þ � 2þ
X
k> 1

x�2k

ð�2kÞ� 0ð�2kÞ

� 1

2�i

�ð�1þiT

cþiT
þ
ðc�iT
�1�iT

	
xs

�ðsÞs dsþO

�
x log x

T
þ 1

	
: ð25Þ

The second and third terms are absorbed by the Oð1Þ term. We now bound the
integrals. Break up the  rst integral into two pieces asð�1þiT

cþiT

xs

s�ðsÞ ds ¼
�ð�1þiT

cþiT
þ
ð�1þiT

�1þiT

	
xs

s�ðsÞ ds: ð26Þ

By Lemma 3, we have����
ðcþiT
�1þiT

xs

s�ðsÞ ds
���� 

ðc
�1

x6T 9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 þ T 2

p d66T 9�1
ðc
�1
e6 log x d6 x

T 1�9 log x
:
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For the second piece we apply the functional equationð�1þiT
�1þiT

xs

s�ðsÞ ds ¼
ð1�iT

2�iT

x1�s2s�1�s

ð1� sÞ cosð�s=2ÞFðsÞ�ðsÞ ds:

For 6> 2 we have the Stirling formula estimate

1

jFð6� iT Þj  e6�ð6�1=2Þ log 6þ�T=2

and the elementary estimate j cosð 12�ð6� iT ÞÞj�1  e��T=2 and hence the integral is

O

�ð1
2

x

T

�
2�

x

	6

e6�ð6�1=2Þ log 6 d6

	
¼ O

�
x

T

	
:

The same argument applies to the second integral in (26) and we have shown that

MðxÞ ¼
X
j�j<T

x�

�� 0ð�Þ þO

�
x log x

T
þ x

T 1�9 log x
þ 1

	
:

We now remove the assumption that T 2 T from the last lemma by applying
the Gonek--Hejhal conjecture (3) for k ¼ �1. �

LEMMA 5. Assume the Riemann hypothesis and that J�1ðT Þ  T . For x> 2
and T > 2,

MðxÞ ¼
X
j�j6T

x�

�� 0ð�Þ þ Eðx; T Þ

where

Eðx; T Þ  x log x

T
þ x

T 1�9 log x
þ
�
x logT

T

	1=2

þ 1: ð27Þ

Proof. Let T > 2 satisfy n6T 6nþ 1. Now suppose, without loss of generality,
that n6Tn6T 6nþ 1. Then we have

MðxÞ ¼
X
j�j6T

x�

�� 0ð�Þ �
X

Tn 6 j�j6T

x�

�� 0ð�Þ þ
eEEðx; TnÞ:

By the Cauchy--Schwarz theorem the second sum is���� X
Tn 6 �6T

x�

�� 0ð�Þ

����6 x1=2
� X
Tn 6 �6T

1

j�� 0ð�Þj2
	1=2� X

Tn 6 �6T

1

	1=2

:

By Lemma 1(ii), J�1ðT Þ  T implies thatX
T 6 �6 2T

1

j�� 0ð�Þj2
 1

T

and we deduce that ���� X
T) 6 �6T

x�

�� 0ð�Þ

���� 
�
x logT

T

	1=2

which completes the proof. �
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Lemma 6 is the crucial step in proving the existence of the limiting distribution in
the next section. The key point is that the integral in this lemma should be small in
order to justify the weak convergence of a sequence of distribution functions in
Theorem 2. This is also used in the proof of Theorem 1 parts (ii) --(iv).

LEMMA 6. Assume the Riemann hypothesis and that J�1ðT Þ  T . ThenðeZ
Z

���� X
T 6 j�j6X

xi�

�� 0ð�Þ

����2 dxx  ðlogT Þ
T 1=4

ð28Þ

for Z > 0 and T < X.

Proof. Making the substitution x ¼ ey in the left-hand side of (28) we obtainðlogZþ1
logZ

���� X
T 6 j�j6X

ei�y

�� 0ð�Þ

����2 dy
6 4

ðlogZþ1
logZ

���� X
T 6 �6X

ei�y

�� 0ð�Þ

����2 dy
¼ 4

X
T 6 �6X

X
T 6 26X

1

�� 0ð�Þ� 0� 0ð� 0Þ

ðlogZþ1
logZ

eið��2Þy dy


X

T 6 �6X

X
T 6 26X

1

j�� 0ð�Þj j� 0� 0ð� 0Þj
min

�
1;

1

j� � 2j

	
: ð29Þ

Note that � and � 0 denote zeros of the form � ¼ 1
2 þ i� and � 0 ¼ 1

2 þ i2. We break
this last sum into two sums R1 and R2 where R1 consists of those terms for which
j� � 2j6 1 and R2 consists of the complementary set. The  rst sum is bounded
as follows:

R1 
X

T 6 �6X

1

j�� 0ð�Þj
X

��1626 �þ1

1

j� 0� 0ð� 0Þj :

It is well known that Nðtþ 1Þ �Nðt� 1Þ  log t, and hence the inner sum is
at most� X

��1626 �þ1

1

j� 0� 0ð� 0Þj2
	1=2

ðNð� þ 1Þ �Nð� � 1ÞÞ1=2 
�
log �

�

	1=2

by an application of Lemma 1(ii). By Lemma 1(iii) we deduce that

R1 
X
T 6 �

ðlog �Þ1=2

�3=2j� 0ð�Þj
 logT

T 1=2
: ð30Þ

Write the second sum as

R2 ¼
X

T 6 �6X

1

j�� 0ð�Þj
X

T 6 26X;j��2j> 1

1

j� 0� 0ð� 0Þj j� � 2j : ð31Þ

The inner sum is analyzed by splitting the sum into ranges. The crucial range is
when j� � 2j � 1. This argument was originally employed by CramOeer [4]. We
eliminate the condition �6X and denote the inner sum of (31) as Sð�Þ where
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�>T . Consider the set of numbers, � 1=2; � � � 1=2, and � � 1. One of the following
cases must occur

T 6 � 1=2; � 1=2 < T 6 � � � 1=2; � � � 1=2 < T 6 � � 1;

or

� � 1 < T 6 �:

These conditions translate into the four cases:

T 2
6 �; T þ

ffiffiffiffiffiffiffiffiffiffiffi
T þ 1

4

q
þ 1

26 � < T 2; T þ 16 � < T þ
ffiffiffiffiffiffiffiffiffiffiffi
T þ 1

4

q
þ 1

2;

and

T 6 � < T þ 1:

Suppose the  rst case is true, that is, T 6 � 1=2. Then we may write the inner sum
Sð�Þ as six separate sums:

Sð�Þ ¼
� X
T 62<� 1=2

þ
X

� 1=2
62<��� 1=2

þ
X

��� 1=2
626 ��1

þ
X

�þ162<�þ� 1=2

þ
X

�þ� 1=2
62<2�

þ
X
2�62

	
1

j� 0� 0ð� 0Þj j� � 2j : ð32Þ

Denote these sums by 61; . . . ; 66. In the following estimates we apply Lemma 1(ii)
several times. We  nd that

616
1

� � � 1=2

X
T 62<� 1=2

1

j� 0� 0ð� 0Þj

 1

�

� X
T 62<� 1=2

1

j� 0� 0ð�Þj2
	1=2� X

T 62<� 1=2

1

	1=2

 1

�T 1=2
ð� 1=2 log �Þ1=2 ¼ ðlog �Þ1=2

T 1=2�3=4
; ð33Þ

626
1

� 1=2

X
� 1=2

6 2<��� 1=2

1

j� 0� 0ð� 0Þj

6
1

� 1=2

� X
� 1=2

62<��� 1=2

1

j� 0� 0ð� 0Þj2
	1=2� X

� 1=2
62<��� 1=2

1

	1=2

 1

� 1=2

�
1

� 1=2

	1=2

ð� log �Þ1=2 ¼ ðlog �Þ1=2

�1=4
; ð34Þ

and

636

� X
��� 1=2

6 26 ��1

1

j� 0� 0ð� 0Þj2
	1=2� X

��� 1=2
6 26 ��1

1

	1=2

 1

�1=2
ð� 1=2 log �Þ1=2 ¼ ðlog �Þ1=2

�1=4
: ð35Þ
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The fourth sum, 64, gives the same error as the third sum. Similarly,

65 
1

� 1=2

� X
�þ� 1=2

62

1

j� 0� 0ð�Þj2
	1=2� X

�þ� 1=2
626 2�

1

	1=2

 1

� 1=2

�
� log �

�

	1=2

¼ ðlog �Þ1=2

� 1=2

and

666
X1
k¼1

X
2k�6 26 2kþ1�

1

j� 0� 0ð� 0Þj j� � 2j

6

X1
k¼1

1

ð2k � 1Þ�

� X
2k�626 2kþ1�

1

j� 0� 0ð� 0Þj2
	1=2� X

2k�6 26 2kþ1�

1

	1=2

6

X1
k¼1

1

ð2k � 1Þ�

�
2kþ1� logð2kþ1�Þ

2k�

	1=2

 ðlog �Þ1=2

�
: ð36Þ

Putting together these bounds leads to

Sð�Þ  ðlog �Þ1=2=�1=4

as long as T 2
6 �. In fact, the same argument applies in the other three cases.

The only di7erence is that there would be fewer sums and we still establish
Sð�Þ  ðlog �Þ1=2��1=4 for all �>T . The assumption J�1ðT Þ  T implies by the
Cauchy--Schwarz theorem that

J�1=2ðT Þ  J�1ðT Þ1=2NðT Þ1=2  T 1=2ðT ðlogT ÞÞ1=2 ¼ T ðlogT Þ1=2: ð37Þ

Applying Lemma 1(iii) yields the bound

R2 
X
�>T

ðlog �Þ1=2

�5=4j� 0ð�Þj
 logT

T 1=4

and the lemma is proved. �

Combining the previous lemmas we may now prove Theorem 1.

Proof of Theorem 1. (i) By Lemma 5,

MðxÞ  x1=2
X

0<�<T

1

j�� 0ð�Þj þ Eðx; T Þ

where Eðx; T Þ is de ned by (27). By the bound (37), Lemma 1ðiÞ yields

MðxÞ  x1=2ðlogT Þ3=2 þ x log x

T
þ x

T 1�9 log x
þ
�
x logT

T

	1=2

:

By the choice T 1�9 ¼ ffiffiffi
x

p
, we deduce that MðxÞ  ffiffiffi

x
p ðlog xÞ3=2.

ðiiÞ The starting point is to consider the explicit formula. By Lemma 5, we have

MðxÞ ¼
X

j�j6X

x�

�� 0ð�Þ þOðX9Þ ð38Þ
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valid for X6 x X. By Lemma 6, we have for T 4 < X,ðeX
X

���� X
T 4

6 j�j6X

x�

�� 0ð�Þ

����2 dxx2  ðlogT Þ
T

:

By considering the set

S ¼
�
x> 2 j

���� X
T 4

6 j�j6X

x�

�� 0ð�Þ

����> x1=2ðlog log xÞ5=4
�
;

it follows that

ðlog logXÞ5=2
ð
S\½X;eX�

dx

x
6

ðeX
X

���� X
T 4

6 j�j6X

x�

�� 0ð�Þ

����2 dxx2  ðlogT Þ
T

and thus ð
S\½X;eX�

dx

x
 ðlogT Þ
T ðlog logXÞ5=2

¼ 1

T ðlogT Þ3=2

for T ¼ logX. Choosing X ¼ ek with k ¼ 2; 3; . . . we deduce thatð
S\½e2;1�

dx

x


X1
k¼2

1

kðlog kÞ3=2
<1

and thus S has  nite logarithmic measure. By the bound (37), Lemma 1ðiÞ implies
that���� X

06 j�j6T 4

x�

�� 0ð�Þ

����  X1=2
X

06 j�j6T 4

1

j�� 0ð�Þj  X1=2ðlogT Þ3=2  X1=2ðlog logXÞ3=2

for X6 x6 eX. Hence,

MðxÞ ¼
X

T 4
6 j�j6X

x�

�� 0ð�Þ þOðX1=2ðlog logXÞ3=2Þ

for X6 x6 eX and T ¼ logX. De ne the set

S7 ¼ fx> 2 j jMðxÞj>7x1=2ðlog log xÞ3=2g:

Suppose x 2 S7 \ ½X; eX�. Then we have���� X
T 4

6 j�j6X

x�

�� 0ð�Þ

����> jMðxÞj �OðX1=2ðlog logXÞ3=2Þ

>7x1=2ðlog log xÞ3=2 �OðX1=2ðlog logXÞ3=2Þ
> x1=2ðlog log xÞ5=4 ð39Þ

for x 2 ½X; eX� as long as X is suJciently large and 7 is chosen larger than the
constant that occurs in the error term of (39). Thus S7 \ ½X; eX� � S \ ½X; eX� for
X suJciently large and it follows that S7 has  nite logarithmic measure. Observe
that if we also assumed the conjecture J�1=2ðtÞ  tðlog tÞ1=4 then the same
arguments as those in ðiÞ and ðiiÞ would have shown that MðxÞ  x1=2ðlog xÞ5=4
and MðxÞ  x1=2ðlog log xÞ5=4 except on a set of  nite logarithmic measure.
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ðiiiÞ Squaring equation (38), dividing by x2, and integrating yieldsðeX
X

�
MðxÞ
x

	2

dx
ðeX
X

���� X
j�j6X

x�

�� 0ð�Þ

����2 dxx2 þOðX�1þ29Þ  1 ð40Þ

by taking Z ¼ X and T ¼ 14 in Lemma 6. It immediately follows thatðeX
X

MðxÞ2

x
dx X:

Substituting the values X=e;X=e2; . . . and adding yieldsðX
2

MðxÞ2

x
dx X:

ðivÞ Similarly, we obtain from (40),ðX
2

�
MðxÞ
x

	2

dx
X½logðX=2Þ�þ1

k¼1

ðX=ek�1
X=ek

�
MðxÞ
x

	2

dx logX: �

�

3. Proofs of Theorems 2 and 3

In this section we prove the existence of a limiting distribution for the function
'ðyÞ ¼ e�y=2MðeyÞ. If we assume the Riemann hypothesis and write non-trivial
zeros as � ¼ 1

2 þ i�, then we obtain

x�1=2MðxÞ ¼
X
j�j6T

xi�

��ð�Þ þ
X

T<j�j6 eY

xi�

��ð�Þ þ x�1=2Eðx; eY Þ

where T < eY and Eðx; eY Þ is de ned in (27). Making the variable change x ¼ ey,
we have

'ðyÞ ¼ e�y=2MðeyÞ ¼ 'ðT ÞðyÞ þ 9ðT ÞðyÞ ð41Þ
where

'ðT ÞðyÞ ¼
X
j�j6T

ei�y

�� 0ð�Þ ð42Þ

and

9ðT ÞðyÞ ¼
X

T 6 j�j6 eY

ei�y

�� 0ð�Þ þ e�y=2Eðey; eY Þ: ð43Þ

In order to construct a sequence of distribution functions that converge to the
distribution of Theorem 2, we require the following uniform distribution result.

LEMMA 7. Let t1; . . . ; tN be N arbitrary real numbers. Consider the curve
 ðyÞ ¼ yðt1; . . . ; tNÞ 2 RN for y 2 R. Let f : RN ! R be continuous and have
period 1 in each of its variables. There exist an integer J; with 16 J 6N , and A,
a J-dimensional parallelotope, such that

lim
Y!1

1

Y

ðY
0
fð ðyÞÞ dy ¼

ð
A
fðaÞ d� ð44Þ
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where � is normalized Haar measure on A. More precisely, A is the topological
closure of  ðyÞ in TN .

Proof. This lemma is well known and it is a variant of the traditional
Kronecker--Weyl theorem (see Hlawka [12, pp. 1--14] for the proof). We now
describe the principal idea used in showing how the lemma is deduced from this.
Let J be the maximum number of linearly independent elements over Q among
t1; . . . ; tN . The basic idea is to show that the topological closure of the set
fðfy �1=2�g; . . . ; fy �N=2�gÞ j y 2 Rg cuts out a sub-torus of TN of dimension J .
(Note that fxg is the fractional part of x 2 R.) By a variable change, one then
deduces the lemma from the Kronecker--Weyl theorem. �

By an application of Lemma 7, we construct for each large T a distribution
function )T .

LEMMA 8. Assume the Riemann hypothesis. Then for each T > �1 (the
imaginary ordinate of the �rst non-trivial zero of �ðsÞ) there is a probability
measure )T on R such that

)T ðf Þ :¼
ð1
�1

fðxÞ d)T ðxÞ ¼ lim
Y!1

1

Y

ðY
0
fð'ðT ÞðyÞÞ dy

for all bounded continuous functions f on R where 'ðT ÞðyÞ is de�ned by (42).

Proof. This is identical to Lemma 2.3 of [22, p. 180]. Let N ¼ NðT Þ denote
the number of zeros of �ðsÞ to height T . Label the imaginary ordinates of the zeros
as f�1; . . . ; �Ng. By pairing conjugate zeros � ¼ 1

2 þ i� and � ¼ 1
2 � i� we have

'ðT ÞðyÞ ¼
X
j�j6T

ei�y

�� 0ð�Þ ¼ 2Re

�XN
l¼1

ble
iy�l

	

where

bl ¼
1

ð 12 þ i�lÞ� 0ð 12 þ i�lÞ
:

De ne functions XT and g on the N-torus TN by

XT ð!1; . . . ; !NÞ ¼ 2Re

�XN
l¼1

ble
2�i!l

	

and

gð!1; . . . ; !NÞ ¼ fðXT ð!1; . . . ; !NÞÞ:

We now apply Lemma 7 to theN numbers f�1=2�; . . . ; �N=2�g and to the continuous
function g. According to Lemma 7 there exists a torus A � TN such that

lim
Y!1

1

Y

ðY
0
g

�
y

�
�1
2�
; . . . ;

�N
2�

		
dy ¼

ð
A
gðaÞ d�:

The measure d� is normalized Haar measure on A. Note that XT jA : A! R is a
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random variable and we de ne a probability measure )T on R by

)T ðBÞ ¼ �ðXj�1A ðBÞÞ ð45Þ

where B is any Borel set. By the change of variable formula, we deduce that

lim
Y!1

1

Y

ðY
0
fð'ðT ÞðyÞÞ dy ¼

ð
R
fðxÞ d)T ðxÞ

and the proof is complete. �

Before proceeding, we require some results from probability theory. We say that a
real-valued function GðxÞ is a generalized distribution function on R if it is
non-decreasing and right-continuous. Lemma 9ðiÞ will enable us to construct a
limiting distribution function from the set f)TgT�1 constructed in the previous
lemma.

LEMMA 9. ðiÞ Let Fn be a sequence of distribution functions. There exist a
subsequence fFnkg and a generalized distribution function F such that

lim
k!1

FnkðxÞ ¼ F ðxÞ

at continuity points x of F .
ðiiÞ Let fFng be distribution functions and F be a generalized distribution

function on R such that Fn converges to F weakly. This is equivalent toð
R
fðxÞ dFnðxÞ !

ð
R
fðxÞ dF ðxÞ

for all continuous, bounded, real fðxÞ.
ðiiiÞ Let Fn and F be distribution functions with Fourier transforms bFFn and bFF .

A necessary and su.cient condition for Fn to converge weakly to F is bFFnðtÞ ! bFF ðtÞ
for each t.

Proof. Part ðiÞ is Helly’s selection theorem and part ðiiiÞ is Levy’s theorem.
See [2, pp. 344--346] for proofs of ðiÞ and ðiiÞ and [2, pp. 359--360] for ðiiiÞ. �

The next lemma shows that the error term 9ðT ÞðyÞ in (43) has small mean square.
This will be crucial in deducing that a limiting distribution exists for e�y=2MðeyÞ.

LEMMA 10. Assume the Riemann hypothesis and that J�1ðT Þ  T . For T > 2
and Y > log 2, ðY

log 2
j9ðT ÞðyÞj2 dy Y

ðlogT Þ
T 1=4

þ 1:

Proof. First we will consider the contribution from Eðx; T Þ as de ned in (27).
Note thatðY

log 2
je�y=2Eðey; eY Þj2 dy

ðY
log 2

�
y2ey

e2Y
þ y�2ey

ðe2Y Þ1�9
þ Y

eY
þ 1

ey

	
dy 1
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and we haveðY
log 2

j9ðT ÞðyÞj2 dy
ðY
log 2

���� X
T 6 �6 eY

ei�y

�� 0ð�Þ

����2dyþOð1Þ

6

XbY c
j¼0

ðlog 2þjþ1
log 2þj

���� X
T 6 �6 eY

ei�y

�� 0ð�Þ

����2dyþOð1Þ

 Y
logT

T 1=4
þ 1 ð46Þ

where Lemma 6 has been applied in the last inequality. �

By applying Lemmas 7--10, we may now prove Theorem 2.

Proof of Theorem 2. Once again the proof follows Theorem 1.1 of [22,
pp. 180--181]. Let f be a Lipschitz bounded continuous function that satis es
jfðxÞ � fðyÞj6 cf jx� yj. By an application of the Lipschitz condition, the
Cauchy--Schwarz theorem, and Lemma 10, we have

1

Y

ðY
log 2

fð'ðyÞÞ dy ¼ 1

Y

ðY
log 2

fð'ðT ÞðyÞÞ dyþO

�
cf
Y

ðY
log 2

j9ðT ÞðyÞj dy
	

¼ 1

Y

ðY
log 2

fð'ðT ÞðyÞÞ dyþO

�
cfffiffiffiffi
Y

p
�ðY

log 2
j9ðT ÞðyÞj2 dy

	1=2	

¼ 1

Y

ðY
log 2

fð'ðT ÞðyÞÞ dyþO

�
cf

�
logT

T 1=4
þ 1ffiffiffiffi

Y
p

	1=2	
: ð47Þ

By Lemma 8, there is a distribution function )T for each T > �1 such that

)T ðf Þ ¼
ð
R
fðxÞ d)T ðxÞ ¼ lim

Y!1

1

Y

ðY
log 2

fð'ðT ÞðyÞÞ dy:

Taking limits as Y ! 1 we deduce that

)T ðf Þ �O

�
cfðlogT Þ1=2

T 1=8

	
6 lim inf

Y!1

1

Y

ðY
log 2

fð'ðyÞÞ dy

6 lim sup
Y!1

1

Y

ðY
log 2

fð'ðyÞÞ dy

6 )T ðf Þ þO

�
cfðlogT Þ1=2

T 1=8

	
: ð48Þ

By Lemma 9ðiÞ, we may choose a subsequence )Tk of these distribution functions
)T and a generalized distribution function ) such that )Tk ! ) weakly. By
Lemma 9ðiiÞ,

)Tkðf Þ ¼
ð
R
fðxÞ d)TkðxÞ !

ð
R
fðxÞ d)ðxÞ ¼ )ðf Þ:

Replacing T by Tk and letting k! 1 in (48), we observe that

lim
Y!1

1

Y

ðY
log 2

fð'ðyÞÞ dy ¼
ð
R
fðxÞ d)ðxÞ:
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Thus (48) becomes����
ð
R
fðxÞ d)ðxÞ �

ð
R
fðxÞ d)T ðxÞ

����  cfðlogT Þ1=2

T 1=8
: ð49Þ

However, by applying equation (49) with fðxÞ ¼ 1, we have����
ð
R
d)ðxÞ � 1

����  ðlogT Þ1=2

T 1=8

and we conclude that ) is a distribution function by letting T ! 1. �

By assuming the linear independence conjecture, we may provide a concrete
description of the Fourier transform of ) in terms of the zeros of �ðsÞ. This
description will be practical in obtaining  ner details regarding MðxÞ.

Proof of Corollary 1. The Fourier transform of ) is

b)) ð,Þ ¼ ð
R
e�i,t d)ðtÞ:

In the proof of Theorem 2, we demonstrated )T ! ) weakly. Hence, by Levy’s
theorem (Lemma 9ðiiiÞ), b))T ! b)). By Lemmas 7 and 8, we know that )T is
constructed from normalized Haar measure � on the torus A � TN where A is the
topological closure of the set���

y
�1
2�

�
; . . . ;

�
y
�N
2�

�	
j y 2 R

�
:

However, the assumption of LI implies by the Kronecker--Weyl theorem that
A ¼ TN and consequently normalized Haar measure d� ¼ d!1 . . . d!N is Lesbesgue
measure on TN . Hence, we observe by (45) and the change of variable formula for
integrals that b)) T ð,Þ equalsð

R
e�i,t d)T ðtÞ ¼

ð
TN
e�i,XT ð!Þ d�

¼
ð
TN
exp

�
�i,

XN
j¼1

2Re

�
1

�� 0ð�Þ e
2�i!j

		
d!1 . . . d!N

and it follows that

b))ð,Þ ¼ lim
T!1

b)) T ð,Þ ¼ lim
T!1

YN
j¼1

ð1
0
exp

�
�i,2Re

�
1

�� 0ð�Þ e
2�i!

		
d!:

However the integral within the product equalsð1
0
exp

�
�i,2Re

�
1

j�� 0ð�Þj e
2�ið!�7�Þ

		
d! ¼

ð1
0
exp

�
�i,2

�
1

j�� 0ð�Þj cos 2�!
		

d!

where 7� ¼ argð�� 0ð�ÞÞ=2� and the last step follows by the periodicity of the
integrand. From the well-known identity for the eJJ0 Bessel functionð1

0
eis cosð2�xÞ dx ¼ 1

�

ð�
0
cosðs sin xÞ dx ¼ eJJ0ðsÞ;
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it follows that

b))ð,Þ ¼ Y
�>0

eJJ0
�

2,

jð 12þ i�Þ� 0ð 12þ i�Þj

	
: �

�We improve Theorem 1ðivÞ by closely following CramOeer’s argument [4].

Proof of Theorem 3. Recall that by Lemma 5, we have the decomposition

MðeyÞe�y=2 ¼ 'ðT ÞðyÞ þ 9ðT ÞðyÞ ð50Þ
where

'ðT ÞðyÞ ¼
X
j�j6T

eiy�

�� 0ð�Þ ; 9ðT ÞðyÞ ¼
X

T<j�j6 eY

eiy�

�� 0ð�Þ þ e�y=2Eðey; eY Þ ð51Þ

and Eðx; T Þ is de ned in (27). Consequently, we deduce that

mðY Þ :¼ 1

Y

ðY
0

�
MðeyÞ
ey=2

	2

dy

¼ 1

Y

ðY
0
j'ðT ÞðyÞj2 dyþ 1

Y

ðY
0
j9ðT ÞðyÞj2 dy

þO

��
1

Y

ðY
0
j'ðT ÞðyÞj2 dy

	1=2� 1

Y

ðY
0
j9ðT ÞðyÞj2 dy

	1=2	
: ð52Þ

As the second integral was treated in Lemma 10, we concentrate on the  rst
integral in (52). Squaring out the terms in 'ðT ÞðyÞ, we deduce thatðY

1
j'ðT ÞðyÞj2 dy ¼ðY � 1Þ

X
�6T

2

j�� 0ð�Þj2

þ
X

0<j�j;j2j<T
� 6¼2

1

ð 12þ i�Þ� 0ð�Þð 12 þ i2Þ� 0ð� 0Þ

ðY
1
eiyð�þ2Þ dy: ð53Þ

In the second sum, the contribution from pairs ð�; 2Þ with the same sign is

X
0<�;26T

1

�j� 0ð�Þj2j� 0ð� 0Þjð� þ 2Þ 
� X

0<�<T

1

�3=2j� 0ð 12 þ i�Þj

	2

 1:

Here we have applied xþ y> 2
ffiffiffiffiffiffi
xy

p
and then evaluated the resulting sum by a

partial summation similar to Lemma 1ðiiiÞ. Also note that

X
�<T

1

j�� 0ð�Þj2
¼ / �

X
�>T

1

j�� 0ð�Þj2
¼ / þO

�
1

T

	

where / is de ned by (17) and the error term is obtained by Lemma 1ðiiÞ. We
have now shown that

1

Y

ðY
1
j'ðT ÞðyÞj2 dy ¼ / þO

�
1

T
þ 1

Y
þ RðT Þ

Y
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where

R ¼ RðT ; Y Þ ¼
X

0<�;2<T
� 6¼2

1

�j� 0ð�Þj2j� 0ð� 0Þjmin
�
Y ;

1

j� � 2j

	
dy

¼ R1ðT; Y Þ þ R2ðT ; Y Þ: ð54Þ

The  rst sum is the contribution from those pairs with j� � 2j6 1 and the second
sum consists of the complementary terms. We have

R2ðT; Y Þ6
X

0<�<T

1

�j� 0ð�Þj

� X
2<�1=2

þ
X

�1=2<2<���1=2
þ

X
���1=2<2<��1

þ
X

�þ1<2<�þ�1=2
þ

X
�þ�1=2<2<2�

þ
X
2�<2

	
1

2j� 0ð� 0Þj j� � 2j

¼ 61 þ 62 þ 63 þ 64 þ 65 þ 66: ð55Þ

By a calculation completely analogous to the calculation in Lemma 6, we obtain

616
X

0<�<T

1

�ð� � �1=2Þj� 0ð�Þj


X
�>0

1

�2j� 0ð�Þj  1;

626
X

0<�<T

1

�3=2j� 0ð�Þj

� X
2> �1=2

1

j2� 0ð� 0Þj2
	1=2

ð� log �Þ1=2 
X
�>0

ðlog �Þ1=2

�5=4j� 0ð�Þj
 1;

636
X

0<�<T

1

�j� 0ð�Þj

� X
���1=2<2

1

j� 0� 0ð� 0Þj2
	1=2

ð�1=2 log �Þ1=2 
X
�>0

ðlog �Þ1=2

�5=4j� 0ð�Þj
 1;

where we have applied Lemma 1ðiiiÞ in each of these cases. The computation of 64
is analogous to 63 and the computation of 65 is analogous to 62:

64 
X
�>0

ðlog �Þ1=2

�5=4j� 0ð�Þj
 1; 65 

X
�>0

ðlog �Þ1=2

�5=4j� 0ð�Þj
 1:

For the  nal sum we obtain

666
X

0<�<T

1

�j� 0ð�Þj
X
k> 1

1

ð2k � 1Þ�
X

2k�6 26 2kþ1�

1

2j� 0ð 12 þ i2Þj


X

0<�<T

1

�2j� 0ð�Þj
X
k> 1

1

2k

� X
2k�<2<2kþ1�

1

j2� 0ð� 0Þj2
	1=2

ðð2k�Þ logð2k�ÞÞ1=2


X

0<�<T

1

�2j� 0ð�Þj
X
k> 1

ðlogð2k�ÞÞ1=2

2k


X
�>0

ffiffiffiffiffiffiffiffiffiffi
log �

p

�2j� 0ð�Þj  1 ð56Þ

and we deduce that

R2ðT; Y Þ 
X
�>0

1

�5=4j� 0ð�Þj
 1:

Thus

1

Y

ðY
1
j'ðT ÞðyÞj2 dy ¼ / þO

�
1

T
þ 1

Y
þ R1

Y

	
ð57Þ
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where

R1 ¼ R1ðT; Y Þ ¼
X

0<�;2<T
j��2j6 1

1

�j� 0ð�Þj2j� 0ð� 0Þjmin
�
Y ;

1

j� � 2j

	
:

In addition, we know by Lemma 10 that

1

Y

ðY
1
j9ðT ÞðyÞj2 dy logT

T 1=4
þ 1

Y
: ð58Þ

Let 0 < @ < 1. Choose and  x T ¼ T@ large enough to make the Oð1=T Þ in (57) and
OððlogT Þ=T 1=4Þ in (58) less than @. Choose Y1 large enough such that if Y >Y1, the
OðY �1Þ expressions in (57) and (58) are less than @. Choose Y@ to satisfy

Y@ ¼ max

�
1

@min0<�6T@ j� 0 � �j ; Y1
	

ð59Þ

where if � denotes an imaginary ordinate of a zero of �ðsÞ then � 0 is the next largest
one (note that � 0 > � since J�1ðT Þ  T implies that all zeros are simple). We will
consider Y >Y@ and analyze R1. Decompose R1ðT@; Y Þ ¼ R11ðT@; Y Þ þ R12ðT@; Y Þ
where the  rst sum contains pairs ð�; 2Þ with j� � 2j�16 @Y and the second sum
contains the complementary set. Therefore

R11ðT@; Y Þ6 @Y
X
�<T@

1

�j� 0ð�Þj
X

��1<2<�þ1

1

2j� 0ð� 0Þj

 @Y
X
�<T@

1

�j� 0ð�Þj

� X
2>��1

1

j2� 0ð� 0Þj2
	1=2

ðlog �Þ1=2

 @Y
X
�<T@

ðlog �Þ1=2

�3=2j� 0ð�Þj
ð60Þ

and we have R11ðT@; Y Þ6 c3@Y for c3 > 0 by Lemma 1ðiiiÞ. The second sum
consists of pairs ð�; 2Þ such that

@Y < j� � 2j�1 <
�

min
0<�6T@

j� 0 � �j
��1

which implies that

Y <
�
@ min
0<�6T@

j� 0 � �j
��1

6Y@

and thus this second sum is empty. Consequently, R12ðT@; Y Þ ¼ 0 and thus
R1ðT@; Y ÞY �1

6 c3@. This demonstrates that���� 1Y
ðY
1
j'ðT@ÞðyÞj2 dy� /

����6 ð2þ c3Þ@ and
1

Y

ðY
1
j9ðT@ÞðyÞj2 dy6 2@ ð61Þ

if Y >Y@. By (52) and (61) we deduce that���� 1Y
ðY
1

�
MðeyÞ
ey=2

	2

dy� /

����6 ð4þ c3Þ@ þ c4
ffiffiffi
@

p  ffiffiffi
@

p

if Y >Y@ and hence the proof is  nished. �
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4. Applications of LI

The goal of this section is to study the true order of MðxÞ. We will attempt
to  nd the size of the tail of the probability measure ) associated to
'ðyÞ ¼ e�y=2MðeyÞ. The tool we employ in studying tails of ) are probability
results due to Montgomery [18]. We will need to assume the linear independence
conjecture for our analysis. Consider a random variable X, de ned on the in nite
torus T1 by

Xð!Þ ¼
X1
k¼1

rk sinð2�!kÞ

where ! ¼ ð!1; !2; . . .Þ 2 T1 and rk 2 R for k> 1. This is a map X : T1 ! R [ f1g.
Under the assumption

P
k> 1 r

2
k <1, Komolgorov’s theorem ensures that X

converges almost everywhere. In addition, T1 possesses a canonical probability
measure P . Attached to the random variable X is the distribution function )X
de ned by

)XðxÞ ¼ P ðX�1ð�1; xÞÞ:

For these random variables, Montgomery [18, pp. 14--16] proved the following
results.

LEMMA 11. Let Xð!Þ ¼
P1

k¼1 rk sin 2�!k where
P1

k¼1 r
2
k <1. For any integer

K> 1,
(i)

P

�
Xð!Þ> 2

XK
k¼1

rk

	
6 exp

�
� 3

4

�XK
k¼1

rk

	2�X
k>K

r2k

	�1	
;

(ii) and if " is so small that
P

rk>"ðrk � "Þ>V , then

P ðXð!Þ>V Þ> 1
2 exp

�
� 1

2

X
rk>"

log

�
�2rk
2"

		
:

Observe that the linear independence assumption implies that the limiting
distribution ) constructed in Theorem 2 equals )X where X is the random variable

Xð!Þ ¼
X
�>0

2

j�� 0ð�Þj sinð2�!�Þ:

In the above sum � ranges over the positive imaginary ordinates of the zeros of �ðsÞ.
We abbreviate notation by setting r� ¼ 2=j�� 0ð�Þj. By assuming the linear
independence conjecture, we may now study ) via the random variable X. By
applying Lemma 11, we can estimate the tails of the limiting distribution ). De ne

aðT Þ :¼
X
�<T

r� ¼
X
�<T

2

j�� 0ð�Þj and bðT Þ :¼
X
�>T

r2� ¼
X
�>T

4

j�� 0ð�Þj2
:

By Lemma 1, the conjectured formulae are

aðT Þ 
 ðlog T Þ5=4 and bðT Þ 
 1=T : ð62Þ
Assuming these bounds we prove upper and lower bounds for the tail of the limiting
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distribution ). Let V be a large parameter. Our goal is to  nd upper and lower bounds
for the tail of the probability distribution, namely

)ð½V ;1ÞÞ :¼
ð1
V
d)ðxÞ ¼ P ðXð!Þ>V Þ:

4.1. An upper bound for the tail

Choose T such that aðT �Þ < V 6 aðT Þ. Note that T is the ordinate of a zero.
We have the chain of inequalities

ðlogT Þ5=4  aðT �Þ < V 6 aðT Þ  ðlogT Þ5=4: ð63Þ
This implies that logT 
 V 4=5 and we have by Lemma 11ðiÞ, (62), and (63),

P ðXð!Þ> c5V Þ6P ðXð!Þ> 2aðT ÞÞ6 expð�3
4aðT Þ

2bðT Þ�1Þ

6 expð�c6V 2T Þ6 expð�c6V 2eðc7V Þ
4=5

Þ ð64Þ

for e7ective constants c5, c6 and c7. By altering the constants, we obtain the
upper bound

P ðXð!Þ>V Þ  expð� expðc7V 4=5ÞÞ:

4.2. A lower bound for the tail

This is a more delicate analysis than the upper bound. We now apply Lemma
11ðiiÞ. As before, V is considered  xed and large. We would like to choose " small
enough such that X

r�>"

ðr� � "Þ>V : ð65Þ

Introduce the notation S" and N" such that

S" ¼ f� j r� > "g and N" ¼ #S"

where � ranges over positive imaginary ordinates of zeros of �ðsÞ. Let 9 be a small
 xed number. Note that RH implies j� 0ð�Þj  j�j9. Thus,

" < 2=ðc8j�j1þ9Þ ¼) " < 2=j�� 0ð�Þj
for some e7ective constant c8. However, notice that

" < 2=ðc8j�j1þ9Þ () j�j6 ð2=ðc8"ÞÞ1=ð1þ9Þ

and since j�j  �, we obtain

�6 c9ð1="Þ1=ð1þ9Þ ¼) " < 2=j�� 0ð�Þj:
We deduce from Riemann’s zero counting formula that there are at least

c9ð1="Þ1=ð1þ9Þ logð1="Þ þOðð1="Þ1=ð1þ9ÞÞ
zeros in the set S". We will now  nd an upper bound for N". Gonek [8] has de ned
the number

T ¼ l:u:b:f! j j� 0ð�Þj�1  j�j!; for all �g:
However J�1ðT Þ  T implies T6

1
2. Gonek [8] has speculated that T ¼ 1

3. Choose
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9 < 1
2. This implies that if � 2 S" then

" < 2=j�� 0ð�Þj  j�j1=2þ9=j�j6 1=j�j1=2�9:

We deduce that if � 2 S" then �  ð1="Þ2þ9 where 9 has been taken smaller. We
conclude that N1ð"Þ6N" 6N2ð"Þ where

N1ð"Þ ¼ c9ð1="Þ1�9 and N2ð"Þ ¼ c10ð1="Þ2þ9:

We are trying to determine a condition on " so that (65) will be satis ed.
Note that X

r�>"

ðr� � "Þ>
X
�6N1

ðr� � "Þ:

Before evaluating the second sum, observe that

"N1 ¼ c9"
9 ! 0 as " ! 0:

We will choose " as a function of V and as V ! 1 we have " ! 0. However, by (62),

X
�6N1

ðr� � "Þ ¼ 2
X
�6N1

1

j�� 0ð�Þj � "
X
�6N1

1

> c11ðlogN1Þ5=4 �
"N1

2�
logN1 þOð"N1Þ> c12ðlogN1Þ5=4 ð66Þ

where 0 < c12 < c11. The last inequality holds for N1 suJciently large. Hence,
choosing N1 ¼ expððV =c12Þ4=5Þ impliesX

r�>"

ðr� � "Þ>
X
�6N1

ðr� � "Þ>V :

Thus if " satis es

c9ð1="Þ1�9 ¼ expððV =c12Þ4=5Þ

(that is, " ¼ c13 expð�c14V 4=5Þ) then we have satis ed (65). By this choice of ",
Lemma 11ðiiÞ implies

P ðXð!Þ>V Þ> 1
2 exp

�
� 1

2

X
r�>"

log

�
�2r�
2"

		
: ð67Þ

An upper bound of the sum will provide a lower bound for the tail. Note that
j�� 0ð�Þj�1 ! 0 under the assumption that all zeros are simple (see [23, pp. 377--380]).
Consequently j�� 0ð�Þj�16 c15 and we obtain

X
r�>"

log

�
�2r�
2"

	
6

X
�6N2

log

�
�2c15
"

	
 log

�
�2c15
"

	
N2 logN2:

By de nition of N2ð"Þ and our choice of " it follows that

X
r�>"

log

�
�2r�
2"

	
 V 4=5 expðc16V 4=5Þ  expðc17V 4=5Þ: ð68Þ
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By (67) and (68) we arrive at the lower bound

P ðXð!Þ>V Þ � expð� expðc18V 4=5ÞÞ:

Putting this all together establishes the following highly conditional result.

COROLLARY 12. The Riemann hypothesis, the linear independence conjecture,X
0<�<T

1

j�� 0ð�Þj 
 ðlogT Þ5=4; and
X
�>T

1

j�� 0ð�Þj2

 1

T

imply

expð� expðecc1V 4=5ÞÞ  )ð½V ;1ÞÞ  expð� expðecc2V 4=5ÞÞ

for e/ective constants ecci > 0 for i ¼ 1; 2.

4.3. Speculations on the lower order of MðxÞ
We now examine the e7ect that bounds for the tail of the probability measure

have on the lower order of MðxÞ. Note that the following argument is only
heuristic. We begin with the lower bound

expð� expðecc1V 4=5ÞÞ  )ð½V ;1ÞÞ:

Assuming the linear independence conjecture, the Riemann hypothesis, and
J�1ðT Þ  T , we have

lim
Y!1

1

Y
measfy 2 ½0; Y � jMðeyÞ> ey=2V g ¼ )ð½V ;1ÞÞ: ð69Þ

We will assume that the convergence of (69) is suJciently uniform in Y . By (69)
there exists a function fðV Þ, such that

1

Y
measfy 2 ½0; Y � jMðeyÞ> ey=2V g � expð� expðecc1V 4=5ÞÞ

if V is suJciently large and Y > fðV Þ. We now choose Y as a function of V by
the equation

V ¼
�
!ecc1
	5=4

ðlog2 Y Þ5=4 or Y ¼ gðV Þ ¼ exp

�
exp

�ecc1
!
V 4=5

		

for 0 < ! < 1. If we had gðV Þ> fðV Þ then it would follow that for large Y ,

expðlogY � ðlogY Þ!Þ  measfy 2 ½0; Y � jMðeyÞe�y=2>7ðlog2 Y Þ5=4g

where 7 ¼ ð!=ecc1Þ5=4. Since 0 < ! < 1 the left-hand side of the equation approaches
in nity as Y ! 1. In turn, this implies that there exists an increasing sequence of
real numbers ym such that ym ! 1 and

MðeymÞ=eym=2>7 ðlog2 ymÞ5=4:

Suppose by way of contradiction, that the above inequality is false. That is, there
exists a real number u0 such that

MðeyÞ=ey=2 < 7 ðlog2 yÞ5=4
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for all y> u0. Then we have

measfy 2 ½0; Y � jMðeyÞ>7 ey=2ðlog2 Y Þ5=4g
¼ measfy 2 ½0; u0� jMðeyÞ>7 ey=2ðlog2 Y Þ5=4g ð70Þ

since if u06 y6Y then

MðeyÞ=ey=267 ðlog2 yÞ5=467 ðlog2 Y Þ5=4:

Thus we deduce that

expðlogY � ðlogY Þ!Þ6 u0  1 ð71Þ

which is a contradiction for large enough Y . Hence, our original assumption is
false and we obtain

lim sup
y!1

MðeyÞ
ey=2ðlog log yÞ5=4

>

�
!ecc1
	5=4

:

Letting !! 1 we have

lim sup
y!1

MðeyÞ
ey=2ðlog log yÞ5=4

>

�
1ecc1
	5=4

:

We now consider the upper bound. Arguing in the same fashion we have

)ð½V ;1ÞÞ ¼ P ð! 2 T
1 jXð!Þ>V Þ  expð� expðecc2V 4=5ÞÞ: ð72Þ

For n 2 N de ne the event

An ¼ f! 2 T
1 jXð!Þ> ðecc�12 log logðnðlognÞ!ÞÞ5=4g

with ! > 1. Therefore we have, by (72),

X1
n¼n0

P ðAnÞ 
X1
n¼n0

1

nðlognÞ!
 1

for n0 a suJciently large integer. By the Borel --Cantelli lemma, it follows that

P ðAn infinitely oftenÞ ¼ 0 ð73Þ

which suggests that if the convergence of (69) is suJciently uniform then

lim sup
y!1

MðeyÞ
ey=2ðlog log yÞ5=4

6

�
1ecc2
	5=4

:

Hence, our analysis shows that the bounds

expð� expðecc1V 4=5ÞÞ  )ð½V ;1ÞÞ  expð� expðecc2V 4=5ÞÞ

suggest �
1ecc1
	5=4

6 lim sup
y!1

MðeyÞ
ey=2ðlog log yÞ5=4

6

�
1ecc2
	5=4

:

Thus we arrive at an argument for the conjecture (20).
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By the preceding heuristic analysis and Theorems 1--3 we hope to have
demonstrated that the size of MðxÞ depends in a crucial way on the sizes of the
discrete moments J�1=2ðT Þ and J�1ðT Þ.
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