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Chebyshev's bias, and class numbers of imaginary quadratic fields. � 2001 Academic
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1. INTRODUCTION AND SUMMARY

Let 2q, a, b(x)=?q, a(x)&?q, b(x), where ?q, r(x) denotes the number of
primes p�x with p#r (mod q). Rubinstein and Sarnak [33] have recently
shown that on the generalized Riemann hypothesis (GRH) and grand sim-
plicity hypothesis (GSH) one can compute logarithmic densities for the set
of x giving 2q, a, b(x)>0 for q�3, (a, q)=(b, q)=1. The GRH asserts that
all non-trivial zeros of all Dirichlet L-functions have real part equal to 1

2 ,
and the GSH asserts that for each q, the collection of non-trivial zeros of
the L-functions modulo q are linearly independent over the rational
numbers. The logarithmic density of a set S of real numbers is defined as

$(S)= lim
X � �

1
log X |

t # S & [1, X ]

dt
t

,

if the above limit exists. For q�3, let c(q) be the ratio of the number of
quadratic nonresidues to the number of quadratic residues, and define the
scaled counting function

Pq, N, R(x)=
log x

- x \:
b

?q, b(x)&c(q) :
a

?q, a(x)+ , (1.1)

where a runs over the quadratic residues modulo q, and b runs over the
quadratic non-residues. If q has a primitive root (q=2, 4, pm, 2pm for
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prime p), then c(q)=1. On the GRH and GSH, Rubinstein and Sarnak
[33, p. 188] compute logarithmic densities of [x: Pq, N, R(x)>0] for q=3,
4, 5, 7, 11, 13 and they prove that this density is greater than 1

2 for all
primes q. They show for example, that P4, N, R(x)>0, on a logarithmic
scale, for 99.590 of all x. These computations provide a very precise deter-
mination of the ``sense'' in which we may interpret Chebyshev's remark [9]
that there are many more primes of form 4n+3 than of form 4n+1. We
shall refer to these densities as the ``bias for q.''

Values of x with Pq, N, R(x)<0 occur infrequently on a logarithmic scale
if Chebyshev's bias is high, and values of x with ?4, 3(x)<?4, 1(x) or
?3, 2(x)<?3, 1(x) occur so rarely that the regions are of special interest (see
[3, 4]).

There are several natural questions arising from Rubinstein and Sarnak's
paper which are treated here. Throughout this paper all densities and
biases referred to are one a logarithmic scale, since Rubinstein and Sarnak
[33] and Kaczorowski [19] have made it clear that natural densities
cannot be expected to exist for any q.

(1) Is there an easier way to compute Chebyshev's bias? We give an
affirmative answer to this, although our method is non-rigorous. The
method depends only on knowledge of small zeros of the appropriate
L-functions, and the numbers agree very well with more complicated (and
more rigorous) computations made in [33]. This makes it possible to
quickly approximate the bias for any modulus q for which zeros have been
computed [33], including q lacking primitive roots such as q=8 and
q=24, where, as Shanks [35] first noted, the bias is quite high; see also
[21, p. 302].

(2) Although the bias approaches 1
2 as q � � [33, Theorem 1.6] the

convergence is far from monotone. For example, the bias is much higher
for q=409 than for q=43, 67, or 163. As will be described more fully in
Section 2, when q has a primitive root the bias depends heavily on the loca-
tion of the first few zeros (closest to the real axis) of L(s, /q), /q being the
real nonprincipal character mod q. In particular, the bias is heavily
influenced by the size of the first zero (see Tables III�VII). Several authors
[28, 30, 40] have noted a connection between small values of h(&q),
Chebyshev's bias, and small first zeros of L(s, /q). Making use of the
Chowla�Selberg formula, we show that if Q(- &q) is an imaginary quad-
ratic number field with class number 1, we can expect that L(s, /q) has a
relatively low first zero. This is especially true for L(s, /163) with its smallest
zero near 1

2+0.2029i. Our Tables VI�VIII in Section 3 further illustrate the
connection between low-lying zeros and small class numbers (see also
[28, 30]). We observe that if moduli are arranged according to class
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number, the smallest zero of L(s, /q) is nearly monotonic in q when the
class number is small (see Tables VI, VII).

(3) Can Chebyshev's bias be approximated well using actual prime
counts? We computed Pq, N, R(x) up to x=1012 for various q, and this
interval appears insufficient to approximate the bias well (see Table I). In
particular, P163, N, R(x) is negative (on a standard scale) for over 930 of
the integers less than 1010, in contrast to all other moduli <500. This
seemingly aberrant behavior (since P163, N, R(x) must have a logarithmic
density greater than 1

2 on the GRH and GSH) can be explained by the low
first zero of L(s, /q) together with an explicit formula for Pq, N, R(x) in
terms of the zeros of L(s, /q). The analog of the Riemann�von Mangoldt
formula for nonprincipal Dirichlet characters [23, Sect. 138] gives

?q, a(x)=
li(x)
,(q)

&
1
2

:

p2#a (mod q)
p�x 1�2

1

&
1

,(q)
:

/ mod q

/� (a) :
|\|�x

li(x\)+O(x1�3), (1.2)

where \ runs over the non-trivial zeros of L(s, /) and for non-real z,

li(ez)=ez |
�

0

e&t

z&t
dt.

Suppose now that q has a primitive root (c(q)=1). Then we obtain the
relatively simple formula

Pq, N, R(x)=
log x

- x \?(x1�2)
2

+ :

L(\, /q)=0
|\|�x

li(x\)++O(x&1�6 log x). (1.3)

If \=1�2+i#, we also have the approximation

li(x\)+li(x\� )
x1�2�log x

r\ xi#

1�2+i#
+

x&i#

1�2&i#+=
2 sin(# log x+|#)

- 1�4+#2
, (1.4)

where |#=cot&1(2#). Let #0 be the imaginary part of the first zero of
L(s, /q) above the real axis. When #0 is small, the terms in the sum on \
in (1.3) corresponding to \=1�2+i#0 and its conjugate contribute a large
amount and empirical observations show it often dominating the other
terms of the sum. As the right side of (1.4) is periodic in log x with period
2?�#, we shall refer to p=2?�#0 as the quasi-period for Pq, N, R . This will be
described in Section 2. For q=163 we have pr2?�0.2029r30.967 so to
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obtain a complete period with actual prime counts, one has to compute out
to about 2.810_1013. Only when computers are capable of carrying actual
prime counts out beyond several of these enormous quasi-periods will such
counts begin to approximate the bias of 590 which we obtain using the
method described in Section 2 (see Fig. 5 and Tables VI and VII).

In Section 2 we describe our method of computing Chebyshev's bias, and
Figs. 1�6 show plots of Pq, N, R(x) for all q with h(&q)=1. In Section 3 we
describe how the Chowla�Selberg formula can be used to show that moduli
q such that Q(- &q) has relatively small class number can be expected to
have a small first zero and, consequently a longer quasi-period and lower
bias; see Tables III�VIII. In Section 4, we use a tool which has recently
been developed by the second author, which will be treated in detail else-
where, to locate sign changes of ?q, a(x)&?q, b(x) for values of x as large
as 1019. For example, when x=1.9282_1014, we have ?8, 1(x)>?8, 7(x),
a computation which takes about 10 minutes. We also examine Chebyshev's
bias for q=8, which does not have a primitive root.

2. APPROXIMATING CHEBYSHEV'S BIAS

We confine ourselves in this section to moduli q having a primitive root.
The first term on the right side of (1.3) accounts for Chebyshev's bias (see
[13, 15] for a combinatorial derivation of this term). By (1.4), each pair of
conjugate zeros \, \� produces an oscillatory term with amplitude about 2�#
and period 2?�# in log x. When # is large, the right side of (1.4) is
approximated well by (2�#) sin(# log x). However, for small zeros this is
poor and the right side of (1.4) is far superior.

As an approximation, we truncate the sum in (1.3), including only zeros
with |#|�T, and use the approximation (1.4). Specifically, we work with
the scaled function

P*q, N, R(x; T )=1+ :

0<#�T
\

2 sin(# log x+|#)

- 1�4+#2
. (2.1)

We also define

$(S; x, y) :=
1

log( y�x) |
[x, y] & S

dt
t

,

which we call the density (or bias) of S over [x, y]. We compute values
of P*q, N, R(x; T ) for logarithmically equally spaced points x with x0�x�x1 ,
using sample points x=x0e2k, k=0, 1, 2, ... . With x0=1010, x1=10300
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and 2=0.001 this gives 667750 data points. This bias is computed by
dividing the number of points above and on the zero line by the total num-
ber of points. These produce numbers, denoted b(q, T; x0 , q1 , 2), which are
approximations of $(P*q, N, R(x; T )>0; x0 , x1). Rumely [34] has generously
provided us with the zeros from his extensive computations, and this
includes zeros to height T=10000 which are accurate to within 10&12 for
most small moduli.

It is easy to show [33, Sect. 2] that the bias for q is equal to

lim
T � �

$[x�1 : P*q, N, R(x; T )>0].

Suppose there are M zeros \= 1
2+i#j (0� j�M&1) with imaginary part

in (0, T]. If the #j are linearly independent and 2?
2 is not a rational linear

combination of the set of they #j , then the numbers 1, #02�2?, ...,
(#M&12)�2? are linearly independent over Q. Hence, by the Kronecker�
Weyl Theorem, the vectors

\
#0(log x0+2k)+|#0

2?
, ...,

#M&1(log x0+2k)+|#M&1

2? +
are uniformly distributed modulo 1 in [0, 1]M. Hence (see [33,
Lemma 2.3]),

$[x: P*q, N, R(x; T )>0]= lim
y � �

b(q, T; x0 , y, 2).

Therefore, with enough zeros and enough data points we can approximate
the bias to any number of digits. However, the values of T, y and 2
required to obtain the bias to a given accuracy cannot be determined
without more knowledge of the distribution of the zeros. The method in
[33] does not lend itself immediately to a measure of how rapidly the
logarithmic density of [1�x�Y : Pq, N, R(x)>0] approaches the bias as
Y � �. This requires some quantitative bounds on linear combinations of
the zeros. It does appear that moduli for which L(s, /q) has a small first
zero require more data points to obtain the same accuracy of the bias. This
will be discussed further below.

All of our computed biases using (2.1) agree well with the values given
in [33]. As an example, when q=11, we compute that b(11, 10000; 1010,
10300, 0.001)=0.917039 } } } and b(11, 10000; e1, e60000, 0.05)=0.916884 } } } .
Assuming the GRH and GSH, Rubinstein and Sarnak compute a bias of
0.916795 } } } . Table I gives various values of b(q, T; x0 , x1 , 2), truncated in
the last decimal place (columns B1 , B2), plus values of the actual bias over
the intervals [1, 1012] and [104, 1012] (columns B3 , B4). Also shown are
values of Chebyshev's bias computed by Rubinstein and Sarnak (these
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TABLE I

Approximations to Chebyshev's Bias

q B1 B2 B3 B4 B5

3 0.999167 0.999094 0.999981 0.999971 0.999063
4 0.995965 0.995944 0.998304 0.997456 0.995928
5 0.995558 0.995423 0.999815 0.999723 0.995422
7 0.977266 0.978452 0.979145 0.990730 0.978258

11 0.917039 0.916884 0.951735 0.948224 0.916795
13 0.946274 0.944532 0.985219 0.978192 0.944319
19 0.804196 0.804913 0.849136 0.843958
43 0.678487 0.677984 0.700533 0.685422
67 0.638892 0.637973 0.667905 0.684773

163 0.601844 0.590658 0.548728 0.323093

Note. B1=b(q, T; 1010, 10300, .001); B2=b(q, T; e1, e60000, 0.05) (T=10000 for q<17,
T=2500 for q>17); B3 is the actual bias over [1, 1012]; B4 is the bias over [104, 1012]; B5

is the theoretical bias from [33] (the bias was not computed for q>13).

values were only given to 4 decimal places in [33], and were not computed
for q>13).

Figures 1�6 include logarithmic-scale plots of Pq, N, R(x) for q=3, 4, 5, 7,
11, 13, 19, 43, 67, and 163, as well as plots of some functions P*q, N, R(x; T ).
In all figures, log10 x is written as log10(x). Both functions tend to oscillate
about the line y=1, and for small q they rarely cross the y=0 line. Graphs
of P*q, N, R(x; T ) are produced by plotting 460 logarithmically equally
spaced points between successive powers of ten. The plots of Pq, N, R(x) are

TABLE II

Approximations to Chebyshev's Bias

q T x0 x1 2 b(q, T; x0 , x1 , 2)

19 10000 1010 10300 0.001 0.804196
19 1000 1010 10300 0.001 0.804277
19 100 1010 10300 0.001 0.804843
19 20 1010 10300 0.001 0.809789

163 2500 e16 e9000000 2?
#0

0.001173

163 2500 e31.48 e8980000 2?
#0

1.000000

163 2500 e31 e3200000 2?
#1&2#0

0.632740

Note. q=19, different T-values; q=163, different 2-values.
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FIG. 1. P4, N, R(x) (top), P*4, N, R(x; 10000) (middle), bias over [1, x] (bottom).

produced by dividing each power of 10 into roughly 300 logarithmically
equally spaced intervals, and plotting vertical line segments from the mini-
mum to the maximum of the function in that interval.

Of course, computations of actual prime counts give less accurate biases.
For larger q they are averaged over few quasi-periods, and for some
smaller q (e.g. 3, 4, 5) they include very few negative regions. Also, the few

FIG. 2. P*3, N, R(x; 10000), P*4, N, R(x; 10000).
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primes<100 account for 1�6 of the integers up to 1012 on a logarithmic
scale, and they exert great influence on bias values. This is especially evident
for q=163. Although the logarithmic density of the set of x giving
Pq, N, R(x)=0 is zero (on the GRH, see [33]), the subset of [1, 1012] where
Pq, N, R(x)=0 has substantial logarithmic density. For example, P4, N, R(x)=0
in the intervals [1, 3) and [5, 7), and these two intervals account for
5.190 of [1, 1012] on a logarithmic scale. Hence, whether or not these
x-values are included in the computations has a large effect on the bias
numbers in column B3 of Table I. The effect of zero values of Pq, N, R(x) is
removed somewhat in column B4 , where the bias over [104, 1012] is given.
However, the essentially linear running time of the program using zeros of
L(s, /q) makes it possible to estimate the bias over thousands of quasi-
periods using (2.1) in a relatively short time. Whether or not zero values
of Pq, N, R(x) are included or excluded has negligible effect on the values
computed in columns B1 and B2 .

Clearly, with fixed 2 and x0 , larger values of x1 will give more accurate
bias numbers. The effect of different choices of 2 is made clear in the case
of q=163 (Table II). Notice that the choice 2= 2?

#0
makes the first term in

the sum in (2.1) constant for all sample points. The choice 2=2?�
(#1&2#0) also gives an erroneous value of the bias, since 1, #0 2�2?, #12�2?
are linearly independent, but the error is less in this case. Increasing T also
improves the accuracy of the computed biases. However, for q=19 we
obtained with just 10 zeros (T=20) a bias value which differs by less than
10 from the bias using the 3184 zeros to height T=10000.

FIG. 3. P*19, N, R(x; T ) for various T.
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FIG. 4. Pq, N, R(x) for q=3, 5, 7, 11, 13, 19.
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FIG. 5. P67, N, R(x) and P163, N, R(x).

Figure 1 depicts both P4, N, R(x) and P*4, N, R(x; 10000) for x�1012. The
two functions are visually similar, and each region where P4, N, R(x)<0
is ``detected'' by the function P*4, N, R(x; 10000) (see also the table in
Section 4). Figure 2 shows plots of P*q, N, R(x; 10000) for q=3 and q=4.
These graphs should be a good predictor of the location of regions where
Pq, N, R(x) takes negative values. In particular, the next negative region for
q=3 should be at about 6.150_1012, while there are probably no other
negative regions before 1017. Using an averaging argument, one can show
that negative values of Pq, N, R(x) in fact do exist near some points where
P*q, N, R(x; T ) is negative (see [11]). Figure 3 shows P*19, N, R(x; T ) with
three different values of T, together with the values of the bias obtained
using (2.1) over [1010, 10300]. Figures 4, 5, and 6 show plots of Pq, N, R(x)
for q=3, 5, 7, 11, 13, 19, 43, 67 and 163 obtained from a 4-day computer

FIG. 6. P43, N, R(x) (top) and bias over [1, x] (bottom).
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run. Although the bias for 5 (0.9954 } } } ) is very close to the bias for 4
(0.9959 } } } ), the first sign change in P5, N, R(x) occurs at x=2082927221.
The quasi-period effect can be seen visually in the plot of P11, N, R(x) (there
is about one quasi-period in each power of ten), and also for q=19, 43
and 67. Figure 6 shows both P43, N, R(x) (top graph) and the logarithmic den-
sity of [P43, N, R( y)>0] over 2� y�x. The large quasi-period is visually
obvious, and this illustrates why actual prime counts cannot be used to
accurately estimate the bias for moduli with large quasi-periods (equiv-
alently, moduli with small first zero of L(s, /q)). Even more dramatic is the
case q=163. The interval 105�x�1010 represents only about 400 of the
quasi-period, and Chebyshev's bias appears to be reversed for x in this
range. In fact, on a natural scale, P163, N, R(x)<0 for more than 930 of the
integers �1010. This can be explained with (1.3), since a low first zero #0

makes the first term in the sum about 4 sin(#0 log x+?�2), which is
negative for ?�2�#0 log x�3?�2.

3. USE OF THE CHOWLA�SELBERG FORMULA TO EXPLAIN
THE SMALL FIRST ZERO FOR q=163

In this section we use the Chowla�Selberg formula to explain the connec-
tion between small class number of Q(- d ) (negative d ) and small first zero
of L(s, /d), /d being the quadratic character modulo &d. Tables III�VIII
make clear that low first zero, long quasi-period, and Chebyshev bias are
closely connected. Among moduli with the same class number (1, 2 or 3),
there is a nearly monotone decrease in the lowest first zero of L(s, /d) and
a corresponding decrease in Chebyshev's bias. This monotonicity is weaker
for class numbers 4 and 5, and disappears if all prime moduli are listed in
increasing order (regardless of class number) (Table VII, leftmost columns).

Let d be a negative integer, and let h(d ) be the class number of the
imaginary quadratic number field Q(- d ). Let /d (n)=( d

n) be Kronecker's
extension of Legendre's symbol and let

`Q(- d )(s)=`(s) L(s, /d), (3.1)

be the Dedekind zeta function of the quadratic field Q(- d ).
Observe that since the first zero of `(s) is near 1

2+14.1347i, the zeros of
`Q(- d )(s) that lie below this value correspond to zeros of L(s, /d).

Let f1(m, n), ..., fh(d )(m, n) be representatives for the h(d ) equivalence
classes of binary quadratic forms of discriminant d. Each fj , j=1, ..., h(d ),
is of the form aj m2+bjmn+cjn2 with b2

j &4ajcj=d. Then [10, Chap. 6]

`Q(- d )(s)=
1
|

:
h(d )

j=1

:$ (ajm2+bjmn+cjn2)&s, Rs>1 (3.2)
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where

2, d<&4,

|={4, d=&4,

6, d=&3,

and where �$ denotes the sums over all pairs (m, n) # Z2, (m, n){(0, 0).
The Chowla�Selberg formula [8] expresses a sum of the form

Z(s)=:$ (am2+bmn+cn2)&s, Rs>1,

with d=b2&4ac<0, a, c>0, as a series of K-Bessel functions. Specifically,

Z(s)=2`(2s) a&s+
2as&1

- ?
1(s)( |d |1�2�2)2s&1 `(2s&1) 1(s&1�2)+Q(s), (3.3)

where

Q(s)=
8?s2s&1�2

a1�21(s) |d | (2s&1)�4 :
�

n=1

ns&1�2_1&2s(n)

_cos \n?b
a + Ks&1�2 \?n |d | 1�2

a + ,

_|(n)= :
m | n

m|,

and

K|(z)=
1
2 |

�

0
exp \&

z
2 \y+

1
y++ y|&1 dy, Rz>0.

If |d |1�2�a is large, we can use this formula to approximate Z(s) because
Ks&1�2(x) decreases exponentially fast as x � �. Indeed, focusing on
Rs=1�2,

Kit(x)=
1
2 |

�

1
exp \&

x
2 \y+

1
y++ ( yit+ y&it)

dy
y

so that

|Kit(x)|�|
�

1
exp \&

x
2 \y+

1
y++

dy
y

<� ?
2x

e&x. (3.4)
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The last inequality can be seen by writing y+1�y=( y1�2& y&1�2)2+2,
changing variables u=x1�2( y1�2& y&1�2), and using y1�2+ y&1�2�2.

It was conjectured by Gauss that there are exactly nine imaginary quad-
ratic number fields with h(d )=1 (namely d=&3, &4, &7, &8, &11, &19,
&43, &67, &163), and Stark [36, 38] proved this conjecture. Returning
to (3.2), for such d, we have

`Q(- d )(s)=
1
|

Z(z),

with

am2+bmn+cn2={
m2+mn+

1&d
4

n2,

m2&
d
4

n2,

d#1 (mod 4),

d#0 (mod 4),

being a representative form of discriminant d. Note that in both cases,
a=1, so that |d |1�2�a is, for a given d, as large as possible.

Rather than `Q(- d )(s), it is more elegant to consider

\ |d |1�2

2? +
s

1(s) `Q(- d )(s)=
1
| \ |d |1�2

2? +
s

1(s) Z(s), (3.5)

which is real on the critical line, by the functional equation for `Q(- d )(s)
(note that the gamma factor is as above since we are only considering
imaginary quadratic fields).

Using (3.3) and (3.4) we find that (3.5) is

2
| \ |d | 1�2

2 +
2

?&s1(s) `(2s)

+
2
| \ |d | 1�2

2 +
1&s

? (1&2s)�2`(2s&1) 1(s&1�2)+rd (s),

where, on R(s)=1�2,

|rd (s)|�
4
|

:
�

n=1

_0(n)
n1�2 e&n? |d |1�2

�2e&? |d |1�2
+4

e&2? |d |1�2

1&e&? |d |1�2�2.02e&? |d |1�2

(for the 2nd to last inequality we used |�2 and _0(n)<2n1�2 for n�2,
and, for the last inequality, |d |�3). The error term rd (s) is smallest for the
largest |d |, i.e., |d |=163.
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On the critical line, using the functional equation for `(s), the main
terms may be written as

4
|

R \\ |d | 1�2

2? +
1�2+it

1(1�2+it) `(1+2it)+ . (3.6)

Hence, the low zeros of `Q(- d )(s) will be close to those determined by (3.6).
However, as |t| grows, by Stirling's formula |1(1�2+it)|t- 2? e&? |t|�2,
and (3.6) quickly becomes smaller than rd (1�2+it) as |t| surpasses 2 |d |1�2.

In Table III we give a comparison of the first few zeros of `Q(- d )(s) and
values obtained using (3.6) when h(d )=1. For d=&43, &67, and &163
the results are quite striking.

TABLE III

Actual Zeros of L(s, /d) vs Those of (3.6) for h(d )=1

|d | Actual zeros Zeros of (3.6) |d | Actual zeros Zeros of (3.6)

3 8.03973715 7.26668581 11 2.47724371 2.47563768
3 11.24920620 10.98289812 11 6.80070840 6.86524871
3 14.13472514 13.98189084 11 8.97128436 8.65385203
3 15.70461917 16.10467160 11 10.10833735 10.63557096
3 18.26199749 18.50496541 11 13.04011532 12.42259662

4 6.02094890 6.97468313 19 1.51608375 1.51607047
4 10.24377030 10.40228755 19 5.47661417 5.47743953
4 12.98809801 12.42264167 19 7.16067082 7.15644966
4 14.13472514 15.08382463 19 9.38332632 9.41292967
4 16.34260710 16.40456028 19 10.78581062 10.69731620

7 4.47573828 4.35854220 43 0.836400774 0.836400771
7 6.84549171 7.29023926 43 3.695326872 3.695326948
7 11.16018454 10.45963096 43 6.130223479 6.130221699
7 12.48960334 12.32965902 43 7.204421761 7.204428133
7 14.13472514 14.46550375 43 8.926634047 8.926603788

8 3.57615483 3.60366640 67 0.604314750 0.604314758
8 7.43447295 7.14485743 67 3.121420750 3.121420751
8 9.50320196 10.25200930 67 5.274587236 5.274587233
8 12.34050115 11.87421786 67 6.885631366 6.885631395
8 14.13472514 13.24028870 67 7.760383041 7.760382966

163 0.202901337 0.202901337
163 2.368533946 2.368533946
163 4.055068538 4.055068538
163 5.675975035 5.675975036
163 6.203131581 6.903131581

Note. Observe that the approximation is best for |d |=163.
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Observe that (3.6) is zero when

arg \\ |d |1�2

2? +
it

1(1�2+it) `(1+2it)+ (3.7)

is an odd multiple of ?
2 . Now, for |t| small,

arg 1(1�2+it)r&1.96351t+2.8048t3+O(t5)

TABLE IV

Some Class Number 3 and 5 Examples

Some h(d )=3 examples Some h(d )=5 examples

|d | Actual zeros Zeros of (3.8) |d | Actual zeros Zeros of (3.8)

23 2.87133984 2.87134326 47 2.217378213 2.22844809007
23 4.21518980 4.21501327 47 3.773974388 3.70387074661
23 6.73118915 6.73058016 47 5.023033964 5.15965904330
23 8.33484903 8.34313985 47 7.402618666 7.10350784569
23 10.63387123 10.60201591 47 8.118457993 8.41675763449

31 2.03498242 2.0349819103 79 1.466837987 1.47057672725
31 4.78968470 4.7896509428 79 3.441804066 3.39927010637
31 5.68644602 5.6864949507 79 5.019924093 5.36241173560
31 7.33591057 7.3361039491 79 6.257024678 5.66545017728
31 10.18385049 10.1796410431 79 6.762211042 7.12589602793

59 1.606455246 1.6088832927 787 0.631185188 0.63104761130
59 2.773359145 2.7652114200 787 1.390917921 1.39132633669
59 5.323877349 5.3590667021 787 2.798945295 2.79795419479
59 7.325391655 7.1447672724 787 4.286551977 4.29209340473
59 8.254212627 10.6399730880 787 4.973877955 4.96361223322

83 1.222920484 1.2231247949 947 0.289813660 0.28981220311
83 2.851649031 2.8501169772 947 2.021693610 2.02171726431
83 4.438368200 4.4427744279 947 2.742729316 2.74265875113
83 6.917592799 6.8733873005 947 3.604962603 3.60507568383
83 7.926910976 10.2046267235 947 4.677476492 4.67732014233

883 0.260999143 0.26150380157
883 1.420753133 1.41924142972
883 2.948889446 2.95571899768
883 3.826164779 3.81211993259
883 5.143970727 5.18011427328

907 0.249926489 0.24965727136
907 1.413631409 1.41441808670
907 2.939204779 2.93563189434
907 3.794263347 3.80159243875
907 5.164186740 5.14422918306

68 BAYS ET AL.



and

arg `(1+2it)r &?�2+1.15443t&0.137836t3+O(t5), t{0

(computed using Maple) so that (3.7) equals

&?�2+((1�2) log |d |&2.64696) t+2.66696t3+O(t5) (mod 2?).

(the &2.64696 } } } here is equal to #&log(8?)). Ignoring the terms of
degree higher than t3, the above expression starts at &?�2 at t=0 (this
corresponds to the pole of `), moves away, then returns to &?�2, encoun-
tering the first zero at approximately t=- 0.9925&0.18748 log |d | (with
less accuracy the larger this value is).

Remarks. (1) Had there been a |d |>199 with h(d )=1, then the coef-
ficient of t in the Maclaurin expansion of (3.7) would be positive, and its
first zero would actually be quite high, since the first multiple of ?�2
encountered would then be ?�2 rather than &?�2. The low zero phenome-
non is not something that would have persisted. This is not surprising since
the linear term in the series expansion for (3.7) is closely related to the
value of L(1�2, /d) and hence to the GRH. As is shown in [8, Sect. 9], had
there been a |d |>199 with h(d )=1, the value of L(1�2, /d) would have
been negative in violation of the GRH for L(s, /d) (since, by the class
number formula, L(1, /d)>0, so a negative value at s=1�2 would imply a
zero somewhere on (1�2, 1)).

(2) Let 1�2+i#d be the first zero (with #d smallest) of L(s, /d). From
conjectures regarding the distribution of low lying zeros of L-functions

TABLE V

Some Examples with |d | near 109

|d | Actual zeros Zeros of (3.8)

1000000103 0.345939372 0.34383231663
1000000103 0.411877310 0.41441458500
1000000103 0.877544016 0.87587286032
1000000103 1.246499176 1.25028137102

1000000663 0.092368733 0.09155513661
1000000663 0.441328789 0.44209903514
1000000663 0.747623494 0.74670904731
1000000663 1.285017617 1.28793823979

1000011583 0.008057619 not detected!
1000011583 0.592419804 0.59357041358
1000011583 0.863743687 0.86095747438
1000011583 1.204354203 1.21162536229
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[20], one expects, that, on average, (#d �(2?)) log( |d |�?) should equal 0.78.
(see [32]). So, the zero 1�2+0.202901337i of L(s, /163) is indeed quite low
(with its normalized value equal to 0.127524729).

(3) One can also investigate what happens when h(d )>1, d<0. In
that case, a set of representatives for the h(d ) equivalence classes of binary
quadratic forms is given by

[(a, b, c) # Z3 | b2&4ac=d, (a, b, c)=1, a>0, &a<b�a, c�a

with c>a if b<0].

Substituting (3.3) into (3.2) for each such form and dropping the Q(s)
term, we are led to investigate

:
h(d )

j=1

a&1�2
j R \\ |d |1�2

2? +
it

a&it
j 1(1�2+it) `(1+2it)+ . (3.8)

TABLE VII

Smallest Zero and Quasi-Period for Prime q�79

h(&q)=1

q #0 p q #0 p Bias

3 8.0397 0.7815 3 8.0397 0.7815 99.900

5 6.6484 0.9450 4 6.0209 1.0435 99.540

7 4.4757 1.4038 7 4.4757 1.4038 97.820

11 2.4772 2.5363 11 2.4772 2.5363 91.670

13 3.1193 2.0142 19 1.5160 4.1443 80.650

17 3.7281 1.6853 43 0.8364 7.5121 67.750

19 1.5160 4.1443 67 0.6043 10.3972 63.790

23 2.8713 2.1882 163 0.2029 30.9667 59.080

29 1.7938 3.5027
31 2.0349 3.0875
37 2.0572 3.0542
41 2.4753 2.5383
43 0.8364 7.5121
47 2.2173 2.8336
53 1.2871 4.8816
59 1.6064 3.9112
61 1.9445 3.2311
67 0.6043 10.3972
71 2.1795 2.8827
73 2.5980 2.4183
79 1.4668 4.2834

Note. Chebyshev's bias, smallest zero of L(s, /d), and quasi-period for h(&q)=1.
#0=imaginary part of smallest zero of L(s, /q); p=quasi-period=2?�#0 . All values are
truncated.
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The latter step (dropping the Q(s) term) is not valid for general d.
However, each aj<- |d |�3, and so each Kit term is, using (3.4), at most
0.002328 in size, if not much smaller. Furthermore, the presence of the a1�2

j

in the denominator of Q(s) helps slightly as does the cos(n?bj �aj) term
which leads to cancellation as we sum over j. In short, it seems, numeri-
cally, that (3.8) can be used to study the low zeros of L(s, /d) to the first
2�3 decimal places. However, as d increases or h increases, the approxima-
tion (3.8) becomes less accurate. See Table IV where actual zeros are com-
pared to those of (3.8) for several values of d<0. Observe, however, in
Table IV that the nearly monotone decrease in the size of the first zero as
|d | increases is not just a class number 1 phenomenon, though it weakens
as h increases.

Table V lists some of the zeros of L(s, /d) compared with the zeros of
(3.8) for some large d. Observe that for |d |=1000011583, one of the zeros
is not detected by (3.8). This shows that, as d grows, we cannot ignore the
importance of the K-Bessel terms in approximating L(s, /d). The column of
actual zeros of L(s, /d) come from a computation done in [32]. Also note
in Table IV the poor approximation for the 5th zeros for |d |=59, 83. Here
it seems that (3.8) skips over two of the zeros (i.e. misses one sign change)
in each case. This is not too surprising since the K-Bessel sum becomes
more significant as Is increases.

Tables VI and VII tabulate information about the lowest zero of L(s, /d)
for all d with class number �5, as well as all prime q�67. For values
of h(d ) see [1, 2, 7]. For q>13 and h(&q)=1 the biases are computed
using (2.1).

TABLE VIII

The First Zero of L(s, /d) (Truncated) for the Largest and Smallest Discriminants with
Odd Class Number <25

Class number Largest |d | First zero Smallest |d | First zero

1 163 0.202901337 3 8.03973715
3 907 0.249926489 23 2.87133984
5 2683 0.156678803 47 2.21737821
7 5923 0.154845332 71 2.17958092
9 10627 0.050291508 199 1.30027235

11 15667 0.164688811 167 1.56701462
13 20563 0.108750288 191 1.65670887
15 34483 0.074760508 239 1.60129099
17 37123 0.327102331 383 1.24749268
19 38707 0.219545154 311 1.77809609
21 61483 0.150744347 431 1.39727670
23 90787 0.126125031 647 1.15586233

Note. The values of the discriminant are taken from [1].
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We have observed that for class numbers 1, 3, 5, 7, and 9 that the
smallest first zero corresponds in every case with the largest |d | and the
largest first zero with the smallest |d | (see Table VIII). In general, this is
not always case. For example, when h=11, d=&13003, the first zero
is 0.0996261599, and when h=15, d=&17,923, the first zero is
0.03098579949. In the context of Chebyshev's bias, actual prime counts for
these moduli (especially 10,627 and 17,923) are even more misleading than
for q=163 as they cover only a small portion of one quasi-period.

4. SIGN CHANGES OF 2q, a, b(x) WHEN q=3, 4, 5, OR 8

Sign changes of 24, 3, 1(x) occur infrequently and 23, 2, 1(x) even more
infrequently. These sign changes occur in widely separated regions when
the oscillatory terms in (2.1) overcomes the constant 1. The starting point
xf of these regions (the first value of x for which 2 is negative) in these
regions are given below.

Region Xf

1 26, 861 Leech [24], 1957
2 616, 841 Leech [24], 1957
3 12, 306, 137 Lehmer 1969

q=4 4 951, 784, 481 Lehmer 1969
5 6, 309, 280, 709 Bays and Hudson [4], 1979
6 18, 465, 126, 293 Bays and Hudson [4], 1979
7 1, 488, 478, 427, 089 Bays and Hudson 1996

Region Xf

q=3 1 608, 981, 813, 029 Bays and Hudson [3], 1978

In [4], Bays and Hudson computed 28, 5, 1(x)=&1 for x=588, 067, 889.
No further axis crossing regions were found for 28, b, 1(x) for x<1012.
Indeed the bias for q=8 is higher than for q=3 or 4 because c(q)=3 in
(2.1) and the lowest zero for each of the three nonprincipal L-functions
modulo 8 is relatively high; see [21, p. 302, 35]. In fact the bias over
[1, 1012] is exactly 1.000000. Figure 7 shows P8, N, R(x) and a plot of the
first negative region for P*8, N, R(x; 10000). The latter is possibly the first
region where P8, N, R(x) becomes negative.

Sign changes for much larger x can be obtained through the use of (2.1)
together with a generalization to arbitrary progressions of the method used
by Lehman [25] to find sign changes of ?(x)&li(x). Details will appear
in [11].
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FIG. 7. P8, N, R(x) (top); P*8, N, R(x; 10000) (bottom).

Recently, the second author has succeeded in writing an efficient com-
puter program to compute ?q, a(x). It is based on Hudson's generalization
[14] to arbitrary arithmetic progressions of the well-known formula of
Meissel [27] and the improvement of Meissel's algorithm given by
Lagarias et al. [22]. This will be discussed in detail in a future paper. These
sign changes were found by first using the zeros of the L-functions (using
a truncated form of (1.2)) to isolate potential sign changes, and then using
the computer program to find exact values of ?q, a(x). For example, the
program required about 10 minutes on a Sun Ultra-10 workstation to find
that ?8, 1(x)>?8, 7(x) at 1.9282_1014.

The program can also be used to rapidly verify 3 new sign change
regions which would take, at the least, many weeks (even years) to com-
pute using the sieve of Eratosthenes. The values of x obtained are close to
the minimum value of P*q, N, R(x; 10000) in the region considered. The
values were obtained by using the zeros of the relevant L-functions to
identify ``candidates'' for sign changes and then using the generalized
Meissel program to verify the sign changes. The 8th region of integers x
with ?4, 3(x)<?4, 1(x) occurs for x in the neighborhood of x=9.318_1012

(verified with Ford's program in a few minutes). The third region of
integers x with ?3, 2(x)<?3, 1(x) likely occurs in the neighborhood of
3.96555843_1019 (based on computations using (2.1)), a value computable
using the generalized Meissel program but requiring considerable computer
time.
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