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ABsTRACT. We continue our examination the effects of certain hypothetical config-
urations of zeros of Dirichlet L-functions lying off the critical line on the relative
magnitude of the functions mq q(z). Here 7y o(z) is the number of primes < z in
the progression ¢ mod ¢. In particular, we look at situations where mq 1(z) is si-
multaneously greater than, or simultaneously less than, each of k functions mq,q, (x)
(1 €4 < k). We also consider the total number of possible orderings of r functions
Tg,a; () (1 <3< r).

1. INTRODUCTION

Denote by 7g q(2) the number of primes p < x with p = a (mod ¢). This
paper is a continuation of our investigations from [FK1] on problems concerning
the relative magnitude of 7, ,(x) for a fixed ¢ and varying a. More about the
background of the “prime race” problems may be found in [FK1] and [FK2]. As
in [FK1] we are concerned with the consequences of hypothetical configurations of
zeros of Dirichlet L-functions lying off the critical line. Roughly speaking, each
zero of an L-function imparts an oscillation on the functions 7, ,(z), the zeros with
largest real part giving the largest oscillations. In [FK1] we were concerned with the
orderings of three functions 7y 4,(2) (¢ = 1,2, 3) which occur for arbitrarily large x.
Let Ff denote the multiplicative group of reduced residues modulo g. Our principal
result, in simple terms, was that for all ¢ > 5 and distinct ay,a2,a3 € Fy, there
are finite configurations of hypothetical zeros which, if they really existed, would
imply that one of the orderings does not occur for large x. Also, configurations
can be constructed so the zeros all have imaginary parts > 7 for any given 7 > 0.
The point of the exercise is this. If one wishes to prove that all 6 orderings of
the functions occur for arbitrarily large z, one must prove in particular that our
hypothetical configurations are not possible.
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In this paper we address two main types of problems. First, if D is a subset
of Fy\{1}, can it occur for arbitrarily large = that m, 1() is simultaneously smaller
than, or simultaneously large than, each function 7, ,(z) (a € D) 7 Secondly, given
a subset D of Fy, how many of the |D|! possible orderings of the functions 7, ()
(a € D) occur for arbitrarily large x ? In the language of Knapowski and Turén,
consider a game with players a1, ... , a, player a; having a score of m, 4, (x) at time
. Our questions can then be phrased as (i) Does player 1 lead infinitely often
or trail infinitely often? (ii) How many of the |D|! orderings of the players occur
infinitely often?

Throughout, ¢ is a natural number, ¢ > 3. Below are some other definitions
we will use.

C4 = the set of non-principal Dirichlet characters modulo g,
Cq(a,b) = {x € Cq : x(a) # x(0)},
A(g) = Carmichael’s function: the largest order of an element of Fy,
|2| = the greatest integer which is < z,
{z} =z — |z], the fractional part of z,
e(z) = e*™7.
Constants implied by the Landau O— and Vinogradov < — symbols may depend
on ¢, but not on any other variable.

We begin with a lemma showing the relationship between functions m, ,(z)
and zeros of L-functions modulo gq.

Lemma 1.1. Let ¢ > 3 and a € F;. Let Ny(c) denote the number of incongruent

solutions of the congruence w? = ¢ (mod q), and let w(x) be the number of primes
< z. Then forx > 2,

gl =10) -2 w0 7 10)) - N +0 (25 ),

log 2
X€Cq L(p,x)=0 & log”

SJp>0
Rp>0

where

zP 1 [* P zP %P
Fp) = +—/ —dt = +O<——ﬁr),
plogz ~ p Jy tlog“t plogz p|?log” x
zeros are counted with mutiplicity, and " indicates that the summand is 1 f(p) if
Sp=0.

Lemma 1.1 is well-known, following from explicit formulas (e.g. [Da], chapters
19, 20). See also the proof of Lemma 1.1 of [FK1].
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Corollary 1.2. Let o > %, q=>3 anda,b€ F;. Then as v — oo,

$(q) (Tg.a(x) — Tp(w ——2%(Z<x x(®) > f(P>>+0(1f;x>'

X€Cq L(p,x)=0
Sp>0
Rp>0o

Corollary 1.2 is a very old result, and follows from Lemma 1.1 and bounds

z¥ 1/2 1-6(o)
Z “ =o(z'?), N(T,x) < TlogT, N(T,0,x) <, T °),

Splze P

where §(o) > 0 for o > 1/2 and
N(T,x)={p: [Sp<T,Rp> 0}, N(T,0,x)=[{p:[Spl<T,Rp >0}

See for example a similar analysis for the approximation of m(z) in [SP]. The first
two estimates above can be found in Davenport ([Da], Ch. 19, 20) and an example
of the third can be found in Montgomery (e.g. [Mo|, Theorem 12.1). The upper
bound on N (T, o, x) implies that

(1.1) >y _<<a 7—90),

X€Ca L(p,x)=0
Rp>o
Sp>T

In applying Corollary 1.2, frequently we approximate f(p) by z*/(plogx)
with a total error of at most

x° id
ol ¥ ¥ 25)-o(i=)
log a:xec (@8) L(p)=0 | log” x

Rp>1/2

Therefore we have the following.
Corollary 1.3. Let q > 3, a,b € F;, 0 > 1/2 and suppose for x € Cy(a,b), the

zeros of L(s,x) have real part < o. Then, as u — 0o,

up(q) «  v(b) —v(a)
o (Taa(€) —mgp(e”) = > > ——=Fo(l),
2e ' ' x€Cq(a:b) L(o+it,x)=0 t+o°

>0

where v(n) = sin(tu — Argx(n) + tan~'(c/t)). Here we adopt the convention that
tan~1(c/t) = 7/2 if t = 0.

An inequality which is useful when ¢ is large is

(1.2) |sin(v + tan"*(o'/t)) — sin(v)| < tan™* (o /t) < o /t.
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Questions concerning the signs of the differences 7, o(x) — 7y p(x) therefore
boil down to questions about the trigonometric sums occurring in Lemma 1.1 and
Corollaries 1.2,1.3. As opposed to [FK1], a barrier in this paper refers to the
existence of a system of trigonometric sums of this type with certain properties,
and has nothing directly to do with prime counting functions. All of our results on
the existence or non-existence of particular types of barriers have consequences for
the distribution of functions 7y ,(z), but it is important to separate the two.

Suppose for each x € Cy4, B(x) is a sequence of complex numbers with non-
negative imaginary part (possibly empty, duplicates allowed), and denote by B the
system of B(x) for x € Cy. Let n(p, x) be the number of occurrences of the number
p in B(x). If p is real, we suppose that n(p, x) = n(p,X). The sets B(x) will play
the role of hypothetical zeros of the L-function L(s, x). Define

RT(B) =sup{Rp:p€ B}, R (B)=inf{Rp:p € B}.
We shall suppose throughout that

(1.3) <R (B)<R*(B)<1

and also, in accordance with (1.1), that

(1.4) SOy e o

x€Cq pEB(x) a

In accordance with Lemma 1.1, define

8 Fa(wB) = —ﬁﬂ?( > %@ Y nle. x)f(p>) + %
x€Cq pEB(x)

and
Dy op(x;B) = Py o(z; B) — Py p(x; B).

where as before " means the inner summand is % f(p) when p is real. We say
that two functions Fy, Fy : [0,00) — R are S-similar if |Fy (z) — Fy ()| = o(2? / log x)
as £ — oo. This is related to the conclusions in Lemma 1.1 and Corollary 1.2. For
indexed sets of functions F = {F;},G = {G;}, we say that F and G are S-similar
if F; and G; are (-similar for each ¢. With ¢ and B fixed, let P, be the list of
functions P, ,(x; B). For a system of functions F, also indexed by a € F, o » Suppose
Z(F) is a statement concerning the magnitudes of functions Fy (x). An example
is

For sufficiently large z, at least one Fy q(7) < Fy1(z) (a € F;\{1}).

For a system B, let 8 = R~ (B). We say that B is a barrier for T if, for every F
which is S-similar to P, Z(F) is false.

To relate this to the prime race problem, let II, be the list of functions 7y 4 (),
indexed by a € F;. Let 25 denote the condition that for each x € Cy and p € B(x),
L(s, x) has a zero of multiplicity n(p, x) at s = p, and all other zeros of L(s, x) in
the upper half plane have real part less than R~ (B). By Lemma 1.1, if 2z then II,
is B-similar to P, thus we have the following.
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Lemma 1.4. If B is a barrier for T and condition zg holds, then Z(I1;) is false.

If each sequence B() is finite, we call B a finite barrier for T and denote by
|B| the sum of the number of elements of each sequence B(x), counted according to
multiplicity. We say that |B| is the size of the barrier B. Of primary interest is to
construct barriers for Z where the imaginary parts of the points in each B(x) are all
> 7 for an arbitrarily large 7. It may occur that |B| remains bounded as 7 — oo, in
which case we say that Z possesses a bounded barrier (which is actually a sequence
of barriers). Later we will demonstrate the non-existence of bounded barriers for
certain statements Z. There is one more type of barrier which we will work with,
the extremal barrier, which will be defined in section 4. Finally, we remark that
in general we can choose R~(B) and R*(B) arbitrarily as long as 1/2 < R~ (B),
RT(B) < 1.

An important feature of the sums Dy , p(z; B) is that the “dominant parts”
are often almost periodic functions. To be specific, let

(16) g(p) = g(p;a,b) = Y n(p,x)(x(a) —x(b), Bla,b) = sup{Rp: g(p) # 0}.
XECq
Also let
(17) 2(x;a,b) ={pe B(x): 9(p) # 0, Rp = B(a,b)}, 2(a,b) = |J 2(x;0,b).
XECq

In essence, the numbers in z(a, b) are the ones which produce the dominant terms
in Dy q(z; B), provided z(a,b) is non-empty. Writing 8 = ((a,b) for brevity, we
have

(1.8)
2P
Dy ap(x; B) = qu,a,b(Qﬁ; B) + Eq,0(z; B),
_ _ * . aal

Mya(o: B) = —%R( > (@ -x) Y a0

X€EC, B+ivez(x;a,b) "

DI
+ i) - )
+iy€z(a,b) ﬂ Ty

Using Lemma 1.1 and (1.4), we have

Rp
(1.9) |Eq,a,b(x;B)|<<Z{ > > }

7_*_
21002 1
X€Gy LocBi P log" e S - Ipllog®

pZz(x;a,b)
<« (xﬁ)
)
log? log x

=0 (kfgﬁx) (z — 0).

Rp
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A function f is said to be almost periodic with respect to a norm || - || if for
and € > 0, there is an L > 0, so that any real interval of length L contains a number
T so that

[f(u+7) = flu)] <e.

It follows from (1.4) and Theorems 8 and 12 of §1 of Chapter 1 in [Be] that each
sum M, o 5(€%; B) is a uniformly continuous almost periodic function in the sense of
Bohr; that is, almost periodic with respect to the supremum norm. If one takes B(x)
to be the set of zeros p of L(s, x) with Rp = 8 and Sp > 0 (for x € Cy(a, b)), then
M, o.b(z; B) is precisely the double sum appearing in the conclusion of Corollary 1.3
with ¢ = 8. Thus this double sum is also a uniformly continuous almost periodic
function in the sense of Bohr. For a uniformly continuous almost periodic function

f, define
LU 2 1/2
Il = Jim (5 [ 1@

(the limit exists by Theorem 2 of §3 of Chapter 1 in [Be]). Next, if fi,..., fx are
almost periodic with respect to a norm || - || 4, then the vector-valued function

fu) = (fr(u), .- s fr(w))

is almost periodic with respect to the norm

1715 = max (1]l

If, for some x € Cy, x(a) # x(b) and all non-trivial zeros of L(s, x) have real
part 1/2 (the Extended Riemann Hypothesis for x), the inner sum in Corollary 1.2
(with ¢ = 1/2) is not uniformly convergent (in fact, it has infinitely many jump
discontinuities), but it is still almost periodic in the sense of Stepanov ([Be], chapter
2). That is, it is almost periodic with respect to the norm

z+1
lglls2 := max (/m Ig(y)|2dy>

The proof of this is implicit in [K2]; another proof and generalization can be found
in [KR]. We note that if a function is almost periodic in the Bohr sense, it is also
almost periodic in the Stepanov sense, since ||g||sz < ||g]|co- Any function g, almost
period function in the Stepanov sense, has the property that if v is a continuity point
of g, then for every € > 0 there is an unbounded set of v so that |g(v) — g(u)| < e.

Remark 1.1. When each function in a set F is almost periodic in the
Stepanov sense, to prove that some set of (strict) inequalities among a set of func-
tions F occurs for an an bounded set of wu, it suffices to prove that the set of
inequalities occur for a single u which is a continuity point of each function. We
can in fact make a stronger conclusion: for some L and 6 > 0, on any interval of
length L, the measure of the set of u for which the set of inequalities occur is > 4.

1/2
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As a consequence, setting u = log x, we conclude that the set of inequalities occurs
on a set of z of positive lower asymptotic density.

Acknowledgement. Much of this paper was written while the authors en-
joyed the generous hospitality of the Mathematisches Forschungsinstitut Oberwol-
fach.
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2. SIGNS AND COMPARISON OF TRIGONOMETRIC POLYNOMIALS

First, we formulate some simple properties of trigonometric polynomials. In
particular, we prove that a real n-term trigonometric polynomial with a zero con-
stant term must be nonnegative on a large set. By u(E), where E C R, we denote
the Lebesgue measure of E.

Lemma 2.1. Let P be a real trigonometric polynomial

P(u) = EZ:l Ck sin (tku—}—ak) (Ck €R,ix € R, 7A 0,tx 7é tl(k 7é l)), E+ = {u :
P(u) > 0}. Then

1) [ Plu)du=o(U) (U — o0); b
2) 1Pl = limys oo (# Jy (Pw)?du) = (3552, )"

3) 1Plloo = [IPll2 = 1/ 55 Yoy [ckl, where ||Plloo := sup,, [P(u)];
4) sup,, P(u) > maxy [cg|/2 > ||Pllo/2n;
5) W(E+ N[0, U)/U 2 4; +0(1) (U — o0).

Proof. We have

U n
(2.1) / P(u)du = (cos ag — cos(trU + ag)).
0 k=1

= |2

The right-hand side of (2.1) is bounded for u € R, and 1) follows.
Further,

U n U
/ (P(u))?du = Z ckCl / sin (txu + ag) sin (tu + og)du
0 0

k=1
noofU 2 2
= Z/ (—k + & cos((2tpu + 2ak)))
0 2 2
k=1
n U
+ Z CrCl / sin (txu + ag) sin (tu + o) du,
k£l 0
and, by 1),
U n_ 2
/ (P)2du=US"% 4 o(U) (U — o0).
0 k=1 2

The first part in 3) follows from the inequality

/ " (P(w)du < / P

The second part follows from 2) and the Cauchy-Schwarz inequality.
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To prove 4), we take [ so that |¢;| = maxy |cg|. Without loss of generality,
¢; 2 0. Denote a = sup,, P(u). For U > 0 we have

(2.2)

U
0> / (P(u) — @) (sin (b + o) + 1)du
0
U U U
= —aU—a/ sin(tlu—l—al)du—i-/ P(u)du+/ P(u)sin (tju + a;)du
0 0 0

U
= —alU -I—/O P(u)sin (tiu + og)du + o(U) (U — o),

by 1). Further, using again 1) and 2), we get
(2.3)

U U
/ P(u)sin (tu + og)du = ¢ / (sin (tu + 1)) *du
0 0

+ Z/ ¢k sin (tu + o) sin (fu + o)du
k£l

= —U +o(U) (U— ),

(2.2) and (2. )
{u: P(u) <0}. By 1),

/ P(u)du = — / P(u)|du+ o(T) (U — o).
B, N[0,U] E_n[o,U]

Therefore,

U
(2.4) /E oy = : /0 P(w)|du+o(U) (U = o).

On the other hand, taking again |¢;| = maxy |ck|, we have, by (2.3),

/ P ldu >

The equality (2.4) implies

and 4) follows from
Denote E_ =

U
/0 P(u) sin (tju + oy)du| = %U +0o(U) (U— ).

(2.5) / Plu)du> U 1 o) = %1% Loy (U = o),
E,n[0,U] 4 4
Note that
maLX|Clc| Z\Ck\ —||P||oo-
Therefore,
(2.6) / P(u)du < || Ploop(E4 N[0, U]) < ”max\ck\M(E+ﬂ [0,U]).
E4N[0,U]

We exclude a trivial case when P is not identically zero. Then combination of (2.5)
and (2.6) proves 5) and thus completes the proof of Lemma. [
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Theorem 2.2. [N] Let P be an exponential polynomial P(u) = > p_, cke'™* (¢ €
C,tr € R), U >0, E C [0,U] of positive Lebesque measure: Then

cu "t
max |P(u)l < ——= sup |P(u)|,
i 1P < {-CEA sup P(w)
where C is an absolute constant.

Corollary 2.3. Let P be a real trigonometric polynomial

P(u) = ZZ:I Ck sin(tku—l—ak) (Ck e Rt € Rty #0,t # tl(k #* l)), 0<y <1,
S =30 _1lel, e = ﬁ(@/’y)l_%, where C is the constant from Theorem 2.2,
E={u: |P(u)| <eS}. Then for sufficiently large U

p(EN[0,U])/U < 7.
Proof. Using Lemma 2.1, we get for sufficiently large U

S
max |P(u)| > —.
uE[O,U]‘ W) V3n

Suppose that
(2.7) uw(EN[0,U])/U = ~.

Then, writing P in an exponential form with 2n terms, we get from Theorem 2.2,

\/% < (0/7)2"_132% [P(u)| < (C/7)*" €S,

and, by the definition of €, S = 0, but in this case £ = (). Thus, the supposition
(2.7) cannot hold, and Corollary is proved. [

Lemma 2.4. For any positive integer n there exists such e1 = €1(n) > 0 that if
P, Q are real trigonometric polynomaials,

P(u) =) apcos (tpu+ ag), Qu) =Y bysin (teu + B),

tk:7é07 tk%tl(k#l)a |Olk|<€1, |ﬁk‘<€1 (k:17"'7n)7

then there exists a real number u such that

Pz e Y ol Qu>e Y bl
k=1 k=1

Proof. Take v =1/(10n). We will prove the lemma for

(2.8) e1 =¢/2,
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where ¢ is chosen in accordance with Corollary 2.3. Denote

Z a cos (txu), Z lag|.

Let E={u: P(u) >0}, By = {u: |P(u)| < 2615:}. Thus,
(2.9) Vu e (E\ E,) P(u) > 285;.

Take a sufficiently large U. By Lemma 2.1, we have

(2.10) W(EN[0,U])/U > %

Also, by Corollary 2.3 and (2.8),

(2.11) (s 1[0, U))/U < %
Let
Zbk sin (txu), Z br], Ea={u: |Q(u)] < 215:}.

By Corollary 2.3 and (2.8),

(2.12) (B> 0 [0,U1) /U < %

The inequalities (2.10)—(2.12) show that the set £/ = E \ E; \ E3 is nonempty.
Using evenness of P and oddness of () we obtain that for u; € E’ either u = u; or
u = —uq satisfies the inequalities

P(u) 2 26151, Q(U) 2 26152.

Taking into account, that, by the restrictions on «ay and S, we have

[P(u) — P(u)| < €181, Q) — Q(u)] < e1Ss,

we get
P(u) > €181, Q(u) > 1o,

as required. [J

The following lemma is closed to Lemma 1 from [FFK].
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Lemma 2.5. Let n be a positive integer, 0 < a < 1,

2'n—1

e=¢(n,a) =6(a/6)" ,
§1 > ++-> 8y, > 0. Then there exists a real number u such that € < {usi} < a for
each k € {1,...,n}.

Proof. We use induction on n. For n = 1 we have ¢ = a and the statement is
trivial. Suppose that n > 1 and the lemma holds for n — 1. We use the induction
supposition for o/ = o?/6 instead of o and for {ss,...,s,}. Observe that ¢ =
e(n,a) =¢e(n —1,a’). There exists a real number u’ such that e < {u'sg} < o for
each k € {2,...,n}. By Dirichlet’s box principle, there exists a positive integer I
satisfying [ < 3/« and |[lu'sq|| < /3. Take u = lu' + «a/(2s1). We have

a/6 < {us1} < ba/6
and for k € {2,...,n}
{usp} < Hu'si} + asi/(251) < ld' + a/2 < a,

{usg} > e,
as required.

Lemma 2.6. Let n be a positive integer,
€9 = 52(n) = 13_27»—17

tr be positive numbers, || < eq for k =1,...,n. Then there exists a real number
u such that sin(txu + Br) < —e2 for each k € {1,...,n}.

Proof. Take @ = 6/13 and s = t/(2m) for k = 1,...,n. By Lemma 2.5, there
is u' such that e; < {u'sx} < a for each k € {1,...,n}. It is easy to check that
u = —27u’ satisfies Lemma 2.6.

Lemma 2.7. For any positive integer n there exists such e3 = e3(n) > 0 that for
any real v > 0 and real trigonometric polynomials

P(u) =) aycos (tu),
k=1

Qu) = Z by sin (txu),
k=1

R(u) = Z ¢k sin (tpu),
k=1

tk:#oatk#tl(k?él)a bk>|ak|+cku Ck>0, (kzlv"',n)a



PRIME NUMBER RACE AND ZEROS OF L-FUNCTIONS, II 13

n n
D lakl > b,
k=1 k=1

there exists a real number u such that
Q(u) > max(|P(u)|, R(u)) + €37 Zbk

The basic idea of the proof is the inequality ||Q||3 = || P||3 + ||R||3 following
from Lemma 2.1. This inequality shows that there is a real u such that

(2.13) Q*(u) > P*(u) + R*(u) > max(P*(u), R*(u)).

To strengthen (2.13), one can use the following possibilities:

1) to estimate ||Q||2 — || P||3 — ||R]|3 from below;

2) to estimate min(P?(u), R?(u)) from below and thus to strengthen the inequality
P2(u) + R*(u) > max(P?(u), R?(u));

3) to show that Q2 — P2 — R? is not close to a constant and thus has a big positive
value at some point.

It depends on the situation which of these arguments can work. First we will prove
a lemma using arguments 1) and 2).

Lemma 2.8. Under the suppositions of Lemma 2.7, there exists e4 = e4(n) > 0
and a real number u such that

Q?(u) > max(P*(u), R(u)) + max(min((82 — a} —112)/2,e07°13)).

Proof. Take any ko € {1,...,n}. If ¢, < vbg,, then

n

1 1
IRz -1IPIz=IIRIl3 = §Z(b —ap—ci) = 5 (b, — ko —Chy) > (b —aj, =7°bz,)-
k=1
Therefore, there is u such that
(2.14) Q*(u) — P*(u) — R*(u) > (b — ag, = 7°b,)-

Now let us consider the case cg, > 7vby,, Let € be the number from Lemma 2.3,
corresponding to vy = 1/3,

E;={u: |R(u)| < eybg,}-
By Lemma 2.3, for sufficiently large U

(2.15) w(ELN[0,U])/U < 1/3.



14 K. FORD, S. KONYAGIN

Also, let
={u: |P(u)| < eybg, }-

Taking into account the supposition of Lemma 2.7 for ZZZI lag|, we get from
Lemma 2.3

(2.16) w(E,N[0,U])/U < 1/3.

Set E3 =[0,U]\ E1 \ E2. By (2.15) and (2.16), we have

(2.17) w(E3) > U/3.

Also, from the definitions of E; and E5 we find that for every u € E3
(2.18) min(|P(u)], [R(u)]) = evbk,-

Using Lemma 2.1, (2.17) and (2.18), we get
U U
| @waus [P0+ R )i o)
U U
= /0 max(P?(u), R*(u))du -l-/O min(P?(u), R*(u))du + o(U)

U
2/0 maX(PQ(u),RQ(u))du—i-/ (ebry ) 2du + o(U)

E3

U
> /0 max(P?(u), R*(u))du + (e*v%b;, /3)U + o(U) (U — o).

Hence, there exists u € [0, U] such that
(2.19) Q*(u) — P%*(u) — R*(u) > 6472b,2€0, e4 =€2/4.

So, for every kg one of the inequalities (2.14), (2.19) holds. This proves Lemma 2.8.

Proof of Lemma 2.7. Without loss of generality, we can consider t; > 0 for k =
2
1,...,nand v < 1/2. Let 8 = n,Bj: o forj=2,...,n+1,

k=1

Choose the numbers k1, ko, ... so that

b, = P15,  tr, > tr;_y, br; = B;S (5> 1).

Note that k1 can be always found because

max b > Z b = B15.
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We terminate our construction when for some [ we cannot define a following number
kiy1, that is

(2.20) Vi > tg,, br < Bi+15.
If |ag,| < bg, /2, then, by Lemma 2.8, there exists a real number u such that

Q?(u) > max(P*(u), R*(w) + min((5}, — af, — vb3,)/2, 478}, ).

Further,
A
br, = BnS.
Therefore,
(2.21) Q*(u) > max(P?(u), R*(u)) + min(1/8, e4v>) 52 S>.

Now we have to consider the case
(2.22) |akl\ 2 bkl/2-

Define the even trigonometric polynomial W(u) = Q?*(u) — P?(u) — R%(u) and
estimate the coefficient A of cos(Tw) in W, T = 2t;,. We have

A=—(aj, +bp, —ci)/2— > (agaw + bebe — cror)

tp+ty =T,
Uiy <tp <2tk
(2.23) - E (akakf + CiCrr — bkbkl).
tp—t, =T,
tk>2tkl

By (2.22),
(2.24) (ag, +b, —c,)/2 = (ag, +b%, — (b, —lax, )*)/2 = |ax, [bx, > b3, /2 > B S?/2.
For t;, > tx, and arbitrary k' we have, by (2.20),

|akakr\ + bbby + crerr < 2bkbr < 281410 S = ﬂlzble/8

Therefore,
E (akakf + b by — ckckf) + E (akakf + cpcrr — bkbkf)
tp+t, =T, tp—t =T,
tkl <tk<2tkl tk>2tkl

(2.25) > -2 BibwS/8 > —pS% /4.
kl
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Substituting (2.24) and (2.25) into (2.23), we get
A< -B}S/4< —B5% /4.
By Lemma 2.1, taking into account that W has a nonnegative constant term we
obtain
sup W (u) > B2S?/8.
u
Thus, in the case (2.22), there exists u such that

Q*(u) — P?*(u) — R*(u) > B2S?)9.

In the opposite case we had the inequality (2.21). So, for some ¢ = ¢(n) we always
can find a real number 17 such that

Q% (u1) > max(P?(uy), R*(u1)) + ey2S2.

Let x = |Q(u1)|, y = max(|P(u1)l,|R(u1)|) < z. Using the inequality z —y >
(z? —y?)/(22) we get

Q(u1)| > max(|P(u1)], |R(u1)|) +ev*S?/(2/Q(u1)])
> max(|P(u1)], |R(u1)]) +27°S/2,

and either u = u; or u = —u; satisfies the required inequalities with €4 = £/2.
Lemma 2.7 is proved.
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3. PLAYER 1 LEADING AND TRAILING

For short, we abbreviate the phrase “For arbitrarily large 2” by “FAL z”. In
this section we address questions of whether or not

FAL z, my1(2) < mge(z) (Ya € D),
FAL z, mq1(2z) > mge(z) (Va € D),

for various subsets D of Fy\{1}. The residue 1 mod g is special because it is the
identity in F,, and this allows one to prove results about comparing m,1(z) to
Tq,a(z) which would be difficult otherwise. For example, in the cases ¢ = 3,4,6,
D = {q — 1}, Littlewood [Li] proved each of (3.1) and (3.2). Knapowski and Turdn
[KT1] proved that under the assumption that for each x € C4, L(s,x) has no
zeros on the real segment (0,1) (known as Haselgrove’s condition for ¢) that the
difference 7, 1 () — 74,0(x) changes sign infinitely often. Assuming the real parts of
the nontrivial zeros of L(s, x) are all 1/2 for x € C,, Kaczorowski [K2] proved that

FAL z, mg1(7) < mga(z) (Va € Fy\{1}),
FAL z, mg1(%) > mga(x) (Va € F7\{1}).

In fact his proof gives a little bit more: if D C F;,1 ¢ D, and all nontrivial zeros
of L(s,x) (x € UsepCyq(a, 1)) have real part 1/2, then each of the inequalities (3.1)
and (3.2) is true.

The statements pertaining to barriers which correspond to (3.1)—(3.4) are

(3.1°) FAL z, Fy1(x) < Fyo(z) (Ya € D),
(3.27) FAL z, Fy1(x) > Fyo(z) (Ya € D),
(3.3) FAL z, Fy1(z) < Fga(z) (Ya € F7\{1}),
(3.4) FAL z, Fy1(x) > Fyo(z) (Ya € F;\{1}).

Among the results of this section we show the existence of bounded barriers for
(3.3’) and (3.4’) when q > 7, q ¢ {8,10,12,24}, and show that no finite barriers
exist for (3.3’) when g € {8,12,24}. We also show that no bounded barriers exist
for (3.3’) and (3.4’) when ¢ € {5,10}.

For fixed ¢ define the quantities (analogs of (1.6), (1.7))

N(p,x) = the multiplicity of the zero p of L(s,x),
G(p) = G(p;a,b) = > N(p,x)(x(a) — x(b)),

XECy
o(a,b) = sup{Rp : G(p) # 0},
Z(x;a,0) ={p: L(p,x) = 0,G(p) # 0,Rp =0 (a,b)},

Zab)= |J Zab).
XECq(a,b)
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The condition that Z(a,b) is nonempty means that the supremum of the real parts
of the zeros p of L(s, x) with x € Cy(a,b) and G(p) # 0 is attained. In this case
the sums over zeros in Corollary 1.3 are almost periodic functions in the Stepanov
sense. In the case b = 1, the condition G(p) # 0 is equivalent to the statement that
L(p, x) = 0 for some x with x(a) # 1 (in fact RG(p) < 0 in this case).

Theorem 3.1. Suppose ¢ > 3, D C Fy and 1 ¢ D. Suppose B is a system
such that for each a € D the set z(a,1) is nonempty. Then B is a barrier for the
statement Z(F):

Fq7a($) + F‘q,a—1 (:E)

For sufficiently large x, 3a € D : Fy1(x) > 5

Corollary 3.2. Suppose ¢ > 3, D C F;, 1 ¢ D, and for each a € D, a> =1
(mod q). If B is a system such that z(a 1) is nonempty for a € D, then (3.1°)
holds. Consequently, there are no finite barriers for (3.3°) when q € {8,12,24}.

Corollary 3.3. Suppose ¢ > 3, D C F; and1 ¢ D. If Z(a,1) is non-empty for
each a € D, then

Wq,a(x) + Tg,a—1 (37)

FAL z, mg1(x) < 5

(Va € D).

If in addition for each a € D, a® = 1 (mod q), then (3.1) holds. In particular, if
q € {8,12,24} and Z(a, 1) is nonempty for a € Fy \ {1}, then (3.3) holds.

Proof of Theorem 3.1. We have Cy(a,1) = Cy(a™',1) and 2(a,1) = 2(a™',1) for
a € D. For each x € Cy(a,1), (x(a) +x(a"1))/2 =1 = Rx(a) — 1 is a negative
real number. Let 8, = B(a,1) for each a € D and put 8 = R~ (B). Clearly
B < mingep Bq. Let F be S-similar to P,. By (1.8) and (1.9), for each a € D we
have as u — o0

(3.5)

1?253) (Fq,l(eU)_F alC )+2F ):_2 Z( )1 Rx(a))Ra(u; x)+o(1),
x€C,y(a,l

where

39 Riwn =020 3 nwa+m,xfi“(“’“*%jj‘ﬂgﬂa/m

v€2(x;0,1)
v>0

Since each z(a, 1) is nonempty, it follows that for each a € D one of the functions
R, (u;x) is not identically zero. Each function R,(u;x) is almost periodic in the
sense of Bohr. To prove the theorem it suffices to show that there is a u for which
each R,(u;x) > 0 (among those functions which are not identically zero). Clearly
u = 0 is such a number. [
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Proof of Corollary 3.3. Let 0, = 0(a,1) fora € D, Ay ={a:0, >1/2}, Ay ={a:
0, = 1/2}, f =minge 4, 04. For each x € Cy, let B(x) be the sequence of all zeros
of L(s,x) with real part > f, so zp holds. If A, is empty, the Corollary follows
from Lemma 1.4. Otherwise, by Lemma 1.1 we have for each a € A,

ueqi(/q2) (Wq,l(eu) _ Tga (") + Tg,a1( ) -9 Z (1 —Rx(a))Rq(u; x)

2 x€Cq4(a,1)
+ (Ng(a) = Ng(1)) + 0(1)  (u — oo).

where

sin(tu + tan”" (1/2t))

Rawsx)=NO/20+ 3, NO/2+itx)=—— =y

L(1/2+it,x)=0
t>0

We always have Ny(a) < Ny(1). As in the proof of Lemma 3.1, each Rg(u;x)
is positive in a neighborhood of v = 0 when a € A;. When a € Az, R,(u;x)
is continuous on (0,log2) and R,(u;x) — +oo as u — 0F ([K1]; [K2], Lemma
2). Therefore if u is positive and sufficiently small, it is a continuity point for all
R, (u; x) and each Ry (u;x) > 0. O

The next results address inequalities (3.17), (3.2’) when D is a cyclic subgroup
of Fy or order 3.

Theorem 3.4. Supposeq > 3 and G = {1,a,a®} C F; is a cyclic group of order 3.
Suppose B is a system such that the set z(a,1) is nonempty and consists of numbers
with imaginary part > 2 + /3. Then B is a barrier for the statements:

For sufficiently large x, Fy1(x) > min(Fy o(z), Fy .2(2),

For sufficiently large x, Fy1(x) < max(Fy (), Fy .2 (),

Corollary 3.5. Supposeq > 3 and G = {1,a,a%} C Fy is a cyclic group of order 3.
If Z(a,1) is non-empty and, in the case o(a,1) > 1/2 Z(a, 1) consists of numbers
with imaginary part > 2 + /3, then

FAL z, 7g1(x) < min(mg o(x), mq 02()),

FAL z, mg1(x) > max(mg q(x), g o2 (2)).

Corollary 3.5 can be deduced from Theorem 3.4 in the same way as we have
proved Corollary 3.3.

Proof of Theorem 3.4. Let 8 = (a,1) and put By = R~ (B). Clearly By < . Let
F be fo-similar to Py. For j =1,21let K; = {x € Cy : x(a) = €(j/3)}. By (1.8)
and (1.9), we have

gg(:ﬂ): (Fyai (€*) = Fya(e®)) = fu) + (=1)7g(u) +o(1), (u— o0)
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_3 () sin(~ywv &111—21’1) 2V
fv) 7@2(21)W (Yo +t ) = f1(v) + fa(v),

3 ) . 3 ()
fW) =3 3 s grsni), he) =5 3 5 lgmBeost),
v€2(a,1) v€2(a,1)

\/g m( ) 1.
g(v) = %COS (yv +tan™" £) = g1 (v) — g2(v),
WEZZ(al) v+ B

gl(v)zﬁ Z ,an_(gévcosm), 92(@):§ Z m( ) B sinyv,

2
v€2(a1) 762(61,1) +h

2
=> (=17 > n(B+iv.x)
XEK;

j=1

Since > n(y)/+/7? + B2 converges and |m(7y)| < n(7), the series in the definitions
of the functions fi, fa, g1, and g are uniformly convergent, and thus these functions
are Bohr almost periodic. We need only find a single v for which f(v) — g(v) and
f(v) + g(v) are both positive, and a single v for which f(v) — g(v) and f(v) + g(v)
are both negative. Using the approximation of fi, fa, g1, and g by trigonometric
polynomials and Lemma 2.1,

(3.7)

| max(| f1], | fo| + [g1] + |g92]) — [f2] = |g1] — |g2]ll2
> || max(| f1], [ fol + [g1] + [g2])ll2 = [ f2ll2 = llg1ll2 = llg2l2
> || fall2 = I f2ll2 = ||91||2 — [lg2ll2

9 ¥Pn2(y) 2n2(y) y2m2 (v
_JES 2 (72 +ﬂ2 J 2 (y? +p%)? +ﬂ2 \l 2 (y? + )2 +ﬁ2)

v€z(a,l) v€z(a,1) v€z(a,1)
. Z Sl 827
2 2
8 (72 +B2)2 +ﬂ
where
n?(7) ()
S1= Z 2 g D2 Z 2 N2
JWEZ(a,l) (v2 +6?) eatol) (v2 + 5?)
Further,

Sy/81 < max f/y < max 1/y<1/(2+V3).

v€2(a,1) v€2(a,1)
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Substituting the last inequality into (3.7), we obtain

| max (| f1|, | f2| + |g1] + |g2]) — | f2| — |g1] — |g2]]|2

(\[_\ﬁ_ﬂf(\[ \[))51—0'

Therefore, there exists v, such that

max (| f1(v1)l, [f2(v1)] + |g1(v1)| + |g2(v1)]) — [f2(v1)| = [g1(v1)| = [g2(v1)| > O,

which is equivalent to

[f1(v1)| > [f2(v1)[+|g1(v1)[+]|g2(v1)|. Observe that fi(—v1) = —f1(v1), [f2(—v1)| =
|f2(v1)], lg1(=v1)| = |g1(v1)];|g2(—v1)| = |g2(v1)|. Thus, one of the numbers v €
{v1, —v1 } satisfies the inequality

(3-8) fi(v) > |fa(v)] + [g2(v)] + lg2(v)];

and the other satisfies the inequality

(3.9) —fi(v) > |fa(v)] + [92(v) + |g2(v)].

The inequalities (3.8) and (3.9) imply f(v) > |g(v)| and f(v) < —|g(v)]|, respec-
tively, as required. This completes the proof of the theorem. [

Remarks. R. Rumely [R] has computed the small zeros of L-functions mod-
ulo ¢ (with imaginary part < 2600) 3 < g < 72 and several larger ¢, and all such
zeros lie on the critical line. Thus for such ¢ the hypothesis in Corollary 3.5 about
the imaginary parts of the zeros in Z,(a, b) is satisfied.

Two following statements complement Theorem 3.1 and Corollaries 3.2 and
3.3 for the problem of winning.

Theorem 3.6. For any n there is an effectively computable number T such that if
q=3,DCFj,1¢D, B is a system such that for each a € D the set z(a,1) is
nonempty, U,ep z(a, 1) consists of numbers with imaginary part > 7 and contains
at most n elements, then B is a barrier for the statement

Fq,a(x) + Fq,a—1 (.l')

For sufficiently large x, 3a € D : Fy1(x) < 5

Corollary 3.7. Suppose ¢ > 3, D C F;, 1 ¢ D, and for each a € D, a’ =
(mod q). Then there are no bounded barmers for (3.2°). Consequently, there are
no bounded barriers for (3.4°) when q € {8,12,24}.



22 K. FORD, S. KONYAGIN

Corollary 3.8. For any n there is an effectively computable number T such that
ifq>23,DCF;,1¢ D, for each a € D we have a = a~t, for each a € D the
set Z(a, 1) is nonempty, |J,cp Z(a, 1) consists of numbers with imaginary part > 7
and contains at most n elements, then (3.2) holds.

Proof of Theorem 3.6. We have Cy(a,1) = Cy(a™1,1) and 2(a,1) = 2(a"1,1) for
a € D. For each x € Cy(a,1), (x(a) +x(a™1))/2 — 1 = Rx(a) — 1 is a negative
real number. Let 8, = B(a,1) for each a € D and put 8 = R™(B). Clearly
B < mingep f,. Let F be S-similar to P,. Take 7 = 1/e3, where €3 = €2(n) was
defined in Lemma 2.6. By (1.2) and Lemma 2.6, there exists a real number u such
that sin(yu+tan='(8,/v)) < —e2 for each a € D and v € z(a, 1). By periodicity of
sines we can find an arbitrary large u satisfying these inequalities, and from (3.5)
and (3.6) (notice that under our suppositions n(8,, x) = 0) we deduce the assertion
of the theorem. [

Theorem 3.9. For any n there is an effectively computable number T such that if
q =5, G C Fy is a cyclic group of order 4, for each a € G'\ {1} the set z(a, 1)
s monempty, UaeG\{l} z(a,1) consists of numbers with imaginary part > T and
contains at most n elements, then B is a barrier for the statements

For sufficiently large x, 3a € G\ {1} : Fy1(z) > F, 4(),

For sufficiently large x, 3a € G \ {1} : F1(z) < Fyo(2).
Consequently, there are no bounded barriers for (3.3°) and (3.4°) when q € {5,10}.

Corollary 3.10. For any n there is an effectively computable number T such that
if¢ > 5, G C Fy is a cyclic group of order 4, for each a € G\ {1} the set Z(a,1)
s nonempty, UaeG\{l} Z(a,1) consists of numbers with imaginary part > T and
contains at most n elements, then (3.1) and (3.2) hold for D = G \ {1}.

Proof of Theorem 3.9. Let G = {1, a1, az,a3}, a; = a{ for j = 2,3, B = B(ay, 1),
B2 = B(az,1) and By = R~ (B). Clearly By < f2 < B1. Let F be fy-similar to P,.
For j =1,2,31let K; = {x € Cy: x(a1) = ¢(j/4)}. By (1.8) and (1.9), we have, as
u — 00,

(3.10) () = Fya(e")) = £(u) + 9(u) + (1),
(3.11) O (Fipan (€¥) ~ Fya(e) = h(u) + of0),

(3.12) oopru (Faas(€”) = Fau(e®)) = f(u) — g(u) +o(1),
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where

flv) = Z Msin(’yv+tan_l B1y,

2 B!
v€z(a1,1) 7+ h
_ m(’}/) —1 B
g(v) = Z Wcos(vv—i—tan )
762(@1,1) 1
2]{;2(7) . —1 B9
h(v) Z ———==sin(yv + tan™" ),

B v€z2(az,1) V 72 + Bg
k()= Y, nBi+inx) (=1,2),

x€EK1UK3

1(7)= > n(Br+iv,x)
XEK>

m(y) = Y n(B+iv,x) — > n(Br+ivx)-
xXEK1 x€Ks3

Define €3 = e9(n) from Lemma 2.6. We consider two cases.

Case I: B2 < 1. From (1.6) and (1.7), it follows that k1(y) = m(y) = 0 for all
~. By Lemma 2.6 and the almost periodicity of f(u) and h(u), there are arbitrarily
large u so that

() ka2 (7y)
flu) < —2e9 Z ——————, h(u) < —2¢ Z —_—
ses@y V1P A sesany V152

whence (3.2’) holds with D = G\{1}. Similarly, applying Lemma 2.6 to the func-
tions sin(v — tan™! 3;/7), there are arbitrarily large u so that

I(7y) k2(v)
fu) > 2e9 —————  h(u) > 2 —_—
76;61,1) V2 + B ve;az,l) V2 + B

whence (3.1’) holds.

Case II: By = 1. Write 8 = 81 = (2. Here we have z(as,1) C z(a1,1) =
z(as, 1) and k1(y) = ka(7y). We again separate into two cases.

Case ITa: We have

im()| €9 k1(y) + 21(y)
(3.13) AT 22 AT AT
veg(:al,l) v+ st 2 762%1,1) V2 + B2

By Lemma 2.6, there are arbitrarily large u so that

k1(y) + 2(v) Fa(y)
f(u) < —€ e h(U) < —9% _kaly)
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Since |m(y)| < ki(v), (3.13) implies that for such u, |g(u)| < 3|f(u)|. Thus,
by (3.10)—(3.12), (3.2’) holds. Similarly, applying Lemma 2.6 to the functions
sin(v — tan™! /), we see that (3.1’) holds.

Case IIb: (3.13) does not hold. By (3.10)—(3.12) and the almost periodicity
of f, g, h, the theorem will follow if we show that there are real u and v such that

(3.14) f(u) > max(|g(w)], f(u) — h(u)/2),

(3.15) f(v) <min(=|g(v)], f(v) = h(v)/2).

We approximate f, g, f — h/2 by the polynomials

) = k1) + 20 v
Q(u) 762(2(11,1) NGRS (yw),

(7)
Puy= > 2 cos(yu),
! 762(01,1) 72 + ﬁ2 o
Z 20(y) .
R u) = —_— 11 u).
( ) ’Yez(al’l) /,YQ + ﬂ2 S1 (7 )

Note that |m(vy)| < k1(7y). Since (3.13) fails, we can use Lemma 2.7 with v = €5/2.
Thus, there exists a real number uy such that

(3.16) Q(up) > max(|P(ug)|, R(ug)) + €8,

where € = €372, S = > %\/%@ The inequality (3.16) clearly implies
v

(3.17) Q(—uo) < min(—|P(—up)|, R(—up)) — €.
Taking into account (1.2), we get

f(w) = Q(u)] < S/, |g(w) = P(u)| < S/, |f(u) = h(u)/2 = R(u)| < S/.
Therefore, we deduce (3.14) from (3.16) for u = ug and (3.15) from (3.17) for

v = —ug provided that 25/7 < &S, or 7 > 2/e. This completes the proof. [

Theorem 3.11. Let ¢ > 7, q ¢ {8,10,12,24}. There is a set D € Fy\{1} with
|D| = 3 so that for any T > 0 there is a system B with |B| < 34 which is a barrier
for both inequalities (3.1°) and (3.2°), and each sequence B(x) consists of numbers
with imaginary part > 7;

Proof. The argument depends on the group structure of F;. Denote by Zj the
cyclic group of order k. Every Fy, ¢ > 7,q ¢ {8,10,12, 24}, either contains a cyclic
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group of even order n > 6 or contains a subgroup isomorphic to Z4 X Z5. Our
constructions depend on properties of the functions

1
Q(v) = 2sinv + 5 sin(6v),

1
P(v) =2cosv — 3 cos(6v),

7

k

:Z% n(kv), ps=1,p3=2,ps=23,p5s=4,ps=3,pr =2.
k=2

The critical properties are

(3.18) IP(v)| > v3Q(v) (0 v < 0.759,2.7 < v < 27),
R(v) <0 (0.758 < v < 7).

We first consider the case when F; has an element of even order n with n > 6.
Without loss of generality, if n is a power of 2, assume n = 8. Let x be a character
of order n, and let a be an element of F; of order n such that x(a) = e(—1/n).
Fix 8 > % and large v > 0, let n(8 + iky,x/) =mjr (1<j<n—1,1<k < K).
Suppose n(p, x) = 0 for all other pairs (p, x). Let F be fS-similar to P,. By (1.8)
and (1.9), as u — oo,

DT (Faor (6¥) = Fan(e*)) = Go(u1) = Go(u) +0 (4 1) +o(1),

where

. i
GT(U):Zm]z sin <kv+ tfr)

3.k
mj k 2wgir\ . . 2myr
:E —2= |cos | —— | sin(kv) +sin { —— ) cos(kv) | .
o k n n

We take D = {a®,a" %, a™'?} for some s # n/2. The theorem will follow if we show
that for every v € [0, 2m), there is a r € {s,n—s,n/2} so that G, (v) > Go(v), since
G, (v) > Go(v) implies G, (—v) > Go(—v).
First, if n = 2%h, where h is odd and h > 3, we take mag = 3, map_21 = 2,
mhk = Pk for 2 < k < 7 and m;; = 0 for other j, &, so |B| = 20. We obtain
Go(v) — Goa(v) = (1 — cos(4n/h))Q(v) + sin(4xw/h)P(v),
Go(v) — G _ga(v) = (1 — cos(4n/h))Q(v) — sin(4n/h)P(v),
Go(v) — Gpya(v) = 2R(v).

The theorem follows in this case from (3.22) and the fact that

el <
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Next, suppose n = 8 and take mo1 = 4, m3gp = msj = pg for 2 < k < 7 and
mj = 0 for other j, k, so |B| = 34. Then

Go(v) — Gs(v) = 4(sinv — cosv) + (2 — V2)R(v),
Go(v) — G5(v) = 4(smv + cosv) + (2 — V2)R(v),

When 0 < v <0.758 or 7 < v < 2m, one of the first two functions is negative.

The last case is when F; has a subgroup G isomorphic to Z4 x Z,. Let {a,b}
generate GG, a having order 4 and b having order 2. Let x; have order 4, x2 have
order 2 so that

xi(a) = —i,x1(0) =1, x2(a) =1,x2(0) = 1.
Fix g > % and large v > 0, and let, for some L, n(8 + il%X{X’f) = mj , for

0<7<3,0<k<1,(5k) #(0,0),1 <I< L. Suppose n(p,x) = 0 for all other
pairs (p, x). Let F be f-similar to P,. By (1.8) and (1.9), as u — oo,

1 1
Léz)ﬂjj” (Fyars (€*) = Fy1(e®)) = Goo(uy) — Gy o(ury) + O (; + a) +o(1),
where

Vet

Note that Goo(v) < Grs(v) implies Goo(—v) > Ga_ra2_s(—v). We take D =
{a,a3,b}. Thus, if for all v € [0,27), Goo(v) < G, s(v) for some pair (r,s) €
{(1,0),(3,0),(0,1)}, then B is a barrier for both (3.1’) and (3.2"). We take mq01 =
1 (L(s, x1) has a simple zero at s = B + it), and mo1; = p for 2 < 1 < 7, Take
m;j k1 = 0 for other (j,k,1), so |[B| = 16. Then

! gin <lv + 57‘] + 7rsk)

Go,0(v) — G1,0(v) =sinv — cos v,
Go,0(v) — G3,0(v) =sinwv + cos v,
GO’O(U) - G()’l(’l)) = 2R(’U).

When 0 < v < w/4 or 3w/4 < v < 2w, we have |cosv| > sinv, whence either
Go,0(v) — G1,0(v) < 0 or Goo(v) — Gs,0(v) < 0. For the remaining v, R(v) < 0 by
(3.18). O

Corollary 3.12. Let ¢ = 5 or q > 7. FEach inequality (3.3°), (3.4’) possesses a
bounded barrier if and only if ¢ & {5,8,10,12,24}.
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4. EXTREMAL BARRIERS

By an ordering of the functions mg,,(z) (1 < ¢ < r) we mean a chain of
inequalities
Wq,aiu)(x) 2 ﬂ—q,az‘(z) (:E) > et 2 ﬂ-Qaafi(r) (37)7

where {i(1),...,i(r)} is a permutation of {1,...,r}. Thus, we admit non-strict
inequalities in orderings, and in the case of coincidence of some functions 7 4, ()
several orderings occur for . Let S;(D) be the number of orderings of the functions
7q,a(z) (a € D) which occur for arbitrarily large z. Likewise, for a system B and set
of functions F, define s(D) = s(D; F) to be the number of orderings of functions
Fy o(z; B) (a € D) which occur for arbitrarily large .

If mga(z) > mgp(z) and mg4(y) < 7gp(y), then myo(w) = mgp(w) at some
point w between z and y. This property of these functions is crucial to results about
Sq(D). If a set of functions F has the property that for f;, f; € F, fi(z) < f;(x)
and f;(y) > f;(y) implies f;(w) = f;(w) for some w between z and y, we say that
F is good.

Let D C Fy and 8 = R™(B). We say that B is a KT-system (Knapowski-
Turdn system) for D, if for each set of functions F which is S-similar to P, and
every distinct a,b € D,

FAL z, Fy o(z) > Fyp(z).

If B is a KT-system for D and zp holds, then each difference 7, o(x) — 74 (), a,b €
D, changes sign infinitely often. For several moduli ¢ this is known unconditionally
for all differences 7, o(x) — 7 p(), a,b € Fy, a # b (see [FK2]). A KT-system D
has the property that for distinct a,b € D there is some p with g(p;a,b) # 0, for
otherwise D, , () is identically zero and one could take F, .(z) = Py (z;B) for
each ¢ € D. In the opposite direction we have the following.

Proposition 4.1. Let D C Fy. Every system B which lacks real elements and for
which z(a, b) is nonempty for a,b € D is a KT-system for D.

Proof. Take distinct a,b € D, let § = R~ (B) and suppose F is -similar to P,. By
(1.5), (1.6), (1.8) and (1.9), as u — oo

(a.) YD (Fya(e) — Fyp(e)) = ~h(u) +o(1),

where 8 = B(a,b) and

(4.2) Mwy = Y m(m e )

B+ivEz(a,b) ﬁ Ty

By (1.4), the partial sums of (4.2) uniformly converge to h. By Lemma 2.1,

9(8 + )|
sgp h(u) > sgp AB+in]
9(8 + )|

sup —h(u) > sup —.
u (u) vy 48+
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Taking into account that A is almost periodic function in the Bohr sense, we get

from (4.1)

|
lim inf 2= (F, o(z) — Fy3(z)) < 0,

T—r00 .’L'ﬁ

|
lim sup —2- (Fyq(z) — Fyp(z)) > 0,

T—00 zP

and the proposition is proved. [

Theorem 4.2. If B is a KT-system for D = {a1,as,...,a.}, then for every good
F which is B-similar to Py (B = R™(B)), at least r(r —1)/2 4+ 1 orderings of the
functions Fy o, (x) occur for arbitrarily large x. Consequently, under the condition
zB, Sq(D) =2 r(r—1)/2+1.

Proof. Fix a good F which is S-similar to P,;. Let us construct a graph G. For
each permutation P = (i(1),...,4(r)) of the set {1,...,7}, let N(P) be the set of
real x > 1 with

Fq,ai(n (33) > FQaai(2) (.’E) Z .2 F(Lai(r) (:U)

For each unbounded set N(P), associate a vertex v(P) of G. Put an edge from
v(P1) to v(Pz) whenever (i) P, is obtained from P; by transposing two neighbor
elements k, [, and (ii) N(P;)NN(P,) is unbounded (note z € N(P;)NN(P,) implies
F, 1(z) = Fy,(z)). Label such an edge by {k,1}.

Also, as B is KT-system and F is good, for any numbersiand j,1 <7< j < r,
there is an edge labeled by (i,7). We claim that the graph G contains a subgraph
G’ such that each component of G’ is a tree and the labelings of the edges in G’
contain again all possible pairs (i,7). Indeed if G contains a cycle H take two
vertices g1 and g from H. Then there are numbers ¢+ and j occurring in g; and
g2 in opposite orders. This means that in both arcs of the cycle H connecting g,
and gy there is an edge labeled by (i,7). Delete one of them. We can repeat this
procedure as long as the remaining graph contains at least one cycle. In the end
we get a required subgraph G’. The number of edges of G’ is at least the number
of distinct labels, thus it is at least r(r — 1)/2. Therefore, the number of vertices
of Gis>r(r—1)/2+1. O

A system B is called an extremal barrier for D if it is a KT-system for D and
a barrier for the statement

r(r—1)
s(D) > —5—

+ 2.

By Lemma 1.4, if B is an extremal barrier and zz holds, at most r(r — 1)/2 + 1
orderings of the functions 7, 4(x) (a € D) occur for large . An interesting problem
is to describe for each g the sets D possessing finite extremal barriers. We are very
far from a complete solution to this problem; in particular, there is no ¢, ¢(q) > 2,
for which we know whether the whole system Fj has a finite extremal barrier.
In this section we present some results on existence and nonexistence of extremal
barriers. In particular we shall see that for large moduli ¢ there is a finite extremal
barrier for some set D with |D| =r(q) — oo as ¢ — oc.
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Theorem 4.3. For every cyclic group G C Fy of order v > 6 and for every set

D C G such that 1 ¢ D anda=' ¢ D ifa™! # a € D, there is a bounded extremal
barrier for D.

Remark. The size of B in our construction depends only on r, and it can be
effectively computed.

To prove Theorem 4.3, we take a generator a; of the group G and a character
x1 so that x1(a1) = e(—1/r). For j =1,...,7 — 1 denote a; = a}, x; = xj. Take
B1 € (1/2,1), large v and large positive integer K depending on r. The idea is
to put n(f1 + kiv,x;) = Nig; (k=1,...,K, j =1,...,r — 1), where Nj; are

appropriate nonnegative integers. For k = 1,..., K, v = 0,...,7 — 1 define the
functions
r—1 Nk )
_ 7‘7 . .
Gio(u) = JZl " sin(ku + 2mjv/r).

If F is B-similar to P,, we have for 1 <v,w <r

2:1;:81
F o (x)—F,, (z)=
q, v(',L.) q, w('z.) ’Ylogm

- 1
(4.3) (Z Gro(vlogz) — G w(ylogz) + O (;)) +o(l) (z— ).
k=1

X

To choose multiplicities Ng ; we need the following lemma.
Lemma 4.4. Let ¢y, dy (v =0,...,7 — 1) be real numbers such that c, = cp—,

(w=1,...,r—1),dy =0, dy, = —dr—y (v=1,...,7—1). Then there exist real
numbers v; (j =0,...,r — 1) such that

r—1
(4.4) Zl/j sin(u + 2wjv/r) = ¢y sinu+d,cosu (v =0,...,7 —1).
j=0

Proof. The system (4.4) is equivalent to the system of two systems of linear equa-
tions

[r/2]

(4.5) Z pjcos(2mjv/r) =c, (v=0,...,[r/2]),
[(r=1)/2]

(4.6) Z Ajsin(2rjv/r) =d, (v=1,...,[(r—1)/2]).

where Mo = Vo, Hj = Vj+1/r—j7 )\j =Vj—Vr—j (1 < .7 < (7“—1)/2), Urj2 = tr/2 ifris
even. To prove solubility of the system (4.5) it suffices to check that the system has
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no nontrivial solutions for ¢, = 0 (v =1,...,[r/2]). Assume the contrary. Consider
the trigonometric polynomial

[r/2]
T(u) = Z i cos(2mju).

=0

If not all p1; are zero, the polynomial T has at most 2[r/2] zeros on [0, 27) counting
with multiplicity. On the other hand, by (4.5) with our supposition ¢, = 0, the
points 27v/r (v = 0,...,7 — 1) are zeros of T, and, moreover, 0 is a double zero.
Hence, the total number of the zeros of T on [0, 27) counting with multiplicity is
at least  + 1 > 2[r/2]. This contradiction shows that T'= 0. So, the system (4.5)
has a unique solution for any c¢,. In the same way we can prove the solubility of
the system (4.6).

Now we have the existence of numbers p; and A; satisfying (4.5) and (4.6). To
complete the proof of Lemma 4.4, it remains to set v,./3 = /2 for even r, vy = po,
vi=(u;+Aj)/2for 1< j<r/2,v;j=(pr—j— A—j)/2forr/2<j<r. O

Here we shall apply Lemma 4.4 for the case ¢, =0 (v =0,...,7 —1). We
have stated it for arbitrary c, taking into account other applications.

Let V = {v : a, € D}. Let us take a system of continuous even 2r-periodic
functions f,, v € V, and let us require the following properties to hold:
1) If r/2 € V then f, /3 = 0;
2) [y fo(u)du =0 for all v € V;
3) for every distinct v € V and w € V, v # w, there is the unique point u = wy 4, €
[0, ] at which f,(u) = fu,(u), and, moreover, for distinct (nonordered) pairs (v, w)
the points u, ., are distinct.
Clearly, a system = {f,} exists; for example we can take several functions in a
general position from the set of piecewise linear functions with zero average and
one corner on (0, 7), with slope 0 to the right of 0 and slope 1 to the left of 7.

Observe that the ordering of the functions { f,(u)}, u € [0, 7], changes only at
points u, . On the other hand, if points u; € [0, 7] and uy € [0, 7] are separated by
some point uy 4, then (fy,(u1) — fuw(u1))(fo(u2) — fw(uz)) < 0. Thus, the number
of orderings of the functions {f,(u)}, u € [0,7], is |V|(]V]| —1)/2 + 1. Since the
functions f, are even and 27 — periodic, this is the number of orderings on the
whole real line.

Take U which is a multiple of 27 and arrange all the points +u, ., + 27k €
(U, 00) in increasing order U < u; < ug < .... Denote ug = U, u} = (u; +ujy1)/2
for j > 1. We say that a system € of continuous real functions f, (u), u € [U, o],
is of Q-type if for any j > 0 and for any u € [, u ] the ordering of the functions

{fo(u)} coincides with the ordering { f, (uj)} or with the ordering {f, (u},)} (recall
that in the case of some equalities f,(u) = fu,(u) we assign to the point u several

orderings). The system (2 is an example of a system of Q-type. We will repeatedly
use the following simple fact.

Proposition 4.5. If a system Q of 2r-periodic functions is of Q-type, then every
system sufficiently close to €2 in the uniform metric is of Q2-type. Moreover, every
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system whose pairwise differences are close to corresponding differences for Q in
the uniform metric is of 2-type.

Eventually, we shall show that the system {Fj ., (vlogz)}, v € V, is of Q-
type, which proves Theorem 4.3.

First, take any admissible system Q = {f, : v € V}. We approximate the
functions f, by even trigonometric polynomials 7, with zero average in the uniform
norm. In the case r/2 € V we take T,/ = 0. Let

K
u) = Z bk, cos(ku).
k=1

By Proposition 4.5, for sufficiently large K = K (r) we can make the approximation
so good that the system {T,} is of Q-type.

By the conditions on D, r —v ¢ V if v € V and v # r/2. Let bgr—o = bi
forv eV, and set by, =0 for v € V and r —v € V. By Lemma 4.4, there exist
real numbers v ; (k=1,...,K, j=0,...,7 — 1) such that

r—1
Zl/k,jsin(ku-i—%rjv/r) =bgycosku (k=1,...,K;v=0,...,7r—1).
i=0

Therefore,
r—1

K
T,(u) = Z ZV;W sin(ku + 2mjv/r) (veV).
k=1 35=0

Take a positive integer N and define trigonometric polynomials

r1~

K
Z k I sin(ku + 2mjv/r) (v € V),
k=1 3=0

where _
Nij=Fk[Nvg;] (k=1,...,K;j=1,....,r—1).

By Proposition 4.5, the system {T } is of Q-type provided that N is large enough.
Finally, take N = ming_; Nk,J, Nij = Nk,J N > 0. Since 1 ¢ D, we have
0 ¢ V and hence,

r—1
Zsin(ku—i—%’jv/r) =0 (k=1,...,K;veV)
§=0

and

u) =Y Gro(u) (weV)
k=1
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The equality (4.3) can be rewritten for v,w € V as

;]i;)fﬁml (Fya,(x) = Fya, () = Ty(ylog ) — Ty (ylog z) +O (%) +o(l) (z — o).

By Proposition 4.5, the system {%Fq,av ()}, v € V, is of Q-type on [U, 00) if

U and ~y are large enough. So is the system {F, ,, (z)}, v € V, as required. [

It is not difficult to see that A(q) — oo as ¢ — oo. A lower estimate
)\(Q) > (log q)clog log log(g+20)

with some ¢ > 0 was established in [EPS]. Thus, we have the following.

Corollary 4.6. For sufficiently large q there is a finite extremal barrier for some
set D with |D|=1(q) > Mq)/2 — o0 as ¢ — oo.

It is naturally to ask if there are bounded extremal barriers for D = G. We
show that it is not so in the case |G| = 3. However, we cannot prove that for
|G| = 3 there are no finite extremal barriers.

Theorem 4.7. For any n there is an effectively computable number T such that
the following holds. Let ¢ € N, a € Fy, a® =1, G ={1,a,a%}. If B is a system
such that Z,(a,1) and Z,(a,a?) are nonempty and Z,(a,1) U Z,(a,a®) consists of
numbers with imaginary part > T and contains at most n elements, then B is a
barrier for the statement

F is good and s({1,a,a’};F) < 4.

Consequently, under the condition zg, Sq(G) = 5.

To prove Theorem 4.7, we first estimate the number of orderings if each of
three players leads and trails for arbitrarily large x.

Lemma 4.8. Let D = {a1,as,a3} C Fy and B be such a system that for any
function system F which is S-similar to P, (8 = R~ (B)), and for any a’ € D there
are arbitrary large x and y such that

F, o (z) > max(F, o (z) : a" € D\ {a'}),

Faa(y) <min(Fgqen(y) : a” € D\ {a'}).

Then for any good function system F which is B-similar to Py, at least 5 orderings
of the functions {Fy o () : a’ € D} occur for arbitrary large x.

Proof. By Theorem 4.2, since B is a KT-system for D, at least 4 orderings occur
for arbitrary large x. Assume only 4 orderings occur. Since F is good, there are
arbitrary large x such that F ., (2) = Fy e, (x) = Fga,(x) or Fy o, (x) < Fyq,(z) =
Fy 4, (z). Thus, in both cases for large = there are at least 3 orderings where a; leads
or trails, and, therefore, at most one ordering where a; is in the second position.
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The same holds for as and az. Hence, the number of orderings where some player
is in the second position, which is clearly the number of all orderings, is at most 3,
but that is impossible. Lemma 4.8 is proved. [

Proof of Theorem 4.7. Let Sy = R~ (B) and a system F be good and Sy-similar to
P,. Re-denote by 7' the number 7 from Theorem 3.6. Take

7 = max(7’,1/e1(n)),

where €1(n) is the number from Lemma 2.4, and suppose that the conclusion of
the theorem does not hold. Then, by Lemma 4.8, one of the players 1, a, a? does
not lead FAL z or does not trail FAL z. We see from Theorem 3.4 that this is not
player 1. Without loss of generality, assume that a? does not lead FAL z. Thus,
the orderings

Fq,a2 ("E) > Fq,a(x) 2 Fq,l(m)v Fq,a2 ('73) > Fq,l(x) > Fq,a(x)

do not occur for large x.
We use notation and relationships form the proof of Proposition 4.1 with

b = a?. Note that for any x € C, we have x(a?) = x(a). Thus, g(p) = g(p; a,a?) is
a purely imaginary number, and

e >: 9(B +1v)
Briv) iy + 52

Now let us follow again the proof of Proposition 4.1 to approximate P, (e*) —
(Pyga(e") + P, o2(€"))/2. Let

47w (g‘(ﬂT ) cos(yu + tan~1(8/7))-

g1(p) = Y _n(p, x)(1 = (x(a) + x(a%))/2),

X

pr = max{Rp: g1(p) # 0},
Ri={p: Rp=p51, 91(p) # 0},

m= Y ®(aGrm ).

B1+ivER1 ﬂl Ty

The formula (4.1) written for (1,a) and (1, a?) gives

(4.8) ;j;qg (Pui(e®) = (Pya(e®) + Pyaz(€*))/2) = —ha(u) + o(1) (u — o).

Now, g1(p) is always a real number, and therefore

e 9B +1y) . _
BT i’y) = sin(yu + tan~ (81 /7)).

(4.9) R (gl (B1 + ) N
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Note, that in the definitions of h and h; the sum is taken over v € Z,(a, a?) and,
respectively, over v € Z,(a,1). By the choice of 7 and (1.2), any v € Z4(a,1) U
Z,(a,a?) satisfies the inequalities tan~'(8/7)) < e1, tan™'(B1/7)) < 1. By the
suppositions of the theorem, h and h; are nonzero polynomials with at most n
distinct frequences v in total. Therefore, we can apply Lemma 2.4 to h and h;.
Hence, there exist 6 > 0 and v € R such that

(4.10) h(u) > 6, hy(u) > 6.
As the functions h and hy are almost periodic in the Bohr sense, we can find an

arbitrary large u satisfying (4.10). Then, by (4.1) and (4.8), and the [By-similarity
of the system F to Pg, taking into account that Sy < min(g, 1), we get

Fya2(z) > Foa(z),  (Fga(z) + Fpa2(2))/2 > Foa ().

This contradicts our assumption that a? does not lead FAL z and completes the
proof of Theorem 4.7. [
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5. THE NUMBER OF POSSIBLE ORDERINGS

Theorem 5.1. Fix q and an arbitrarily large 7. There is a system B satisfying
(i) |B| bounded in terms of q;
(ii) p € B implies Sp > 7;

(iii) For every r > 2 distinct elements aq,... ,a, of F;, B is a barrier for the

property s({a1,...,a.}) >r(r—1);
(iv) If zg holds, then for every r > 2 distinct elements ay, ... ,a, of Fy,

Sq({as,...,a.}) <r(r—1).

Proof. Suppose Fy is generated by g1, . .. , gm, which have orders ny, ... , n.y,, where
ning -« Ny = ¢(q). Define x; by

Yj(gj) = e(1/n;), Yj(gh) =1 (h#3j)
Let v be large depending on ¢, and
5 <Bm <PBm-1<--<p<L
For 1 <j<m,1<k<2, let n(B; + ik’y,xg?) = ¢j . Also, for each j there is at

least one k so that n(3; + ikv, X;“) > 1. In what follows, implied constants depend
on g, and the numbers c; ;. For each a € F; write

a= gfl(a) .. -gg‘bm(“) (mod ¢q), 0< aj(a) <n;—1

Let F be fy,-similar to P,. By (1.8) and (1.9),

(5.1)
D) =~ "D [F o (0¥) — Fyafe”)]
= P (i 5(@) — fy s g 0)) + 0(eP), (> o0)
where

2 u 4
cire(ka/n;) | . g [© vPiTiRY

5.2 (u, @) =Ry LETTT I | pikvu g e—Biv dv| .
B2 g =nY e e

Let J(a,b) = {j : aj(a) # c;(b)}. Then

(5.3) Hop(uw):= Y %" (fi(u,05(a)) — fi(u, 05(b)))

j€J(a,b)
= Agp(u) +o (") (u— o0).
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Lastly, define the periodic functions

ezk’yu

wja chke ka/nJ)IB +7/k,_y

1

= + tan~! &> .

k=
i sin (k’yu + ﬁ
— /k ~ +52 n; k~y

By Lemma 1.1 (the asymptotic for f(p)) and (5.2),

(5.4) fi(u, @) = wj o(u) + O(1/u).

Similarly,

(5.5)
d e* pBitiky etkru
Zr — Biu)e Piv d
dufj(u’a Z ﬁg—i-zk")/ l Bju)e /2 vlog v v+ ”

o)+ O ).
Each function w;(u, ) is periodic in u with period 2m/y. We choose the
numbers 3; and c;j so that the functions w; o, have several properties:

(A) For each j and each pair of distinct integers a1, ag € [0,n; — 1], the equation

wj7a1 (u) = wj7a2 (u)

has only two solutions in [0, 27 /7). Call them 0, (4, a1, as), v =1, 2;
(B) All the numbers 6,(j, a1, a2) are nonzero and distinct, that is

9’1)1 (j17 iy, ()[2) - 91)2 (j27 a3, 014) lmphes V1 = 'U2,j1 = j27 {O[]_, a2} - {a?n 04},

(C) Forall j, v and distinct o, ag, if = 0, (j, a1, a2) then w} , (0)—w’ . () # 0;

(D) Let 1 < j/ < j < m, v € {1,2}, distinct oy, 9 € [0,n; — 1]. Suppose
a3, g, 5, 0 € [0,n5 — 1] with (a3, a4) # (a5, ) and not both ag = o4 and
as = ag. If 0 =0,(5',a1,as), then

Wy as(0) — Wja, (0) — [W).as(0) — wjae(0)] # 0.

Note: some cases of (D) are redundant, being covered by property (B). For example,
if ag = a4 and a5 # ag, or if az = a5 and a4 # ag, or if ag = ag and ay = as.

For integral /£ let uy, = 27”6. We claim the following hold for large ¢ (depending on

F). Throughout the remainder of this proof, o(1) refers to a function of ¢ which
tends to 0 as £ — oo.
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(i) At u = ug, gy, ..., the ordering of the functions I, (e*) (a € Fy) is the
same;

(ii) For distinct a,b € Fyy, the sign changes of A, p(u) on [ug, ues1] occur within
two intervals I1(a,b) and Iz(a,b). All ¢(q)(¢(q) — 1) of these intervals are
disjoint, and the sign of each function A, 4(u) at the endpoints of I,(a,b)
depends only on a, b, ¢,d and v.

Together, (i) and (ii) imply the theorem. Indeed, the possible orderings of
Fyo,(e*) (1 < ¢ < r) are precisely the orderings occurring at the endpoints of
the intervals I, (a;,a;). There are r(r — 1) such intervals, and the ordering remains
constant between two such intervals, so there are at most 7(r—1) different orderings.

First we prove (i). Let W(j, @) = w; (0) for each j,a and let L > £. For
each a,b € Fy let jo = jo(a,b) := min{j € J(a,b)}. By (5.3) and (5.4),

Agp(ur) = exp (Bj,ur) (W (jo, ajo(a)) — W (o, o (b)) + 0(1)) -

By (B), W (jo, aj, (a)) # W (jo, @, (b)) and so A, p(ur) has constant sign for L > £.
Next we prove (ii). Throughout suppose uy < u < upy1. For sufficiently small
¢ (depending only on the functions w; o) let

M (a,b) = {u € [ug, ups1] : [Hqp(u)| < 665"‘”}.

By (5.3), Agp(u) = 0 implies u € M(a,b). Let jo = jo(a,b), a1 = aj,(a) and
as = aj,(b). By (5.3), for u € M(a,b),

|fj0(u’ al) - fjo(u7 012)‘ = 0(1)'

which by (5.4) implies that for any fixed n > 0, if £ is large enough,

(56) ‘wjo,oq (u) — Wjg,as (u)‘ <.

Let Y be the set of u satisfying (5.6). By (A) and (C), if 6 and n are small
enough then Y is the union of two short intervals K;, K3, where 6, (jo, a1, as) € K,
for v = 1,2. By (C), for some ¢ > 0, wj , (u) — wy ., (u) has constant sign
and is at least € in magnitude on each interval K,. By (5.3), (5.4) and (5.5),
H,(u) is monotone on each of K; and Kjy. Therefore, I1(a,b) := M(a,b) N K,
and I(a,b) := M(a,b) N Ko are closed intervals. At the endpoints of I(a,b) and
I>(a,b), |Hyp(uw)| = dePm® and thus sgnA, ,(u) = sgnH, p(u). For each v, the sign
of H; ,(u) on K, thus determines the sign of A, p(u) at the endpoints of I,(a,b).
This in turn depends only on the sign of wj , (u) —wj, ,,(u) on K,, which does
not depend on /.

Next, suppose u € I,,(a,b) and {a,b} # {c,d}. Let jo = jo(a,b), a1 = aj,(a),
ag = aj,(b). Then

(5.7) lu—60| =o0(1), where 6 =6,(jo,x1,2).
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Let j1 = jo(c,d), a3 = aj,(c), ou = aj, (d). By (5.3), (5.4), and (5.7),
Ac,d(u) = eﬂjlu[wjhas (9) — Wji,a4 (0) + 0(1)]'

If jo # j1 or {1, as} # {az,au}, Wi as(0) — Wy, ,a,(0) # 0 by (B), so Ac g(u) has
constant sign depending only on a, b, ¢, d,v. Next, suppose jo = j; and {1, az} =
{a3,a4}. By swapping c and d if necessary, we may suppose that a; = ag, as = a4.
Let

j2 = min{j € J(a,b) U J(c,d) : (aj(a), (b)) # (j(c), aj(d))}-

Such j; exists because {a,b} # {c,d}. Also, by our assumptions on jg, a,... , 04,
we have jy > jo. By (5.3), (5.4), and (5.7),

Aca(u) = [Aca(u) — Agp(u)] + Agp(u)
= eﬁj2u (wjz (0’ Qj, (C)) — Wy, (0’ Qj, (d)) - [wj2 (9’ Qj, (a)) — Wj, (0’ Qj, (b))]
+ o(1)).

By (D), the right side has constant sign, depending only on a, b, ¢, d, v. This com-
pletes the proof of (ii).

It remains to select numbers f1, ... , By, and ¢ ; so that (A)-(D) are satisfied.
Write for short 5
_ P B | o1 2
z2j = 7, gj =tan " z;, v;=tan 9

Let M be a large integer, depending only on q. We think of §; and M as being
fixed, while v — oo. In what follows constants implied by O and < will not depend
on M or on 7.

If n; =2, take ¢; 1 = 1 and ¢; 2 = 0. In this case, we have

sin(yu + Ta + €5)
VYt B

If n; > 4, we take cj1 = M, cj2 = 1. In this case

(5.8) wja(u) =

. , - 4
(5.9) wj.a(u) = Msin(yu+ 52 +e;) | sinyu+ T2 +v5)
Vs 4v* + B

In particular, for fixed j, w;qo(u) = wjo(u + i’rT‘J’) Let J; = {j : nj = 2} and
Jo = {j : n; > 4}. The functions w;o(u) with j € J; are very close to the function
%sin(fyu), and the functions wjo(u) with j € Jo are all very close to the function
% sin(yu) + % sin(2yw). It is important, however, that the actual functions w; o
(j € J2) are not odd nor are they a shift of an odd function.
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Assume throughout that 0 < u < 27 /. Consider first the equation

(5.10) Wi o, (W) = Wja, (1), where 0 < a3 < ay <n; — 1.
If j € J; then a3 = 0,3 = 1 and the solutions of (5.10) are
(5.11) yu € {m —€j,2m — €}
Since the numbers ¢; are distinct and O(1/) in magnitude, all such solutions (for
varying j) are distinct and non-zero. Similarly, when j € J; and oy = ay + %nj,
(5.9) implies that the solutions of (5.10) are
(5.12) yu € {n(1 — 2a1/n;) — €, m(2 — 201 /) — €5}
Again these numbers are all distinct and non-zero (for varying j and «y), and
distinct from the numbers in (5.11). Finally, suppose j € Jo and as — a1 # 3n;.

We make use of the following expression for w; o (u) which avoids square roots:

zj cos(w) + sin(w)  z; cos(2w) + 2 sin(2w) 2ra
5.13) yw; o (u) = M2 L H W= _
(5.13) ywj,a(u) 1 ij 1 ZJ2- W =yu-+ n

Making the change of variables y = yu + nlj(oq + as), define

. —
9(y) = 9(y3 5, o1, a2) = - (1+ 25) (4 + 27) (Wj 0, (1) — W), ().
Using some trigonometric identities with (5.13), we have

(5.14)
g(y) =M+ ij) sin B(cosy — zjsiny) + (1 + ij) sin 2B(2 cos 2y — z; sin 2y)
=sin B [M(4+ z)(cosy — zjsiny) + 2(1 + 27 ) cos B(2cos 2y — z; sin 2y)] ,

where

(5.15) B:Me{k—”:1<k<nj—1,k¢nj/2}.

nj nj
Since sin B # 0 by (5.15), combining (5.10) and (5.14) gives the approximation
(5.16) 4AM cosy + 4cos2ycos B = O(M/7).

We may assume v > M. Thus |cosy| < 1/M and consequently [siny| = 1 +
O(1/M?), cos2y = —1+0(1/M?), and |y +7/2| < 1/M. For such y, |¢'(y)| > M,
so there are exactly two solutions of (5.10), one with y near w/2 and the other with
y near —m/2. This proves (A). When u = 0, i.e. y = nlj(al + a), (5.15) implies
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l9(y)| > M unless a1 + a2 € {n2/2,3n;/2}. In this case g(y) = —4cos Bsin B +
O(M/v) # 0 by (5.15). This proves that every 6, (j, a1, as) # 0.
For the second part of (B), consider the equation

0111 (j17 aq, 012) - 9’02 (j27 as, CM4)-

This implies that for some u,
(517) Wiy a1 (U) = Wjy,a (u)7 Wy, ,as (u) = Wjs,a4 (u)

We cannot have j; = j5 € Jy. First suppose ji,j2 € Jo. We may assume a1 < aa,
ag < ay4 and either j; # js or {aq, as} # {as,a4}. If j; = jo = j and a; = a for
some i # k, then w; o, (v) = W, o, (¥) = W oy (1) = W o, (u), the set {a1, a2, a3, a4}
contains three distinct elements, and the function w; o takes some value three times,
which is impossible.

By (5.14), we have the system of equations

(5.18)
M (4 + 23 )(cos y1 — zj, sinyy) + 2(cos B1)(1 + 25, ) (2 cos 2y1 — z;, sin 2y;) = 0,
M (4 + z3,)(cos ya — zj, sinyz) + 2(cos By) (1 + 25,)(2 cos 2y — 2z, sin 2y5) = 0,
where
=y M1t ) o mestad) po maazar) po s —ag)
" Mo njy Nj,

As before, |cosyg| = O(1/M) for k = 1,2. Since y; — y2 is an integral multiple
of w/¢(q) and = is large, cosy; = +cosys. As a consequence, cos 2y; = €0s 2yy =
-1+ 0(1/M?) and so by (5.18),

4M cos y1 + 4 cos 2yq cos By, = O(M /) (k=1,2).

This in turn implies that either cos 4, = cosy2 and B, = By or that cosy; = — cos ys
and B; = m — By. Consider four cases: (i) cosy; = cosys, siny; = sinys, (ii)
COS 11 = COSYa, Siny; = — sin Yo,

(iii) cosy; = —cosys, siny; = sinys, (iv) cosy; = —cosys, siny; = —sinys. In
cases (ii) and (iii), subtracting or adding the two equations in (5.18) yields

zi, + 2;,)(AM siny; — 2 cos By sin2y;) = O(M/~+?),
J1 J2

which is not possible given that |siny;| = 1 + O(1/M?). In case (i) y1 = y2 and,
together with B, = B,, implies that j; # j» and hence z;, # zj;,. In case (iv)
Y1 — y2| = 7 and, together with By = m — By implies that two of the numbers -,

J1
a9 ag [e 7} N . . .
ny ) T myy 1€ equal, therefore, ji # j2 and z;, # zj,.
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Again subtracting the two equations in (5.18) in case (i) and adding in case
(iv) produces

(2j, — 2j,)(4M siny; — 2 cos By sin 2y;) = O(M/~?),

which likewise gives a contradiction. Therefore, (5.17) is impossible when ji, jo €
JQ.

If j1 € J1, jo € Jo, then by (5.11), Yyu € {7’( — €j1,27r — é‘jl}. We have
seen that (5.17) is impossible in the case oy = a3 + 4nj,. Assume that the last
equality does not hold and define y = yu+ (a3 +aq)/nj,, B = m(aa — a3)/nj, By
(5.17), g(y; j2, a3, @4) = 0. From (5.14), | cosy| < 1/M, and thus 7(as+ a4)/nj, €
{m/2,3m/2}. This implies the stronger inequality |cosy| = |sine;,| < 1/ and as a
consequence cos 2y < —1+2/v2. Applying (5.14) again we see that 4 cos B cos 2y =
O(M/~), which by (5.15) is impossible. This completes the proof of (B).

Next we verify (C). If j € Jq, then a; =0, ay =1, 6 satisfies sin(y§ +¢;) =0
and thus cos(v0 +€;) = £1, s0 w; (0) # w; ,(0). If j € Jo and | — aa| = in;,
the situation is the same as with j € J; by (5.9). Assume 0 < o1 < @ < n; and
o — a1 # 2n;. Define B and y as in (5.14), (5.15). Suppose u satisfies (5.10) and
also the equation w’, , (u) = w’, , (u). Differentiating (5.14) gives

J,¢1 jaa2

siny(4M + 16 cosy cos B) = O(M /7),

which is impossible since |siny| =1+ O(1/M?). Thus condition (C) is verified.

We verify condition (D) indirectly. Condition (B) covers the situation when
a3 = g, 5 = g, (X3 = (5, (lg = (g OT there are at most two distinct values among
as,...,ag. Henceforth assume none of these conditions occurs and, moreover,
ag < ay, as < ag. Fix j', v, a1, as and put u = 0,(5', a1, az). Fix j,as,... ,ag and
define

oz + o m(as + «
y1=W+M,yz:7u+M,B1= , By =
nj nj nj nj

(g — ag) (g — a5).

Using (5.14), the equation in (D) becomes

(6.19) P(z;):= M4+ z?) [sin By (cosy1 — z;jsinyi) — sin Ba(cosyz — z;j sinys)]
+ (1+ 27) [sin 2By (2 cos 2y1 — z; sin 2y1) — sin 2B5(2 cos 2y2 — z; sin 2y3)] = 0.

We shall prove that for large M the polynomial P is not identically zero. The
conclusion is that given 3i,...,3;_1, there are a finite number of 3; which would
lead to failure of (D). Consequently, we can always choose an admissible 3; from
within a short interval.

Note that we have proved (by (5.14)) that yu = T’:—J‘f + O(1/M) for some

s o

integer . Therefore, there are 9, = qul) and g = 2 with some integers /; and

Iz such that y1 = g1 + O(1/M), y2 = §2 + O(1/M).



42 K. FORD, S. KONYAGIN

Suppose that all the coefficients of P are zero. The constant term is 4aM +
O(1), a = sin By cos gy — sin By cos §Jo. Since a can take finitely many values, we
conclude from 4aM + O(1) = 0 that
(5.20) a = sin By cos §j; — sin By cos 9 = 0.
In the same way, considering the coefficients of z;, we get

(5.21) sin By sin ¢ — sin By sin g, = 0.

Taking into account that sin B; > 0, sin By > 0, we deduce from (5.20) and (5.21)
that

(522) sin B1 = sin B2, 371 = ’gg.

Further, the last equality implies that in fact y; = y2. This in turn implies that

the sums of terms containing M in the coefficients of P are zero. Therefore, the

conditions that the constant term and the coefficient of z; in P are zero mean that
cos 2y (cos By — cos By) = 0, sin2y;(cos By — cos By) = 0.

It follows from these equalities and (5.22) that

(5.23) B = Bs.

Finally, from (5.22) and (5.23) we obtain a3 = a5 and oy = ag, which does not
agree with our assumptions and completes the proof of Theorem 5.1. [



[Be]
[Da]

[EPS]
[FFK]
[FK1]

[FK2]

PRIME NUMBER RACE AND ZEROS OF L-FUNCTIONS, II 43

REFERENCES

A. S. Besicovitch, Almost periodic functions, Cambridge University Press, 1932.

H. Davenport, Multiplicative Number Theory, 3rd ed., Graduate Texts in Mathematics vol.
74, Springer-Verlag, New York-Berlin, 2000.

P. Erd6s, C. Pomerance, and E. Schmutz, Carmichael’s lambda function, Acta Arith 58
(1991), 363-385.

M. Filaseta, K. Ford, and S. Konyagin, On an irreducibility theorem of A. Schinzel asso-
ciated with coverings of the integers, Illinois J. Math. 44 (2000), no. 3, 633-643.

K. Ford and S. Konyagin, The prime number race and zeros of L-functions off the critical
line, Duke Math. J. 113 (2002), 313-330.

K. Ford and S. Konyagin, Chebyshev’s conjecture and the prime number race, Modern
Problems of Number Theory and its Applications (Russia, Tula, 2001); Topical Problems,
vol. IT, Moscow State Univ., 2002, pp. 67-91.

J. Kaczorowski, The k-functions in multiplicative number theory, I; On complex explicit
formulae, Acta Arith. 56, 195-211.

, A contribution to the Shanks-Rényi race problem, Quart. J. Math., Oxford Ser.
(2) 44 (1993), 451-458.

J. Kaczorowski and O. Ramaré, Almost periodicity of some error terms in prime number
theory (pre-print, 2001).

S. Knapowski and P. Turdn, Comparative prime number theory I., Acta. Math. Sci. Hungar.
13 (1962), 299-314; I1. 13 (1962), 315-342; III. 13 (1962), 343-364; IV. 14 (1963), 31-42;
V. 14 (1963), 43-63; VI. 14 (1963), 65-78; VII. 14 (1963), 241-250; VIIL. 14 (1963),
251-268.

S. Knapowski and P. Turan, Further developments in the comparative prime-number the-
ory. I., Acta Arith. 9 (1964), 23-40; II. 10 (1964), 293-313; III. 11 (1965), 115-127; IV.
11 (1965), 147-161; V. 11 (1965), 193-202; VI. 12 (1966), 85-96; VII. 21 (1972), 193-201.
J.E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. des Sciences Paris
158 (1914), 1869-1872.

H.L. Montgomery, Topics in multiplicative number theory, LNM 227, Springer, New York,
1971.

F. L. Nazarov, Local estimates for exponential polynomials and their applications to in-
equalities of the uncertainty principle type, Algebra i Analiz 5 (1993), no. 4, 3-66 (Russian);
English translation in St. Petersburg Math. J. 5 (1994), no. 4, 663-717.

R. Rumely, Numerical computations concerning the ERH, Math. Comp. 61 (1993), 415—
440.

S. B. Stechkin and A. Yu. Popov, The asymptotic distribution of prime numbers on average,
Uspekhi Mat. Nauk 51:6 (1996), 21-88 (Russian); English translation in Russian Mat.
Surveys 51:6 (1996), 1025-1092.

K.F.: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, IL 61801

S.K.: DEPARTMENT OF MECHANICS AND MATHEMATICS, MOscOw STATE UNIVERSITY,
Moscow 111992, RUSSIA.



