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Abstract. Under the assumption of the appropriate Riemann hypothesis it
is shown that max, <, ming.e; t"1/2(\I/(a.:,q, 1) — ¥(x,q, 1,')) > (% — 5) logg = and

min, . max;z) t_l/z('ll(m,q, 1) — lI!{x,q,E)) < *( 3 - s) log, = for = > xo(q,¢).
The proof is quite elementary, and zo can be estimated effectively. As a by-
product a formula for the k-th power moment of certain normed error terms is
obtained.

1. Introduction

Assume GRH. Then Wintner [9] has shown that A(t) = YEI- has a

ot/2
distribution function with finite moments. More generally let ¢ be a natural
nuwmber, and consider

qj(et> q, ‘Z) - ;El,if)'et .

A(tﬂq7l) = Et’/Q

Then one can ask about the distribution of f(t)z(A(t,q,ll),...,

/_\(t,q,lp(q})), where {; runs over a reduced systems of residues (mod ¢).
A question of special interest is the so called Shanks Rényi-race: given a
permutation o of the relative prime residue classes (mod q), is there a real
number x such that W(m, q,a(l)) > w(m,q, o(2)) > - > TT(.‘ZI,(],U((,Q(Q))) 7
Assuming GRH, J. Kaczorowski has shown in [6] that for ¢ = 5 and ¥ instead
of r this is indeed true, and in [7] he showed that there are arbitrary large
such that w(x,¢,1) > w(z,q,a) for all @ # 1 (mod ¢). Using a more elemen-
tary approach, we will prove a similar result which gives explicit estimates
for m{x,q,1) — n(x,q,q).

In this article we will always assume the Riemann hypothesis for all
Dirichlet series occurring, and for every nontrivial zero p we set p = % + 1.
>°" stands for summation restricted to those parameters described in the
context.

Explicit bounds for the constants implied by Theorem 8, especially esti-
mates for the first sign change of n{x) — liz and n(x,¢,1) — 7(z, ¢, a) will be
part of a subsequent paper.
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This article is part of the author’s PhD. thesis, written under the super-
vision of D. Wolke. I would like to thank M. Peter, J. Pintz and D. Wolke
who simplified some of the proofs and corrected several mistakes.

2. The moments of the error term

Assuming RH, Cramér [1] gave an explicit expression of the mean square
of the normed error in the prime number formula. Wintner proved that the
error term has k-th power moments for all £ 2 1. The aim of this section is
to compute these moments.

THEOREM 1. Let x be a charakter (mod ¢), k a natural number. Then
1 (Tl x) — Bet\" 1
- f (_(i’%lg__i) dt ~ (=1)* Z -
T Jo et/ M AyE=0 P11 Pk

where the sum runs over all nontrivial zeros of L{s,x).

COROLLARY 2. Assume that the positive imaginary parts of the zeros
of ¢ are linearly independent. Then all odd moments vanish, and the even
moments can be expressed using power sums of zeros. In particulor, we have

.1 i Ted) —e*\? 1
Th_IEC;/ (———r——esﬁ ) ds=z|—pl—2=

0 P
1 i Yie®) —ef 4 1\? 1
i ] (M2 e (B ) 2
T—00 L / 83/2 ; |pll ? IPF
1 7 Ye®) —e® 5
Rl f (——M ) ds
0
1)\? 1 1 1
=10-( -—) 455 N o4y —
‘;W thpuz%pw Z,;lpf‘

COROLLARY 3. Assume RH. Then the third moment is = 0.
PrOO¥ OF THEOREM 1. For T > z* we have

o
T(z,x) = Ex — Z i O(log x).
per ?
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THFE. REMAINDER OF THE PRIME NUMBER THEOREMS 215
Since we assume R p = 1/2 for all nontrivial zeros, we get with T > e2

(45 - (- 5, S rencn)

lpl<T

eit’y

k
- (_ 3 ) + Ol
lol<T

=(-0" >

ipl‘vn‘pk‘<T

ei'i('Tl otk )

+ O(t%‘le‘t/g).
P10 Pk

Integrating this from 0 to o yields with T = ¢2*

T IU(et) - Eet kd
| (P

g e+ i) L
*(—1)’“/0 { > ——— + O(t* e t/z)}dt

17 Pk
lp1lsnlok|<T P P

k & eit(71+'~-+7k)
=y Y [ avon
0

[p1l.-lon]<T Lo P
1
SEITT pg——
pLce Pt
‘plr:“-a‘ka<T
Yl+v..+'}1k:0
1 1
+O(1+ > —min(x,m) ‘
lorl,lprl<T PLTPE v+
T+ 170

To prove the theorem it suffices to show that the error term is o{x), and that
the sum in the main term converges absolutely for 7' — co. Both statements
follow from the fact that the series

1
(1) Z b min (17 —~———)
o PL PR |14 o+ v

converges absolutely. First, the series of the main term is contained in this
series, so convergence of this series implies that of the main term. Second,
let £ > 0 and restrict the summation to those k-tuples occurring in the error
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term. Then there is a finite number of summands such that the sum of the
remaining terms is < £. Since every single term of the series in the error
term is Q(1), the contribution of these finitely many terms is < C,, say. The
contribution of the remaining terms is

* : | ( 1 )
E min | x,
lp1 - Pl 7+t vl

Pls-aPk

L Z ——*min(ly——-‘———)<€$_
PPl |p]}9k| |71++"ﬂc‘

A

Thus the error term is < C: +¢ez. For ¢ — ( this becomes o(x). Thus it
suffices to consider (1).
Without loss we can restrict the summation to k-tuples with |viy1] 2 |

for every i £ k— 1. Consider those k-tuples with |y +...+ v 2 |pkt1/2 first.
Here we have

: 1 ( 1 ) - i
Z i in f 1, ————————— ] £ Z
A ' o 3 2
= 1P ol ot T e e 0L

k
1 1
< —
= Z 1112k (Z 1+1/2k> < 09,
Ply PR ‘pl T P

Okl Fl

since by well known zero density estimates N{(7T,x) <« T'logT. Now consider
+%| < |pe]*%. For fixed vi,..., 761 with |71
+. s1/%log (s +2), and each single term is

1 < (k-
<m Since s < (k — 1)|ve—1l, we get

. 1 . 1 log (m-ll +2)
S — )<
|P1"'Pk|mm( I+ +wc|) 3/2

P15 Pk Plys Pl |P P20,

k—1
log (lpx—1 +2) log (o] + 2)
< Z Tz < Z | T < 00 U

Py Phk—1 Ipl e Pk—ZPk—ll P

ProoF oF COROLLARY 2. Due to Theorem 1 we have to determine all
k-tuples of zeros of ¢ with real sum. But since we assume the zeros to be
linearly independent, such a k-tuple consists of £ 5 pairs of conjugate roots.
For odd % such k-tuples clearly cannot exist, and for even k an inclusion-
exclusion argument yields the formulas given in Corollary 2. O
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THE REMAINDER OF THE PRIME NUMBER THEOREMS 217
PROOF OoF COROLLARY 3. By Theorem 1 we have to evaluate

Z 1

R p1+p2+pa=0 P1P2P3

Now assume that p;, pa, p3 are zeros occurring in the sum. Witkout loss of
generality we can assume that |ps| > |p2| 2 [p1], and that v3 > 0 and 1,72
< 0. Then

gLl Rpipams 5 — (172 s + 973)
p1paps |pipaps) o1 p203]
The denominator of this expression is real and positive. Since v3 = —v; — 72,
the numerator becomes
1

1 1 1
§+§(’Yf + Y17 + ) = §+Z(’Y%+’}’22+A/§) > 0.

Thus every single term has positive real part, and the third moment is nega-
tive or 0, depending on whether there are roots with v1 +~v2 + 3 = 0 or not.
|

The next statement will be applied in the next section, where it gives
almost-periodicity results which are similar to those obtained in [2]-[3].

ProrosITiON 4. Let Ar(t,y) = le[>T i:r-, where p runs over all non-

trivial zeros of L(s,x). Assume that RH holds for L(s,x). Then for all real
numbers a < b we have

log?T

fIAT(t X)‘ dt K (b—a+logT)— T

where the constant implied by the symbol < depends on y.
ProOF. We have

b b
/IAT(t:X)|2dt:/
a a =T

B S e SR
=72

2

eit'y
dt

r

lp1lslpe>T PPN
1 2
< Z %mill(b—a,—).
o1l o] >T vzl M Yo
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By symmetry we can assume that 0 < v £ 79, since pairs of zeros with dif-

2
ferent signs certainly contribute less than ligT—T The contribution of zeros
with |p; — pa| < 18

T log p| log* T
[p|>T

Now let n 2 N, m 2 1. Then the contribution of those zeros with n = |p;!
<n+l,mSiym—yl<m+1lis <<%%;’1—)
the remainig zeros is at most

log nlog {n +m) 10g n lognlogm
ZZ nm{n + m) ZZ ZZ T am?

n2T m=] n2T m=1 m2T n=T

, and the contribution of

log®n log?m _ log*T
< Z n2 + Z m?2 <« T
n2T mz2T

Thus the contribution of all zeros is

log2 T 4 10g3 T
T T

1 T
<« (b—a) Og

={(b—a+logT)

3. Oscillation in the distribution of primes

The main result of this article is the following theorem.

THECREM 5. Let g be some notural number, ¢ > 0. Let

W(t,x)— Et
—

where E =1 resp. 0, depending on whether x is principal or not. Assume
RH for all L-series (mod q). Then there are effective computable constants
Xo(g,¢) and C = C(q) such that for all X > X there are numbers 2 < x,z_
<X such that
IA LTy Xi) - A(£+>X})l < C
2 Ao > (& =)oy X
3| Al xa) - Al x)| < C
4, Alx_,x) < — (— — s) logs X,

Alt,x) =
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THE REMAINDER OF THE PRIME NUMBER THEQOREMS 219

3. LL+<:L_,<$+(1+T?)
where x;, X; run over all chamcters (mod ¢).

COROLLARY 6. Assume RH. Then ¥(z) =z + Qi(ﬁlo& z), and the
implied constants are effectively computable.

This was proven by Littlewood [8] in 1918, however, his estimate was not
effective.

PROOF. Theorem 5 with ¢ = 1 gives A(z,1) = Q4 (logy z). Since V(x)
—z=rA(z,1), we get V{z) —z = Qi(ﬁlogg ) as claimed. [

COROLLARY 7. Let q be an integer, € > 0 and assume RH for all L-
series (mod g). Then there is an effective computable constant Xo(q,<) such
that for all X > Xy there exist x1,x9 € (0,X) such that

min  U{z,q,1) — ¥{z1,q,a) > (— - c) vz1logs X

a#l (mod ¢}

1
max  V(zg,q,1) — ¥i{ze,q,a) < — (§ — 5) Vralogs X

a#1 {mod g}

J. Kaczorowski [7] proved Corollary 7 with w(z) instead of logy x, where
w(zx) ' oo with z — oc.

PRrOOF. Let z, be the real number described in Theorem 5. Then we
have

‘II(CC-{—:(L — )Z‘II $+!X)

_ VT . 2 (YN A
= T DA > )+( )f1g3

w(q) wlq

On the other hand for a £ 1 (mod ¢) we have

lI,(l+aQ= = ZX ;UJHX
_ -Eé_)- + ggzxjx(a) (A(zs, X) VIA(a:+,XU))J+:D/g_+) ;X(Q)A(m+ o)
<« ~ -
—0
_ =
 elg) +O(VE).
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Thus for a # 1 we get

1
@(.’L‘+,q, 1) - lIr(I+1Q:CL) > (—2‘ - E) VIt 10g3X — T

for some constant ¢. Taking minimum over all a # 1 (mod g) we obtain the
statement of the corollary by increasing ¢ and choosing X large enough.
The proof of the second inequality is similar using z_ instead of z.. O

The proof of Theorem 5 will partly depend on the following two lemmata.

LEMMA &. Let x be a character (mod g), and set A(t,x) =}, e?.

1. If x s real, we hove

Jilt) == Al x) + At x) € 1,

and f1 is continuous and precewice differentiable on R.
2. If v is complex, we have

f?(t) = A(t! X) + A(_t’X) + A(’ﬁ,Y) + A(—t,Y) < 17

and fo is continuous and piecewice differentiable on R.
3. If x is complez, t > 0, we have

fa(t) == Alt,x) + A(—t,x) < 1 + log? (et + %) min (1,1).

PrRooOF. The zeros of L(s,x) are complex conjugate for x real, and the
zeros of L{s, x} are conjugate zeros of L(s, X} for y complex, so fi and f» can
be expressed as sums over pairs of conjugate terms. Now the contribution of
such a pair of zeros to f resp. fa is

ety + et N Pl + e~y

P p el

. . 1
— £ —1t
= (e +e ) —.

Since |e'*” 4 e=*7] < 2, the sum over all zeros converges absolutely and is
bounded above by Zp #. Thus f1 and fs are both <« 1 and continuous,
since they are uniform limits of continuous functions. Thus it remains to
prove differentiability. Let x be some real number and 7 an interval contain-
ing x such that I contains no number nlog p where n is an integer and p is
a prime. Then it suffices to prove that the series obtained by differentiating
the series for f1 resp. fo termwise converges uniformly within f to a contin-
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THE REMAINDER OF THE PRIME NUMBER THEOREMS 221

uous function. Thus in the following computation the first equality sign will
be justified by the resuit. First we will consider fi:

d d it —zt’y . ——i.t'y
Z () + [=1) = ;dt( e +e Z(’w )ﬁilg

== Z e ) i +71,5(t) = = f1(8) + f1{=t) + 2 (2).

Here ) ,(t) < ﬁg and it is continuous, so ro(t) is continuous, too. But fi(¢)

is everywhere continuous except for ¢ = nlog p, and the series for f) converges
uniformly in every interval avoiding such numbers, so the claim is proven for
real yv. For complex x the same computation applies, since doubling the
number of occurring terms does not influence convergence.

Now consider f3. Denote p, the n-th zero of L(s, x) with positive imag-
inary part, p_, the n-th zero with negative imaginary part. Using the well
known density estimate we have |p, + p—,| < 1. Thus we get

e?«t’)‘n + eflt'yn ezt'r,n +6—1t'~,‘_n

Pn P—n

— (e‘it“fn + 6—'it'fn) 1 g — (eii'r’n + e_'it'}fn) (i — i.)

\on] pn P
+-}-w((eit7*” e (T e )} & s min (1, ¢)
P—n lpnl ]Pn‘
since
e i0n _ gt | = |¢itrn]| . |gmitr=n it |

< min (#y_n — tyn, 2) € min ( (v + v )t, 1) < min(1,1).
e’

<1

Denote g3(t) the finite series > gﬂvz;“"f’ where T will be determined later.
fpl<T

By the known estimate for the truncation error in the explicit formula for

Tz, x) we get

fa(t) - g ()] < 2 ‘;T ( + 5_2)

Acte Mathematice Hungerica 87, 2000



222 1.-C. PUCHTA

thus for 7' = e + ?% we can replace fz by g3. Thus we get

g3(t) + ga(—t) < Z iv+imin(1,t)

2
t
1 1
= —min(1,1).
g o? Z 1Pl
lo|<e+—% pl<eit X

The first sum can be bounded independently of ¢, for the second we use the
incquality Z < log? 7. Thus we obtain
{pI<T

ga(t) +ga(—t) < 1+ Z |—m1n (1,t)
p<e”+ pn

; 1 1
< 1+ log? (ezf’ + t3) min (1,¢) < 1 + log® (et + t) min (1,1)

which proves our claim. O

n
For real numbers z1,...,2,, let ” (z1,... ,a:n)“ ? = > {:ci}g, where {z;}
j«.—.
is the fractional part of z;.
LEMMA 9. Letn be a natural number, @ = (t1,...,ty) € R", ¢ > 0. Then

there s some s with 1 < s < % +1=:M+1 such that

HS‘ (tIiatn)” < E.

Proor. The proof will use the pigeon-hole-principle. For any integer k
with 1 £k £ M+ 1 set zx = k- & and consider the balls with radius /2
and center xry. If none of these intersect (mod 1} nontrivially, their volume
is bounded by the volume of the unit cube, thus

e (2/2)" (M +1) <1

where w, = ]:%;:;—22) is the volume of the n-dimensional unit sphere. By defi-
nition of M we obtain

However, this contradicts the known formula for w,,.
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THE REMAINDER OF THE PRIME NUMBER THEOREMS 223

So the balls intersect in some point P, ie. there are natural numbers
ki < ky < M such that P € By, (e/2) N By, (/2). Hence

2y — eyl S llew, — Pll+ 1P — 2k, <e,

but since x, — Tk, = Tiy—k, (Mod 1), we get [|zg, g, || < 2. Thus s =ky — k;
has the claimed properties. O

Proo¥ OF THEOREM 5. Consider the explicit formula for ¥(x,x) in the
version

il
U(z,x) = FEx — Z % + O(log z) = Ex — xg(log z, x) + O(log z).
n

To find laxge oscillation of ¥, it suffices to find oscillation of g, more precisely
we have to prove the following statement:

Let q be a natural number, £ > 0, and assume that no L-series (mod )
vanishes in the region Rs > 1/2. Then there are effectively computable con-
stants Yo(g,¢) and C such that for oll'Y > Yy there are numbers 2 < 54,8
<Y such that

L |g(ss,xi) —a(s . x5)] <C,

2. g(s4,x5) > (3 —¢) logy Y,

3. gls—,xi) —gls . x5)| < C,

4 g(s_xi) < —(%~ E) log, Y,

3. S+<S_<S++@£5—Y
where x; and x; run over all characters {mod g).

Indeed, if we set ¥ =log X, £, = e+ and {_ = e, we obtain the state-
ment of the theorem. Therefore in the sequel we Wlll only consider the
functions g{¢, x).

In the formula

1 .
W(e?, x) = Exe? — edVg(y, x) — 5 log(l —e™) + O(1 +y)
all terms are bounded for y ™, 0, except g(y,x) and %log(l —e~%). Since
(e%y — 1) log(1 —e=2¥) — 0 for y \, 0, the error of replacing e%yg(ygx) by
¢ly,x) is < 1. Thus for y > 0 sufficiently small we get
N _o—lyl ~2y _ 1 e
gly, x;) = —€ 2 2103(1 — 7+ 0(1) = 210g(1 e ¥y + O(1)

1 1 1
= fglogy-i-O(l) = §Iog§+0(1),
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ie.
1 1
2 5 > (5 -¢)log
Y
On the other hand | g;(y} — g;(y)| < 1. Using Lemma & we get
1 1
3 gi(1 <—-(——25)10 —

| g:(y) - g;(y)| < 1 for y <0, sufficiently close to 0.
Now define (1) : R — R#@ ¢ (g(t,xl),. . ,g(t,xw(q))) and gn(t) :
R — RAY ;¢ — (gN(t, X1),--- ,gN(t, X(}o(q))) , where gy (%, x) 18 the series

restricted to the IV zeros with least absolute values.
Using Proposition 4 we have, using N(T, x) < T'logT,

$+l ‘4
f l9(t) — an (1) * dt < log &

N

Now if N = log'~° Y, and Y is sufficiently large, the right hand side becomes
< e3logT' ¥ Y. Together with the estimate {2) we get that for all 0 < y
< log 'Y with the possible exception of a set of measure £log™ !t Y at
most we have for all x (mod ¢) the estimate

1
gy x) > gly,x) —e > (5 — 45) log, Y.

Similarily, using (3) we get for —log™**3 ¥V < 4 < 0 with the possible excep-

tion of a set of measure elog 172 ¥ at most the estimate
1
gl x) <gly,x) +e <=5 —de | logy Y,

Now we apply Lemma 9 with n = kN, k= p(q) and ¢ = 4m1/IW' We
obtain the existence of a real number s with

EN
BrVEN) TEN/2)  siNlogkn
< e
TEN]2

() s (g = ()
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where p runs over the N zeros with least imaginary part of every L-series
(mod ¢}. Hence we conclude

k 2
ot = awty+ )1 £ (3 lawsto) — o + 9] )

=1
ey pilyts)y R | \ )2
p

P p

HA

it

s(xxif))

Now choosing |y| < log™'T# Y and using the estimates for gy (y, x) given
above, we conclude that in the interval s, s +-log™1+% ¥] with the possible ex-
ception of a set of measure 2¢ log™'*?° ¥ at most for all characters y (mod ¢)

the estimate
1 1
gni(z) > 5 4z ) log, ¥V — 1> 5~ 5z ) log, Y

holds, where z =y +s. In the same way we get for y € [s — log™ 3¢V, 4]

with the possible exception of a set of measure 2zlog™ 7%V at most the
inequality

(x

o

1 1
gn;(z) < — (~2~ - 45) loga Y +1 < — (~2— — 55) log, Y.

Now using Proposition 4 once again we get that for z € [s,5+log™ 73 Y]

with the possible exception of a sct of measure < 3¢log T2 Y at most all
the ©{q) inequalities

1
g(z,x) > (5 — 85) log, Y

are valid. For z € [s — log—1t3y, s with the possible exception of a set of
measure < 3elog”'T¥# Y at most we have

1
glzx) < — (5 - 85) log, Y.
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In the same way we obtain that in [s —log™ ™2 V¥, s + log =" V] with
the possible exception of a set of measure 3¢ log~1*2¢ Y at most all the in-
equalities |g(z,xi) —g(z, Xj)| < 1 are valid.

Combining these considerations we get that the measure of z € [s,
s+ log 1% ¥] such that

1
glz,x) > (3 — 85) log, ¥

=

for all x (mod ¢) and
lg(z,x0) = 9(z,x5)| <C

for all x;i, x; {mod g) is at least log 1T Y — 6clog ™! T Y. Without loss of
generality we can assume ¢ < 1/6, so this set is not empty. Let s_ be an
arbitrary point from this set. Similarily there is an s € [s — log " Y, 5],
such that the inequalities

1
gls4.x) < — (5 - 85) log, ¥

and
l9(s1,x:) — gls x5} <C

hold. Obviously we have s+ < s_ < s4 +2log 173 Y < s +log™ 1T Y.
Now replacing ¢ by £/8, we obtain the claimed inequalities for g, and
these imply the statement of our theorem. ]
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