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THE PRIME NUMBER RACE AND ZEROS OF
L-FUNCTIONS OFF THE CRITICAL LINE

KEVIN FORD and SERGEI KONYAGIN

Abstract

We examine the effects of certain hypothetical configurations of zeros of Dirichl
L-functions lying off the critical line on the distribution of primes in arithmetic pro-
gressions.

1. Introduction

Let q,a(X) denote the number of primgs < x with p = a (mod ). The study of
the relative magnitudes of the functiomg »(x) for a fixedq and varyinga is known
colloquially as the “prime race problem” or the “Shankarigi prime race problem.”
Fix g and distinct residuesy, ..., a with (g, q) = 1 for eachi. Consider a game
with r players called “1” throughr” as colorfully described in the first paper of
[KT1]. At time t, each player " has a score ofrq 4 (t) (i.€., player " scores 1
point whenevet reaches a primes a; (modq)). Ast — oo, will each player take
the lead infinitely often? More generally, will all orderings of the players occur for
infinitely many integers? It is generally believed that the answer to both questions i
yesforallg,a, ..., a.

As first noted by P. Chebyshe] in 1853, some orderings may occur far
less frequently than others (e.g.,gf= 3,a; = 1, a» = 2, then player “1” takes
the lead for the first time wheh = 608 981, 813 029; see BH]). More gener-
ally, whenr = 2, & is a quadratic residue modutp a; is a quadratic nonresidue
moduloq, andrngq.a,(X) — mg,a,(X) tends to be positive more often than it is nega-
tive (this phenomenon is now callé&hebyshev’s bigsin 1914, J. Littlewood [[]
proved that the functionsa 3(x) — m4,1(X) andmr3z 2(X) — 73,1(x) both change sign
infinitely often. Later S. Knapowski and P. & [KT1], [KT2] proved for many
g, a, b that mq h(X) — 7q,a(X) changes sign infinitely often. The distribution of the
functionsmq a(X) is closely linked with the distribution of the zeros in the critical
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strip 0 < Ns < 1 of the DirichletL-functionsL (s, x) for the characterg modulog.
Some of the results of Knapowski and @arare proved under the assumption that the
functionsL (s, x) have no real zeros i(0, 1), or that for some numbef, the zeros

of the functionsL (s, x) with |Is| < Kq all have real part equal to/2.

Theoretical results for > 2 are more scant, all depending on the unproven
extended Riemann hypothesis fp(ERHy), which states that all these zeros lie on
the critical linedis = 1/2. J. KaczorowskiK1], [K2], [K3] has shown that the truth
of ERHy implies that for many -tuples(q, as, ..., &), 7q,a;(X) > -+ > 7q.qa (X)
for arbitrarily largex. If, in addition to ERH;, one assumes that the collection of
nontrivial zeros of the_-functions for characters modutpare linearly independent
over the rationals (grand simplicity hypothesis (G3}M. Rubinstein and P. Sarnak
[RY have shown that for amy-tuple of coprime residue classas . .., a moduloq,
all r! orderings of the functionsq 5 (x) occur for infinitely many integers. In fact,
they prove more, that the logarithmic density of the set of xefair which any such
inequality occurs exists and is positive.

In light of the results of Littlewood and of Knapowski and &ar one may ask if
such results for > 2 can be proved without the assumption of ERHh particular,
can it be shown, for some quadruplés a;, ap, ag), that the six orderings of the
functions g 5 (X) occur for infinitely many integers without the assumption of
ERHy (while still allowing the assumption that zeros with imaginary parkq lie
on the critical line for some constaK,)? In this paper we answer this question in the
negative (in a sense) for all quadruplesai, az, az). Thus, in a sense, the hypothesis
ERH, is a necessary condition for proving any such results wherg.

Let Cq be the set of nonprincipal characters modgld.et D = (q, a;, a, ag),
whereay, ap, ag are distinct residues modutpwhich are coprime tg. Suppose for
eachy e Cq that B(x) is a sequence of complex numbers with positive imaginary
part (possibly empty, duplicates allowed), and denotezbthe system oB(y) for
x € Cq. Letn(p, x) be the number of occurrences of the numpen B(x). The
systemZ is called abarrier for D if the following hold:

0] all numbers in eaclB() have real part iz, B3], where 2 < 82 < B3 <
1

(i) for somep; satisfying 2 < 1 < B, if we assume that for eagh e Cq and
p € B(x), L(s, x) has a zero of multiplicityn(p, x) ats = p, and all other
zeros ofL (s, x) in the upper half-plane have real pattg;, then one of the
six orderings of the three functiong, 5 (X) does not occur for large.

If each sequenc8(y) is finite, we call# afinite barrier for D and denote by
| %8| the sum of the number of elements of each sequ@&igg, counted according to
multiplicity.
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THEOREM 1.1

For every real numbet > Oando > 1/2 and for every D= (q, a1, a2, a3), there is
a finite barrier for D, where each sequencé B consists of numbers with real part
< o and imaginary part- 7. In fact, for most D, there is a barrier witf| < 3.

We do not claim that the falsity of ERHmplies that one of the six orderings does
not occur for largex. For example, take > 1/2, and suppose that each nonprincipal
character modulqg has a unique zero with positive imaginary part to the right of the
critical line, ato +iy, . If the numbers, are linearly independent over the rationals,
it follows easily from Lemma 1.1 and the Kronecker-Weyl theorem that in fact al
¢(q)! orderings of the functiongrq a(X) : (a, q) = 1} occur for an unbounded set of
X.

We now present a general formula feg 4 (X) in terms of the zeros of the func-
tions L(s, x). Throughout this paper, constants implied by the Lan@aand Vino-
gradov« symbols may depend am but not on any other variable.

LEMMA 1.2

Letp > 1/2, let x > 10, and for eachy e Cq, let B(x) be the sequence of zeros
(duplicates allowed) of (s, x) with is > B andJIs > 0. Suppose further that all
L (s, x) are zero-free on the real segméhk s < 1. If (a,q) = (b,q) = 1and x is
sufficiently large, then

¢’(Q)(7Tq,a(x) - ”q,b(x))
=21 Y @@ -%®) Y f(0)]+ 00 logx).

x€Cq peB(X)
13p1<x
where
xP 1 [* tr XP xp
f(p) = +—/ ———dt= +0( ~)-
plogx = p Jo tlogot plogx |p|2log® x
Proof

Let A(n) be the von Mangolt function, and define

Vga)= > AM).  WXx) =Y AMxn).
n<x n<x
n=a (mod q)
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Let Dq be the set of all Dirichlet charactegsmoduloq. Then

A(n
a0 = Y o4 oud)
n<x 9

n=a (modq)
X d¥ga) "
—/7 “Tenh + O(x™9)
_ Wg,a(X) +/X Wg,a(t)
log x 2 tlog?t
‘I’ 5 X o
(X5 %) +/ ‘I'(t,zx)dt
logx > tlog?t

dt + O(x¥/?)

7(a)( ) + o).

4@ &
Then
¢(Q)(7Tq,a(x) - ﬂq,b(x))

W(x; XW(t;
=Y (x@ —Y(b))( lg;)f) +/2 tl(ogZXt) dt) +oxY?). (1.1)

x€Cq
By well-known explicit formulas (se€], Chap. 19, (7), (8)]), when € Cq,

W(x; x)=— Z X + O(log? x), (1.2)
[Spl<x
where the sum is over zergsof L(s, x) with 0 < 9%ip < 1. Since the number of
zeros with 0< Jp < T isO(T logT) (see P, Chap. 16, (1)]), by partial summation

we have p Q
X
> }— <xf YT = < xPlog?x.
0<Jp<x P 0<Jp<x |'O|
Rp<B
The implied constant depends on the character and hence oglyByn(1.2),
XP
W(X; x) = — Z = + o(xP log? x). (1.3)
[3pl<x
Rp>p

The first part of the lemma follows by inserting (1.3) into (1.1) and combining zero
p of L(s, x) andp of L(s, ). Lastly, if 1/2 < o = Rp, integration by parts gives

/x LT X+2/ti_ldt
2 tlog?t  plog?t 2~ p Jo logit

o 1 1 VX X
<<X—2+—[ 3 / o tdt+ 83 / t"_ldt]
lpllog=x  Iplllog®2 J2 log® x J yx

XO’
L —7F.
|plog? x
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This completes the proof of the lemma. O

In the next three sections, we show several methods for constructing barriers, whi
by Lemma 1.1, boil down to analyzing the two functions

o
"y (@) -x@) Y X; (j=12.

x€Cq pPEBG)

In Section 2 we construct a barrier using two simple zeros (one of which may be
zero for several characters). Section 3 details a method using a zdrgsfgr) and

a zero forL (s, x?) (for mostD these are simple or double zeros). Lastly, Section 4
presents a more general method with two numbers, which are zeros for each chara
of certain high multiplicities. Together, the three constructions provide barriers for &
quadruplegq, a;, a2, as).

All of the constructions in Sections 2 —4 involve two zeros, one with imaginary
partt and the other with imaginary part.2Thus, we assume that both ERldnd
GSH, are false. Answering a question posed by Sarnak, in Section 5 we construc
barrier (with an infinite seB(x)) where the imaginary parts of the numbers in the
setsB(x) are linearly independent; in particular, we assume that all zeros of eax
L (s, x) are simple and thdt (s, x1) = 0 = L(s, x2) does not occur fog; # x2 and
NS > Bo.

We adopt the following notatiore(z) = €271Z; |x] is the greatest integet X;

[x] is the least integek x; {x} = x — |x] is the fractional part ok; and ||x|| is
the distance fronx to the nearest integer. Also, args the argument of the nonzero
complex number lying in [—m, ). Throughoutq = 5orq > 7, and(a, q) =
(@,q) =(as,q) = 1.

2. First construction

LEMMA 2.1

If, for some relabeling of the numbers, @¢here is a set S of nonprincipal Dirichlet
characters modulo q such that

D ox@) =) x@) # Y x@),
X€S X€S x€S
then there is a barries for D = (q, a1, ag, ag) with || < |S| + 1.
Remark.The hypotheses of Lemma 2.1 are satisfied when, for exanppkes a prim-

itive rootg, andag/ay is not in the subgroup afZ/q7Z)* generated by, /a;. Writing
ap/a; = g, we take the character with(g) = e(1/(f. ¢(@))) andS= {x}.
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Proof

Suppose that/2 < B8 < o2 < o1 < min(e, 0.501), and letyx, be a character with
x2(a1) # x2(a2) (x2 may or may not be ir5). Let Tq be a large number, depending
only ong. Let p1 = o1 + it, p2 = 02 + 2it wheret > Tqy. Suppose.(s, x) has a
simple zero as = p1 for eachy € S, thatL (s, x2) has a simple zero at= p,, and
that no other nontrivial zeros of ary-function inCqy have real part exceedingy Let

D1(X) := ¢(q)(7q,a,(X) — 7q,2, (X)), D2(X) := ¢(q)(7q,a5(X) — 7q,a,(X)).

By Lemma 1.1 and our hypothesesxifs sufficiently large,

D1(x) =

2X%2 eZitIogx
Io); X I:m((Tg + 2it W)

Dz(x)=é’g;[m(f:igixtz)Jro(b—x)], z= Z( (8) — 7(@a) ).

Define

O(@)] W = %2(@2) — X2(a0).

tlogx

AX) = H%arg<01+lt ) H

= H%(t logx + argZ + tan‘l(al/t))H.

If A(x) > (logx)~Y2, then|D2(x)| > x°1/log¥?x. But D1(x) = O(x°2), so for
suchx, mq.a(X) is either the largest or the smallest of the three functions. Whe
AX) < (logx)~Y2, then

it log x
: W)
o2 + 2it
_ _r il (/2
= argW 2+tan <2t)+2tlogx

CXx) := arg(

= argW + tan” <2t) 2argZ — 2tan” (Utl>+0< ! )

Vl1ogx

=argW — 2argZ — F(x) (modmn),

where ¥ (2t) < F(x) < 1/t for largex. The number of possibilities for aky —
2 argZ depends only on; hence we may assume that

1
B = {—(argW — 2argZ)} - =
T
satisfies eitheB = 0 or |B| > 2/t > 2F(x) (by taking Ty sufficiently large). We

have
s
Cx)=nB+ 5~ F(x) (modm).
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If B =0, thenC(x) is eitherr/2 — F(x) or 37/2 — F(x) (mod 2t), whenceD1 (x)
takes only one sign for such Likewise,C(x) € (/2 + 2/t,7) if B > 2/t, and
C(x) € (=F(x), m/2 — 2/t) if B < —2/t. In all cases, wher\(x) < (logx)~/2,
D1(x) takes only one sign. Therefore, one of the orderings, (X) > 7q,a;(X) >
TTq,8, (X) OF 7Tq,2,(X) > 7q,a3(X) > 7q,a, (X) dO€s not occur for large. O

Remark. By similar reasoning, for any integér > 2, one may construct a barrier
with one zero having imaginary parand another zero having imaginary platt

3. Second construction

The basic idea of this section is to find a charagtesuch that the valueg(a),
x(@2), x(ag) are nicely spaced around the unit circle, but not too well spaced (e.¢
cube roots of 1 or translates thereof). In almost all circumstances we can find suc
character.

LEMMA 3.1

Lets = ordy(az/a1), & = ordy(ag/ap), and g = ordg(az/ag). If one of 3, sp, sz is
notin{3, 7, 13, 21}, then for some relabeling of thg’s, there is a Dirichlet character
x satisfying either

() x(a) = x(@) # x(ag) or

(i) x@) =er)witho<ri<rp<rg<l,andd =rp—rq,th =rz—ro

satisfy
% <di <do < % or (di,dp) € {(1—69 1—99> (;_i ;_;3)} 3.1)

Remark.In the case when (i) holds, the hypotheses of Lemma 2.1 holdSwith x },
and thus there is a finite barrier f@r with |%2| = 2. Therefore, in this section we
confine ourselves to the case when (ii) holds (see Lemma 3.5).

Before proving Lemma 3.1, we begin with some simple lemmas about the existen
of characters with certain properties.

LEMMA 3.2
Suppose ¢ 3and (b, q) = 1. Let m be the order of b modulo gq. Then there is a
Dirichlet charactery modulo q withy (b) = e(1/m).

Proof
Suppose thag, ..., g generate(Z/qZ)* and thatb = glfl---gtft. lets =
ordy gi for eachi, and lets be the order ofgif‘. Thens = s/(fi,s) and
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m = lem[s;, ..., §]. Let f/ = fj/(fi,s), so that in particulaxs, f/) = 1. The

gcd of thet + 1 numberam, f/m/s is 1, so there are integels, .. ., hy such that
> hi(f/m/s) = 1 (mod m). Take the character with x (gi) = e(h;/s) for eachi;

theny (b) =[] x(g)" = e(h1 f{/s| + -+ h f{/5)) = e1/m). O

LEMMA 3.3

Suppose that tt are distinct residues modulo q with, ) = (¢, q) = 1. Suppose
that r| ordy b and that for every Pr with a > 1, patl 4 ordq c. Then there is a
Dirichlet charactery modulo q such that

x(b) =e(1/r), x@©" =1

Proof

Lets; = ordy b ands, = ordy c. By Lemma 3.2, there is a charactgrwith x1(b) =
e(1l/s1) and therefore a charactgp with x2(b) = e(1/r). Sincec has ordersp,
x2(C) = e(g/sp) for some integeg. Write s, = wvu, where(u,r) = 1 ando]r.
Definex by xu= 1 (modr), and lety = xJ". Theny (b) = x2(b)*" = e(1/r) and
x (C) = e(gXu/s2) = e(gx/v) = e(@gX(r/v)/r). O

Definition

An odd numbem is goodif for every j, 1 < | < m— 1, there is a numbét such
that among the point®, k/m, kj/m) modulo 1, either two are equal (and not equal
to the third), or two of the three distanags dy, d3 (with sum = 1) between the points
satisfy (3.1).

Remark. To prove that a numbem is good, we need only check thatR | <
(m—+1)/2, since forj = 1 we takek = 1, and ifk works for j = jo, then the samk
works forj =m+ 1 — jo.

LEMMA 3.4
Every odd prime p except ¢ P = {3, 7,13} is good, and for pc P, p? is good.
Also, the numbers 39, 91, and 273 are good.

Proof
A short computation implies that i € P, thenp is not good, buip? is good. Also,
by a short computation, all other odd primgs83 are good, as well as 39, 91, and
273. The followingj values have no associatedalue: form = 3, ] = 2; form = 7,
j=35;form=13;j =3,5,6,8,9,11; form= 21, =5, 17.

Suppose thain = p > 84 is prime, and write each product = £p + r with
0 < r < p. We prove that for eacl € [2, (p+ 1)/2], there is & such that two
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of the three distances satisfy3 < d; < d2 < 1/2. We now divide up thg ¢
[2, (p+ 1)/2] into 9 cases.

Casel: je {3,5,7,(p+1)/2}. Forj =3, takep/6 < k < 2p/9, and forj =5, 7,
take anyk with p/(2j) < k < p/(2] — 2). There is such & whenp > 84. Then
p— jk andjk — k both lie in(p/3, p/2). Forj = (p+ 1)/2, takek = 2[ p/3]; then
r = [p/3], so bothr andk —r lie in (p/3, p/2) for p > 6.

Casell:9< j < p/6+ 1. Takem= [(5/12)(j — 1)]. Then
m+1/2< 5 1/2 1 m+1/3> 5 7/12

<> Y 1 _ > , 1/3.
-1 S127j-1"2 -1 12 jo1 Y
Therefore, if

p(m+1/3) p(m+1/2)

— L k< ——,

-1 -1

thenk andr — k lie in (p/3, p/2). But the above interval has lengif (6] — 6) > 1,
so such & exists.

Caselll:2< j < p/3+1, j even.Takek = (p — 1)/2. Thenr = p— j/2 and both
kandr —kliein (p/3, p/2).

CaselV: P3+ 1< j < 3p/7, j even. Takeh such that 1< h < (p — 3)/18 and

oh+2/3 . 2h+1
— < < —0DP.
eh+r1 P~ “enraf

The largest admissiblé is at least(p — 19)/18, so the above intervals cover
(p(p — 13)/(3(p — 16)), 3p/7), which contains[(p + 4)/3,3p/7) for p > 64.
Then takek = ((p — 1)/2) — 3h, so thatr € (p/2, 2p/3).

CaseV2p/5+1 < j<(p—121)/2, jeven. We takeh sothat 1< h < (p— 3)/12

and
2h ) 2h+1/3
1< ————

ahr1” =17 ahyi "’
The largest admissibleh is at least (p — 13)/12, so these intervals cover
(2p/5, (p(p — 11))/(2(p — 10))), which includes(2p/5, (p — 3)/2] for p > 13.
Then takek = ((p — 1)/2) — 2h, sor — k € (p/3, p/2).

CaseVI: p3+1<j<(p—1)/2 jodd. Takeh,0< h < (p— 15/12 such that

h+1l . 2h+4/3
T L e TS
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Then takek = ((p — 3)/2) — 2h, so thatk —r € (p/3, p/2). The above intervals
cover(p/3, ((p — 3)/2)], provided thatp > 24.

CaseVI: p3—1 < j < p/3+ 1 Writej = (p+1t)/3, where—2 < t < 2,
t # 0. Here we takd&k = 3[p/9] + b, where 0< b < 2 andt + 3b = w (mod 9,
w e {5 7} If p> 28, thenk € (p/3, p/2). If w =5, thenr = 5p/9 + E, where
|E| < 22/9. Thusr € (p/2,2p/3) whenp > 44. Whenw = 7,t = 1, b = 2, then
re(7p/9,7p/9+ 14/9].

Case VIII:5p/21 < j < p/3—1, j odd. Take 1< h < (p — 3)/18, so that

6h—1 . 2h
3"~ 1

Takek = ((p— 1)/2)—3h, sothat € (p/3, p/2). The above intervals covésp/21,
p/3—1).

p.

CaselX: p6+1 < j <5p/21, jodd. If p/5< j—1 < 4p/15,takek = (p — 5)/2,
so thatr € (5p/6 —5/2, p—5/2).If p/7 < ] —1 < 4p/21, thenk = (p—7)/2
works, and if /27 < j < 2p/9, thenk = (p — 9)/2 works. O

Proof of Lemma 3.1
By hypothesis, there are two possibilities:
0] somes (say,s1) is divisible by a prime powep” other than 37, or 13;
(i) eachs divides 273 and somg (say,s1) equals 39, 91, or 273.

Says; is divisible by p*, with p*+1 { s, and p**+1 { s3. By Lemma 3.3, there
is a charactey with x1(az/a1) = e(1/p*) and x1(as/az) = e(m/p"™) for some
integerm. If p = 2, letx = 2", so thaty (ap/a1) = —1 and

1= x(az/ar)x(az/a2) x (a1/a3) = —x (ag/az) x (a1/az).

But each character value on the right is eithelr or 1, so either (az) = yx(ag) or
w—1
x(@) = x(ag) and (i) is satisfied. Ifp is odd, letx, = le if p ¢ Pandlet

X2 = lew_z if p e P. Thenyz(az/a1) = e(l/pY), whereu = 2if p € P and
u = 1 otherwise. Writexz(ag/az) = e(j/pY). If j = 0, thenya(az) = x2(ag) and
(i) is satisfied. Otherwise, singg is good by Lemma 3.4, there is a numHesuch
that two of the three distances of the poifisk/pY, kj/p") (mod 1) satisfy (3.1).
Takingy = Xlz( gives (ii) for some relabeling of tha's.

In the case when eachdivides 273 and; € {39, 91, 273}, by Lemma 3.3 there
is a characteg1 with x1(az/a1) = e(1/r) andyi(az/a2) = e(g/r) for some integer
g (herer = ). Sincer is good by Lemma 3.4, there iskasuch that two of the three
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distances of the point®, k/r, kj/r) (mod 1) satisfy (3.1). Taking; = X'l‘ gives (ii)

for some relabeling of the;’s.

LEMMA 3.5

|

Suppose that for some relabeling af ap, a3 and some Dirichlet character modulo
q,x@) =eri)withoO<ry <rp<rzg<2,dg=rp—riandd =rz—rp and
(dq, dp) satisfies (3.1). Then there is a finite barrigt for D = (q, a1, ap, ag) with

|| < 14.1fd1 > 1/3, then|#| < 3.

Proof

Forsome 12 < 8 < o < o and largey, suppose thdt (s, x) hasazeroa = a+iy

of orderc; and thatl (s, x2) has a zero @& = « + 2iy of ordercy, where

1,2, >3
(€. =159, di=5,
3,5, di=4%.

Suppose that all other nontrivial zerosloffunctions modulay have real park g.

Let

Di1(x) =

|
w (7Tq,a2 (X) — ﬂq,al(x)),

I
ou = 20108

7,83 (X) — ﬂq,ag(x))~

Letu = logx. For largex, Lemma 1.1 and the identity

sina — )~ sina —c) = 260s(a ~ 25 sin(*2)

give
4 & ¢
D1(X) = — Y — sin(dy) cos(Eyu — (11 + r2)me) + 0L/,
14 =1 ¢
2

Do (X) = ; Z % sin(da¢) cos(éyu — (r2 +rz)e) + O(1/y?).
=1

Forj =1, 2 define
gj (y) = cysin(rrd;j) cosy + C—zzsin(anj)coszy

=C sin(nd,-)(cosy + E—icos(ndj)cos zy)

(3.2)
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Because < dj < 1/2, cosrd; and sinrd; are both positive. We claim that

min (g1(yu — (r1+r2)w), Ga(yu — (r2+ra3)w)) <0 (u>0), (3.3)

which is equivalent to showing that

min(g1(y), ga(y — 7(d1 + d2))) <0

for all realy. Sinceg; andgp are periodic and continuous, in fact the minimum above
is < —§ for somes > 0. If y is large (depending o#), this implies that one of
the two functions on the left in (3.2) is negative for all largeThus, for largex,
Tq,a3(X) > 7q,a,(X) > 7q,a, (X) dO€S not occur.

To prove (3.3), we consider the one-parameter family of functiofys A) =
cosy + A coq2y) for 0 < A < 1. These are all even functions, so it suffices to look at
0 < y < . We haveh(y; 1) positive for 0< y < v, and negative fop, <y < 7,
wherev, = cos I[(—1 + +/812 + 1)/(41)]. As a function ofx, v, decreases from
w/2 ath = 0tor/3 ath = 1. Fori = 1,2, letz; = v,; for Aj = (cp/c1) cosnd.
Sincern (dy + dp) < 7, (3.3) follows from

71+ 2o < w(dy + dy). (3.4)

When(dy, d2) € {(6/19, 9/19), (12/37, 16/37)}, (3.4) follows by direct calculation.
When V3 < di, we havec; = 1,¢; = 2, andij = 2cosrdj (j = 1, 2). We claim
for j = 1,2 thatz; < mdj or, equivalently, that cag > coswd; = (1/2)1j. Since

0<Aj <1,
/Bd+1-1 Jat+aii+i-1
CoSzZj = .y
j o, Iy 2
which proves (3.4) in this case as well. O

Combining Lemmas 3.1 and 3.5 gives the following.

COROLLARY 3.6

Let s = ordy(az/a1), let $ = ordy(ag/az), and let 3 = ordy(ai/ag). If one of
s1, S, S3is notin{3, 7, 13, 21}, then there is a finite barrieg for D with |%4| < 14.

4. Third construction
Throughout this section, we assume thatay, a3 do not satisfy the conditions of
Lemma 2.1.

LEMMA 4.1
Let x be a character modulo g such that there are at least two different values amot
x (@), x (a2), x (az). Then the following hold:
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(@  x(a), x (@), x(ag) are distinct;

(b) Ry (ar), Ry (a2), Ry (ag) are distinct;

(c) all the valuesy (a1), x (a2), x (ag) are not+1,
(d)  x hasorder> 7.

Proof

(a) If this does not hold, the conditions of Lemma 2.1 hold with= {x}.

(b) If x(a1) = x(a2), then, by (@))x(az) # Nx(a1) and the conditions of
Lemma 2.1 hold folS = {x, x}.

(c) If x(@az) = 1 andk is the order of the charactet, then the conditions of

Lemma 2.1 hold forS = {x, x2,..., x*1}. If x(ag) = —1 and none of
x (@) =1, theny?(az) = 1 # x?(a1) and the conditions of Lemma 2.1 hold
for S= {x2, x*, ..., x?2}, whereh is the order ofy 2.
(d)  This follows directly from (b) and (c).
O
LEMMA 4.2
There exists a character modulo g of orde> 7 such that
%(x (@) — x(82))R(x*(@2) — x*(@1) # R(x (@) — x(a)R(x*(@) — x*(@2),
(4.1)

and for some integers,tk withl < h < k < 3,

(X (@) —x (az)) (X (a2) — x (al)) #F3 (X (a2) — x (611)) (X (@) —x (az))
(4.2)

Proof

Let x be any character modulp such thaty (az/a;) # 1. By Lemma 4.1(a), the
valuesy (ap), x(a2), x(ag) are distinct. Denote (aj) = e"iei (j = 1,2, 3). By
Lemma 4.1(b), the values o@g), coqg2), cog¢3) are distinct. Therefore, the ma-

trix A = CO§(¢])€ ofg is nonsingular. Since c@®p) = 2 cof(¢p) — 1, the matrix
cos(&pj)é éfz is also nonsingular, and this implies (4.1).

Next, by Lemma 4. l(c) s(noj) # 0 (j = 1, 2,3). Therefore, the ma-
trix B = S|n(<pj)co§(<pj)[ 012 is nonsingular. Using the identities $2p) =
2sin(e) cos(<p) sinBp) = 2sin(p)(4cog(p) — 1), it follows that the matrix
sm(&pj)Z 1 %g’ is also nonsingular. This implies (4.2). O

LEMMA 4.3
Let z and 2 be complex numbers. We can associate with gaehCq a nonnegative
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real numberi, such that

21= ) ay(X(@ — X (@),
x€Cq

z2=Y  y(X(38) — X(a2). (4.3)

x€Cq

Proof

Write zj = uj +ivj (j = 1, 2), whereuy, up, vy, vo are real. By Lemma 4.2, there is
a characteyy = yo for which (4.1) and (4.2) hold. Thus, we can find real numbars
andA, such that

AR (x0(@2) — xo0(@n)) + 2R (x3(@2) — x&(@1)) = u1/2,
2R (x0(@s) — x0(@2)) + 2R (xE(@3) — xE(@2)) = Up/2

and real numbersz andX4 such that

133 (x0 (B2) — x0 (@) + 243 (x0 (@) — xg (@) = v1/2,
133(x0 (80) — xG(@2)) + 1a3(x5 (88) — x5(82)) = v2/2.

By Lemma 4.1, the six charactexs, x2, x3, Xo. X2, Xo are distinct. Now sefz,, =
afor x € {xo, %ol 1y = Az for x e {x3, %3}, andMX = 0 for other characters.
Also, Ietv h = A3, Vzh = —A3, U,k = A4, Vok = —Aa, andv, = O for other
X0 Xo X
characters. Let, =, + v, for eacﬁx Then (4.3) holds withi, = 6, for eachy,
but it may occur tha#, < 0 for somey. However, by Lemma 4.1 # 1 (modq)
for eachj, sozxecq x(aj) = —1for everyj. Thus, for any reay, (4.3) holds with
Ay =0, +y for eachy. O

LEMMA 4.4

If a1, a2, ag do not satisfy the conditions of Lemma 2.1, then foralt 0 ando >
1/2, there is a finite barrier for D= (q, a1, a2, ag), with each By) consisting of
numberso withfp < o andJp > 7.

Proof
By Lemma 4.3, we can find nonnegativj%) andv)((z)

i = v (x(a2) — x(a).

X

—i =Y vP(x(a3) — % (),
X

such that

i =) P (x(@) - x(@),
X
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i = v (x(ag) — X(a2). (4.4)
X

Fix small positives > 0, and take a positive integ€ and nonnegative integeNg((l),
N)((Z) for all characterg modulog such thatv§(1)—N)((1)/Q| <e, |v§2)—N)((2)/Q| <e.
For someo; € (B1,0] and largey > 7, suppose that for all charactegs € Cq
and fork = 1, 2, the functionL(s, x) has a zero a$ = o1 + kiy of orderN)((k).
Suppose that all other nontrivial zerosloffunctions modulay have real park 8.

Let D1(x) = ¢(Q)(7rq,a, (X) — 7q,a,(X)), and letD2(X) = ¢ (q)) (7q,a,(X) — 7q,a5(X))-
By Lemma 1.1 and (4.4), we have

'i‘if D1(x) = Q 3, (200gy 10gX) + cos2y log) + 10 + O/y)).
|
29 D200) = %( — 2c0dy l0gX) + cos2y 10gX) + £2(X) + O(1/7)),

where the functionss (x), s2(x) are uniformly small ife is small. Taking into account
that min(2 cosu + cos 21, —2 cosu + cos 1) < —1 for all u, we obtain that for large
X, 7Tq,a, (X) > 7Tq.a,(X) > 7q,a3(X) dO€S Not occur. O

5. A barrier satisfying GSHq

The construction of this barrier is modeled on the construction in Section 2. For ol
characterB(y) is infinite, the number of elements &) with imaginary part<

T growing like +/T. By altering the parameters in the construction, we can creat
barriers withy/T replaced byT € for any fixede. Assume that for some relabeling of
a1, ag, ag, there are two charactegg, x2 satisfying

x1(@) = x1(a2) # x1(ag), x2(a1) # xz2(a2). (5.1)

Suppose that/2 < B8 < o2 < o1, thatt is large, and that (s, x1) has a simple
zero ats = o7 + it. Suppose thak (s, x2) has simple zeros at the poirds= p;
(j=212,...),wherepj =02 —§j +iyj,8; >0,yj > 0,§; — 0,andy; — oo as
j = oo, and)_1/yj < oo. Also, suppose that the numbers., y», ... are linearly
independent ove@. Define

Z =x1(a2) — x1(a3), W =7X2(a2) — X2(@).
By (5.1),Z # 0 andW # 0. Also define

1 101 _argW 1
o= n(tan +argZ> B = o 1
Let H be the set of integerk such that|ha + B|| < 1/5. Since the number of

possibilities forZ is finite, if t is large, then

< el < !
\2 o

o 10t
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It follows that in every set of 10t | + 1 consecutive integers, one of them iHn As
in Section 2, define

Di(x) := ¢(Q)(7Tq,a1(x) - ﬂq,az(x)), Da(x) := ¢(Q)(7Tq,a3(x) - ﬂq,az(x))-

Suppose thax is sufficiently large, and for brevity write = logx. By Lemma 1.1
and our hypotheses,

2x°1 gtu 1
or = 2o, £77) +o )] 6
and
2x02 . e(—81‘+iyj)u e—8ju B
ST VJZ<:X [9‘(02 — 8ty ) ( viu )] + 00 logx)
—8u
_ Z)LUZ > [e; + o(ey—;)] + 0P log?x), (5.3)
Vj <X J
where )
e(75j+|yj)u
Bj=W—— (5.4)
I)/j

By assumptioan |Bj| <« 1; thusD1(X) < x?2/u. Modulo 27,

itu 1t T
ar —Z =tu—tan - — +argZ =tu— — — mo.
gal—i-lt 01+ g 2 ¢

By (5.2), when|[tu/z — || > u=%9, Da(x) > x°t/(logx)*?, and thus for thesg
eithermq o, (X) is the largest of the three functions or it is the smallest. Next assum
that

Itu/m — ell < u™0°.

We choose$j andy; as follows: 0< §j <02 — B, | 3 < 8j < j 3, yj = 2thj +
O(j~19), where forj > 10t we haveh; € H, hj;1 > hjandj? < hj < j?+].
With these choices,

. e
2

<e' Syt Yyt <u ¥

—dju
2
J j<u1/4 j>u1/4

14

and

—Jju
) L et us s,
j<ul/4or j>u2/5 Vi
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Thus, by (5.3) and (5.4),

02

D10 = &

3 B+ O(u—0-4)]. (5.5)

ul/4< i <U2/5

Supposait/4 < j < u?/5. Sinceh; € H, we have

|5 208 = |5 (arow 4 vju = 5)|
[ 0w
- H,s +hjo + O(u‘o-l)H <021

for largeu. HenceiB; > |Bj|c0g0.42r) > (1/5)|Bj|. Therefore,

YoooaB» ). Lsus

Ul <u/s ul/3<j <oul/3 Vi

It follows from (5.5) that foru large andjut/7 — «|| < u=92,

wherec > 0 depends oy, t, andW. This implies that the inequalityq a,(X) >
7q,a3(X) > 7q,4, (X) does not occur for large.
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