ON LARGE OSCILLATIONS OF THE REMAINDER OF THE PRIME NUMBER THEOREMS

J.-C. PUCHTA (Freiburg)

Abstract. Under the assumption of the appropriate Riemann hypothesis it is shown that $\max_{t \leq x} \min_{l \neq 1} t^{-1/2} \left(\Psi(x,q,1) - \Psi(x,q,l) \right) > \left(\frac{1}{2} - \varepsilon \right) \log_3 x$ and $\min_{t \leq x} \max_{l \neq 1} t^{-1/2} \left(\Psi(x,q,1) - \Psi(x,q,l) \right) < -\left(\frac{1}{2} - \varepsilon \right) \log_3 x$ for $x > x_0(q,\varepsilon)$. The proof is quite elementary, and x_0 can be estimated effectively. As a byproduct a formula for the k-th power moment of certain normed error terms is obtained.

1. Introduction

Assume GRH. Then Wintner [9] has shown that $\Delta(t) = \frac{\Psi(e^t) - e^t}{e^{t/2}}$ has a distribution function with finite moments. More generally let q be a natural number, and consider

$$\Delta(t,q,l) = \frac{\Psi(e^t,q,l) - \frac{1}{\varphi(q)}e^t}{e^{t/2}}.$$

Then one can ask about the distribution of $f(t) = (\Delta(t,q,l_1),\ldots,\Delta(t,q,l_{\varphi}(q)))$, where l_i runs over a reduced systems of residues (mod q). A question of special interest is the so called Shanks-Rényi-race: given a permutation σ of the relative prime residue classes (mod q), is there a real number x such that $\pi(x,q,\sigma(1)) > \pi(x,q,\sigma(2)) > \cdots > \pi(x,q,\sigma(\varphi(q)))$? Assuming GRH, J. Kaczorowski has shown in [6] that for q=5 and Ψ instead of π this is indeed true, and in [7] he showed that there are arbitrary large x such that $\pi(x,q,1) > \pi(x,q,a)$ for all $a \not\equiv 1 \pmod{q}$. Using a more elementary approach, we will prove a similar result which gives explicit estimates for $\pi(x,q,1) - \pi(x,q,a)$.

In this article we will always assume the Riemann hypothesis for all Dirichlet series occurring, and for every nontrivial zero ρ we set $\rho = \frac{1}{2} + i\gamma$. \sum^* stands for summation restricted to those parameters described in the context.

Explicit bounds for the constants implied by Theorem 8, especially estimates for the first sign change of $\pi(x) - \operatorname{li} x$ and $\pi(x, q, 1) - \pi(x, q, a)$ will be part of a subsequent paper.

This article is part of the author's PhD. thesis, written under the supervision of D. Wolke. I would like to thank M. Peter, J. Pintz and D. Wolke who simplified some of the proofs and corrected several mistakes.

2. The moments of the error term

Assuming RH, Cramér [1] gave an explicit expression of the mean square of the normed error in the prime number formula. Wintner proved that the error term has k-th power moments for all $k \ge 1$. The aim of this section is to compute these moments.

Theorem 1. Let χ be a charakter (mod q), k a natural number. Then

$$\frac{1}{x} \int_0^x \left(\frac{\Psi(e^t, \chi) - Ee^t}{e^{t/2}} \right)^k dt \sim (-1)^k \sum_{\gamma_1 + \dots + \gamma_k = 0} \frac{1}{\rho_1 \cdots \rho_k}$$

where the sum runs over all nontrivial zeros of $L(s,\chi)$.

COROLLARY 2. Assume that the positive imaginary parts of the zeros of ζ are linearly independent. Then all odd moments vanish, and the even moments can be expressed using power sums of zeros. In particular, we have

$$\begin{split} \lim_{x \to \infty} \frac{1}{x} \int_{0}^{x} \left(\frac{\Psi(e^{s}) - e^{s}}{e^{s/2}} \right)^{2} \, ds &= \sum_{\rho} \frac{1}{|\rho|^{2}}, \\ \lim_{x \to \infty} \frac{1}{x} \int_{0}^{x} \left(\frac{\Psi(e^{s}) - e^{s}}{e^{s/2}} \right)^{4} \, ds &= 2 \cdot \left(\sum_{\rho} \frac{1}{|\rho|^{2}} \right)^{2} - \sum_{\rho} \frac{1}{|\rho|^{4}}, \\ \lim_{x \to \infty} \frac{1}{x} \int_{0}^{x} \left(\frac{\Psi(e^{s}) - e^{s}}{e^{s/2}} \right)^{6} \, ds \\ &= 10 \cdot \left(\sum_{\rho} \frac{1}{|\rho|^{2}} \right)^{3} + 5 \sum_{\rho} \frac{1}{|\rho|^{2}} \sum_{\rho} \frac{1}{|\rho|^{4}} - 24 \sum_{\rho} \frac{1}{|\rho|^{6}}. \end{split}$$

COROLLARY 3. Assume RH. Then the third moment is ≤ 0 .

PROOF OF THEOREM 1. For $T > x^2$ we have

$$\Psi(x,\chi) = Ex - \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} + O(\log x).$$

Since we assume $\Re \rho = 1/2$ for all nontrivial zeros, we get with $T > e^{2t}$

$$\left(\frac{\Psi(e^t) - Ee^t}{e^{t/2}}\right)^k = \left(-\sum_{|\rho| < T} \frac{e^{it\gamma}}{\rho} + O(te^{-t/2})\right)^k$$

$$= \left(-\sum_{|\rho| < T} \frac{e^{it\gamma}}{\rho}\right)^k + O(t^{2k-1}e^{-t/2})$$

$$= (-1)^k \sum_{|\rho_1|, \dots, |\rho_k| < T} \frac{e^{it(\gamma_1 + \dots + \gamma_k)}}{\rho_1 \cdots \rho_k} + O(t^{2k-1}e^{-t/2}).$$

Integrating this from 0 to x yields with $T = e^{2x}$

$$\int_{0}^{x} \left(\frac{\Psi(e^{t}) - Ee^{t}}{e^{t/2}} \right)^{k} dt$$

$$= (-1)^{k} \int_{0}^{x} \left\{ \sum_{|\rho_{1}|, \dots, |\rho_{k}| < T} \frac{e^{it(\gamma_{1} + \dots + \gamma_{k})}}{\rho_{1} \cdots \rho_{k}} + O(t^{2k-1}e^{-t/2}) \right\} dt$$

$$= (-1)^{k} \sum_{|\rho_{1}|, \dots, |\rho_{k}| < T} \int_{0}^{x} \frac{e^{it(\gamma_{1} + \dots + \gamma_{k})}}{\rho_{1} \cdots \rho_{k}} dt + O(1)$$

$$= (-1)^{k} x \cdot \sum_{\substack{|\rho_{1}|, \dots, |\rho_{k}| < T \\ \gamma_{1} + \dots + \gamma_{k} = 0}} \frac{1}{\rho_{1} \cdots \rho_{k}}$$

$$+ O\left(1 + \sum_{\substack{|\rho_{1}|, \dots, |\rho_{k}| < T \\ \gamma_{1} + \dots + \gamma_{k} \neq 0}} \frac{1}{\rho_{1} \cdots \rho_{k}} \min\left(x, \frac{1}{|\gamma_{1} + \dots + \gamma_{k}|}\right)\right).$$

To prove the theorem it suffices to show that the error term is o(x), and that the sum in the main term converges absolutely for $T \to \infty$. Both statements follow from the fact that the series

(1)
$$\sum_{\rho_1,\dots,\rho_k} \frac{1}{\rho_1 \cdots \rho_k} \min\left(1, \frac{1}{|\gamma_1 + \dots + \gamma_k|}\right)$$

converges absolutely. First, the series of the main term is contained in this series, so convergence of this series implies that of the main term. Second, let $\varepsilon > 0$ and restrict the summation to those k-tuples occurring in the error

216 J.-C. PUCHTA

term. Then there is a finite number of summands such that the sum of the remaining terms is $\langle \varepsilon \rangle$. Since every single term of the series in the error term is O(1), the contribution of these finitely many terms is $\langle C_{\varepsilon} \rangle$, say. The contribution of the remaining terms is

$$\sum_{\rho_1, \dots, \rho_k}^* \frac{1}{|\rho_1 \dots \rho_k|} \min\left(x, \frac{1}{|\gamma_1 + \dots + \gamma_k|}\right)$$

$$\leq x \cdot \sum_{\rho_1, \dots, \rho_k}^* \frac{1}{|\rho_1 \dots \rho_k|} \min\left(1, \frac{1}{|\gamma_1 + \dots + \gamma_k|}\right) < \varepsilon x.$$

Thus the error term is $\langle C_{\varepsilon} + \varepsilon x \rangle$. For $\varepsilon \to 0$ this becomes o(x). Thus it suffices to consider (1).

Without loss we can restrict the summation to k-tuples with $|\gamma_{i+1}| \ge |\gamma_i|$ for every $i \le k-1$. Consider those k-tuples with $|\gamma_1 + \ldots + \gamma_k| \ge |\rho_k|^{1/2}$ first. Here we have

$$\sum_{\rho_{1},\dots,\rho_{k}}^{*} \frac{1}{|\rho_{1}\cdots\rho_{k}|} \min\left(1, \frac{1}{|\gamma_{1}+\dots+\gamma_{k}|}\right) \leq \sum_{\rho_{1},\dots,\rho_{k}}^{*} \frac{1}{|\rho_{1}\cdots\rho_{k-1}\cdot\rho_{k}^{3/2}|}$$

$$\leq \sum_{\rho_{1},\dots,\rho_{k}} \frac{1}{|\rho_{1}\cdots\rho_{k}|^{1+1/2k}} = \left(\sum_{\rho} \frac{1}{|\rho|^{1+1/2k}}\right)^{k} < \infty,$$

since by well known zero density estimates $N(T,\chi) \ll T \log T$. Now consider those k-tuples with $|\gamma_1 + \ldots + \gamma_k| < |\rho_k|^{1/2}$. For fixed $\gamma_1, \ldots, \gamma_{k-1}$ with $|\gamma_1 + \ldots + \gamma_{k-1}| = s$ their number is $\ll s^{1/2} \log{(s+2)}$, and each single term is $< \frac{1}{|\rho_1 \cdots \rho_{k-2} \cdot \rho_{k-1}^2|}$. Since $s \leq (k-1)|\gamma_{k-1}|$, we get

$$\sum_{\rho_{1},\dots,\rho_{k}}^{*} \frac{1}{|\rho_{1}\cdots\rho_{k}|} \min\left(1, \frac{1}{|\gamma_{1}+\dots+\gamma_{k}|}\right) \ll \sum_{\rho_{1},\dots,\rho_{k-1}} \frac{\log\left(|\rho_{k-1}|+2\right)}{|\rho_{1}\cdots\rho_{k-2}\rho_{k-1}^{3/2}|} < \sum_{\rho_{1},\dots,\rho_{k-1}} \frac{\log\left(|\rho_{k-1}|+2\right)}{|\rho_{1}\cdots\rho_{k-2}\rho_{k-1}|^{1+1/2k}} < \left(\sum_{\rho} \frac{\log\left(|\rho|+2\right)}{|\rho|^{1+1/2k}}\right)^{k-1} < \infty. \quad \Box$$

PROOF OF COROLLARY 2. Due to Theorem 1 we have to determine all k-tuples of zeros of ζ with real sum. But since we assume the zeros to be linearly independent, such a k-tuple consists of $\frac{k}{2}$ pairs of conjugate roots. For odd k such k-tuples clearly cannot exist, and for even k an inclusion-exclusion argument yields the formulas given in Corollary 2.

PROOF OF COROLLARY 3. By Theorem 1 we have to evaluate

$$\sum_{\Re \rho_1 + \rho_2 + \rho_3 = 0} \frac{1}{\rho_1 \rho_2 \rho_3}.$$

Now assume that ρ_1 , ρ_2 , ρ_3 are zeros occurring in the sum. Without loss of generality we can assume that $|\rho_3| > |\rho_2| \ge |\rho_1|$, and that $\gamma_3 > 0$ and $\gamma_1, \gamma_2 < 0$. Then

$$\Re \frac{1}{\rho_1 \rho_2 \rho_3} = \frac{\Re \overline{\rho_1 \rho_2 \rho_3}}{|\rho_1 \rho_2 \rho_3|} = \frac{\frac{1}{8} - \frac{1}{2} (\gamma_1 \gamma_2 + \gamma_1 \gamma_3 + \gamma_2 \gamma_3)}{|\rho_1 \rho_2 \rho_3|}.$$

The denominator of this expression is real and positive. Since $\gamma_3 = -\gamma_1 - \gamma_2$, the numerator becomes

$$\frac{1}{8} + \frac{1}{2}(\gamma_1^2 + \gamma_1\gamma_2 + \gamma_2^2) = \frac{1}{8} + \frac{1}{4}(\gamma_1^2 + \gamma_2^2 + \gamma_3^2) > 0.$$

Thus every single term has positive real part, and the third moment is negative or 0, depending on whether there are roots with $\gamma_1 + \gamma_2 + \gamma_3 = 0$ or not.

The next statement will be applied in the next section, where it gives almost-periodicity results which are similar to those obtained in [2]-[5].

PROPOSITION 4. Let $\Delta_T(t,\chi) = \sum_{|\rho|>T} \frac{e^{it\gamma}}{\rho}$, where ρ runs over all non-trivial zeros of $L(s,\chi)$. Assume that RH holds for $L(s,\chi)$. Then for all real numbers a < b we have

$$\int_a^b \left| \Delta_T(t,\chi) \right|^2 dt \ll (b-a+\log T) \frac{\log^2 T}{T},$$

where the constant implied by the symbol \ll depends on χ .

Proof. We have

$$\int_{a}^{b} |\Delta_{T}(t,\chi)|^{2} dt = \int_{a}^{b} \left| \sum_{\rho > T} \frac{e^{it\gamma}}{\rho} \right|^{2} dt$$

$$= \sum_{|\rho_{1}|, |\rho_{2}| > T} \frac{1}{\rho_{1}\overline{\rho_{2}}} \frac{1}{\gamma_{1} - \gamma_{2}} \left(e^{i(\gamma_{1} - \gamma_{2})b} - e^{i(\gamma_{1} - \gamma_{2})a} \right)$$

$$< \sum_{|\rho_{1}|, |\rho_{2}| > T} \frac{1}{|\rho_{1}\rho_{2}|} \min \left(b - a, \frac{2}{\gamma_{1} - \gamma_{2}} \right).$$

218 J.-C. PUCHTA

By symmetry we can assume that $0 < \gamma_1 \leq \gamma_2$, since pairs of zeros with different signs certainly contribute less than $\frac{\log^2 T}{T}$. The contribution of zeros with $|\rho_1 - \rho_2| < 1$ is

$$\ll (b-a) \sum_{|\rho| > T} \frac{\log |\rho|}{\rho^2} \ll (b-a) \frac{\log^2 T}{T}.$$

Now let $n \ge N$, $m \ge 1$. Then the contribution of those zeros with $n \le |\rho_1| < n+1$, $m \le |\gamma_1 - \gamma_2| < m+1$ is $\ll \frac{\log n \log(n+m)}{nm(n+m)}$, and the contribution of the remaining zeros is at most

$$\sum_{n \ge T} \sum_{m=1}^{\infty} \frac{\log n \log (n+m)}{n m (n+m)} \ll \sum_{n \ge T} \sum_{m=1}^{n} \frac{\log^2 n}{n^2 m} + \sum_{m \ge T} \sum_{n=T}^{m} \frac{\log n \log m}{n m^2}$$
$$\ll \sum_{n \ge T} \frac{\log^3 n}{n^2} + \sum_{m \ge T} \frac{\log^3 m}{m^2} \ll \frac{\log^3 T}{T}.$$

Thus the contribution of all zeros is

$$\ll (b-a)\frac{\log^2 T}{T} + \frac{\log^3 T}{T} = (b-a+\log T)\frac{\log^2 T}{T}.$$

3. Oscillation in the distribution of primes

The main result of this article is the following theorem.

Theorem 5. Let q be some natural number, $\varepsilon > 0$. Let

$$\Delta(t,\chi) = \frac{\Psi(t,\chi) - Et}{\sqrt{t}},$$

where E=1 resp. 0, depending on whether χ is principal or not. Assume RH for all L-series (mod q). Then there are effective computable constants $X_0(q,\varepsilon)$ and C=C(q) such that for all $X>X_0$ there are numbers $2< x_+, x_- < X$ such that

- 1. $\left| \Delta(x_+, \chi_i) \Delta(x_+, \chi_j) \right| < C$,
- 2. $\Delta(x_+, \chi_i) > \left(\frac{1}{2} \varepsilon\right) \log_3 X$,
- 3. $\left| \Delta(x_-, \chi_i) \Delta(x_-, \chi_j) \right| < C$,
- 4. $\Delta(x_-, \chi_j) < -\left(\frac{1}{2} \varepsilon\right) \log_3 X$,

5.
$$x_+ < x_- < x_+ \left(1 + \frac{1}{\log_2^{1-\varepsilon} X}\right)$$

where χ_i , χ_i run over all characters (mod q).

COROLLARY 6. Assume RH. Then $\Psi(x) = x + \Omega_{\pm}(\sqrt{x}\log_3 x)$, and the implied constants are effectively computable.

This was proven by Littlewood [8] in 1918, however, his estimate was not effective.

PROOF. Theorem 5 with
$$q = 1$$
 gives $\Delta(x, 1) = \Omega_{\pm}(\log_3 x)$. Since $\Psi(x) - x = \sqrt{x}\Delta(x, 1)$, we get $\Psi(x) - x = \Omega_{\pm}(\sqrt{x}\log_3 x)$ as claimed.

COROLLARY 7. Let q be an integer, $\varepsilon > 0$ and assume RH for all L-series (mod q). Then there is an effective computable constant $X_0(q,\varepsilon)$ such that for all $X > X_0$ there exist $x_1, x_2 \in (0, X)$ such that

$$\min_{\substack{a\neq 1 \pmod{q}}} \Psi(x_1,q,1) - \Psi(x_1,q,a) > \left(\frac{1}{2} - \varepsilon\right) \sqrt{x_1} \log_3 X,$$

$$\max_{\substack{a\neq 1 \pmod{q}}} \Psi(x_2,q,1) - \Psi(x_2,q,a) < -\left(\frac{1}{2} - \varepsilon\right) \sqrt{x_2} \log_3 X.$$

J. Kaczorowski [7] proved Corollary 7 with $\omega(x)$ instead of $\log_3 x$, where $\omega(x) \nearrow \infty$ with $x \to \infty$.

PROOF. Let x_+ be the real number described in Theorem 5. Then we have

$$\Psi(x_{+}, q, 1) = \frac{1}{\varphi(q)} \sum_{\chi} \Psi(x_{+}, \chi)$$

$$= \frac{x}{\varphi(q)} + \frac{\sqrt{x}}{\varphi(q)} \sum_{\chi} \Delta(x_{+}, \chi) > \frac{x}{\varphi(q)} + \left(\frac{1}{2} - \varepsilon\right) \sqrt{x} \log_{3} X.$$

On the other hand for $a \not\equiv 1 \pmod{q}$ we have

$$\begin{split} \Psi(x_+,q,a) &= \frac{1}{\varphi(q)} \sum_{\chi} \overline{\chi(a)} \Psi(x_+,\chi) \\ &= \frac{x_+}{\varphi(q)} + \frac{\sqrt{x_+}}{\varphi(q)} \sum_{\chi} \overline{\chi(a)} \underbrace{\left(\Delta(x_+,\chi) - \Delta(x_+,\chi_0)\right)}_{\ll 1} + \underbrace{\frac{\sqrt{x_+}}{\varphi(q)}}_{=0} \underbrace{\sum_{\chi} \overline{\chi(a)} \Delta(x_+,\chi_0)}_{=0} \\ &= \frac{x_+}{\varphi(q)} + O\left(\sqrt{x_+}\right). \end{split}$$

220 J.-C. PUCHTA

Thus for $a \not\equiv 1$ we get

$$\Psi(x_+, q, 1) - \Psi(x_+, q, a) > \left(\frac{1}{2} - \varepsilon\right)\sqrt{x_+}\log_3 X - cx$$

for some constant c. Taking minimum over all $a \not\equiv 1 \pmod{q}$ we obtain the statement of the corollary by increasing ε and choosing X_0 large enough.

The proof of the second inequality is similar using x_{-} instead of x_{+} .

The proof of Theorem 5 will partly depend on the following two lemmata.

LEMMA 8. Let χ be a character (mod q), and set $\Delta(t,\chi) = \sum_{\rho} \frac{e^{it\gamma}}{\rho}$. 1. If χ is real, we have

$$f_1(t) := \Delta(t, \chi) + \Delta(-t, \chi) \ll 1,$$

and f_1 is continuous and piecewice differentiable on \mathbf{R} .

2. If χ is complex, we have

$$f_2(t) := \Delta(t, \chi) + \Delta(-t, \chi) + \Delta(t, \overline{\chi}) + \Delta(-t, \overline{\chi}) \ll 1,$$

and f_2 is continuous and piecewice differentiable on \mathbf{R} .

3. If χ is complex, t > 0, we have

$$f_3(t) := \Delta(t,\chi) + \Delta(-t,\chi) \ll 1 + \log^2\left(e^t + \frac{1}{t}\right)\min{(1,t)}.$$

PROOF. The zeros of $L(s,\chi)$ are complex conjugate for χ real, and the zeros of $L(s,\chi)$ are conjugate zeros of $L(s,\overline{\chi})$ for χ complex, so f_1 and f_2 can be expressed as sums over pairs of conjugate terms. Now the contribution of such a pair of zeros to f_1 resp. f_2 is

$$\frac{e^{it\gamma} + e^{-it\gamma}}{\rho} + \frac{e^{it\gamma} + e^{-it\gamma}}{\overline{\rho}} = (e^{it\gamma} + e^{-it\gamma}) \frac{1}{|\rho|^2}.$$

Since $|e^{it\gamma}+e^{-it\gamma}| \leq 2$, the sum over all zeros converges absolutely and is bounded above by $\sum_{\rho} \frac{2}{|\rho|^2}$. Thus f_1 and f_2 are both $\ll 1$ and continuous, since they are uniform limits of continuous functions. Thus it remains to prove differentiability. Let x be some real number and I an interval containing x such that I contains no number $n \log p$ where n is an integer and p is a prime. Then it suffices to prove that the series obtained by differentiating the series for f_1 resp. f_2 termwise converges uniformly within I to a contin-

uous function. Thus in the following computation the first equality sign will be justified by the result. First we will consider f_1 :

$$\frac{d}{dt}(f_1(t) + f_1(-t)) = \sum_{\rho} \frac{d}{dt}(e^{it\gamma} + e^{-it\gamma}) \frac{1}{|\rho|^2} = \sum_{\rho} (ie^{it\gamma} - ie^{-it\gamma}) \frac{\gamma}{|\rho|^2}$$

$$= -\sum_{\rho} (e^{it\gamma} - e^{-it\gamma}) \frac{1}{\rho} + r_{1,\rho}(t) = -f_1(t) + f_1(-t) + r_2(t).$$

Here $r_{1,\rho}(t) \ll \frac{1}{|\rho|^2}$ and it is continuous, so $r_2(t)$ is continuous, too. But $f_1(t)$ is everywhere continuous except for $t = n \log p$, and the series for f_1 converges uniformly in every interval avoiding such numbers, so the claim is proven for real χ . For complex χ the same computation applies, since doubling the number of occurring terms does not influence convergence.

Now consider f_3 . Denote ρ_n the *n*-th zero of $L(s,\chi)$ with positive imaginary part, ρ_{-n} the *n*-th zero with negative imaginary part. Using the well known density estimate we have $|\rho_n + \rho_{-n}| \ll 1$. Thus we get

$$\frac{e^{it\gamma_{n}} + e^{-it\gamma_{n}}}{\rho_{n}} + \frac{e^{it\gamma_{-n}} + e^{-it\gamma_{-n}}}{\rho_{-n}}$$

$$= (e^{it\gamma_{n}} + e^{-it\gamma_{n}}) \frac{1}{|\rho_{n}|^{2}} - (e^{it\gamma_{n}} + e^{-it\gamma_{n}}) \left(\frac{1}{\bar{\rho_{n}}} - \frac{1}{\rho_{-n}}\right)$$

$$+ \frac{1}{\rho_{-n}} \left((e^{it\gamma_{-n}} + e^{-it\gamma_{-n}}) - (e^{it\gamma_{n}} + e^{-it\gamma_{n}}) \right) \ll \frac{1}{|\rho_{n}|^{2}} + \frac{1}{|\rho_{n}|} \min(1, t)$$

since

$$|e^{-it\gamma_{-n}} - e^{it\gamma_n}| = |e^{it\gamma_n}| \cdot |e^{-it\gamma_{-n} - it\gamma_n} - 1|$$

$$< \min(t\gamma_{-n} - t\gamma_n, 2) \ll \min\left(\underbrace{(\gamma_n + \gamma_{-n})t, 1}_{\ll 1}\right) \ll \min(1, t).$$

Denote $g_3(t)$ the finite series $\sum_{|\rho| < T} \frac{e^{it\gamma} + e^{-it\gamma}}{\rho}$, where T will be determined later.

By the known estimate for the truncation error in the explicit formula for $\Psi(x,\chi)$ we get

$$\left| f_3(t) - g_3(t) \right| \ll \frac{\log^2 T}{T} \left(e^t + \frac{1}{t^2} \right),$$

thus for $T = e^{2t} + \frac{1}{t^3}$ we can replace f_3 by g_3 . Thus we get

$$g_3(t) + g_3(-t) \ll \sum_{|\rho| < e^{2t} + \frac{1}{t^3}} \frac{1}{|\rho|^2} + \frac{1}{|\rho|} \min(1, t)$$

$$= \sum_{|\rho| < e^{2t} + \frac{1}{t^3}} \frac{1}{|\rho|^2} + \sum_{|\rho| < e^{2t} + \frac{1}{t^3}} \frac{1}{|\rho|} \min(1, t).$$

The first sum can be bounded independently of t, for the second we use the inequality $\sum_{|\rho| < T} \frac{1}{|\rho|} \ll \log^2 T$. Thus we obtain

$$g_3(t) + g_3(-t) \ll 1 + \sum_{\rho < e^{2t} + \frac{1}{t^3}} \frac{1}{|\rho_n|} \min(1, t)$$

$$\ll 1 + \log^2 \left(e^{2t} + \frac{1}{t^3}\right) \min\left(1,t\right) \ll 1 + \log^2 \left(e^t + \frac{1}{t}\right) \min\left(1,t\right)$$

which proves our claim.

For real numbers x_1, \ldots, x_n , let $\|(x_1, \ldots, x_n)\|^2 = \sum_{j=1}^n \{x_i\}^2$, where $\{x_i\}$ is the fractional part of x_i .

LEMMA 9. Let n be a natural number, $\vec{\alpha} = (t_1, \dots, t_n) \in \mathbf{R}^n$, $\varepsilon > 0$. Then there is some s with $1 < s < \frac{2^n \Gamma(n/2)}{\pi^{n/2} \varepsilon^n} + 1 =: M + 1$ such that

$$||s\cdot(t_1,\ldots,t_n)||<\varepsilon.$$

PROOF. The proof will use the pigeon-hole-principle. For any integer k with $1 \le k \le M+1$ set $x_k := k \cdot \vec{\alpha}$ and consider the balls with radius $\varepsilon/2$ and center x_k . If none of these intersect (mod 1) nontrivially, their volume is bounded by the volume of the unit cube, thus

$$\omega_n \cdot (\varepsilon/2)^n \cdot (M+1) < 1$$

where $\omega_n = \frac{\pi^{n/2}}{\Gamma(n/2)}$ is the volume of the *n*-dimensional unit sphere. By definition of M we obtain

$$\omega_n \cdot \frac{\Gamma(n/2)}{\pi^{n/2}} < 1, \qquad \omega_n < \frac{\pi^{n/2}}{\Gamma(n/2)}.$$

However, this contradicts the known formula for ω_n .

So the balls intersect in some point P, i.e. there are natural numbers $k_1 < k_2 < M$ such that $P \in B_{x_{k_1}}(\varepsilon/2) \cap B_{x_{k_2}}(\varepsilon/2)$. Hence

$$||x_{k_2} - x_{k_1}|| \le ||x_{k_1} - P|| + ||P - x_{k_2}|| < \varepsilon,$$

but since $x_{k_2} - x_{k_1} \equiv x_{k_2 - k_1} \pmod{1}$, we get $||x_{k_2 - k_1}|| < \varepsilon$. Thus $s = k_2 - k_1$ has the claimed properties. \square

PROOF OF THEOREM 5. Consider the explicit formula for $\Psi(x,\chi)$ in the version

$$\Psi(x,\chi) = Ex - \sum_{\rho} \frac{x^{\rho}}{\rho} + O(\log x) = Ex - \sqrt{x}g(\log x, \chi) + O(\log x).$$

To find large oscillation of Ψ , it suffices to find oscillation of g, more precisely we have to prove the following statement:

Let q be a natural number, $\varepsilon > 0$, and assume that no L-series (mod q) vanishes in the region $\Re s > 1/2$. Then there are effectively computable constants $Y_0(q,\varepsilon)$ and C such that for all $Y > Y_0$ there are numbers $2 < s_+, s_- < Y$ such that

1.
$$|g(s_+, \chi_i) - g(s_+, \chi_j)| < C$$
,

2.
$$g(s_+, \chi_j) > \left(\frac{1}{2} - \varepsilon\right) \log_2 Y$$
,

3.
$$|g(s_-, \chi_i) - g(s_-, \chi_j)| < C$$
,

4.
$$g(s_-, \chi_j) < -\left(\frac{1}{2} - \varepsilon\right) \log_2 Y$$
,

5.
$$s_+ < s_- < s_+ + \frac{1}{\log^{1-\varepsilon} Y}$$

where χ_i and χ_j run over all characters (mod q).

Indeed, if we set $Y = \log X$, $t_{+} = e^{s_{+}}$ and $t_{-} = e^{s_{-}}$, we obtain the statement of the theorem. Therefore in the sequel we will only consider the functions $g(t,\chi)$.

In the formula

$$\Psi(e^y, \chi) = E_\chi e^y - e^{\frac{1}{2}y} g(y, \chi) - \frac{1}{2} \log(1 - e^{-2y}) + O(1 + y)$$

all terms are bounded for $y \setminus 0$, except $g(y,\chi)$ and $\frac{1}{2}\log(1-e^{-2y})$. Since $(e^{\frac{1}{2}y}-1)\log(1-e^{-2y})\to 0$ for $y \setminus 0$, the error of replacing $e^{\frac{1}{2}y}g(y,\chi)$ by $g(y,\chi)$ is $\ll 1$. Thus for y>0 sufficiently small we get

$$g(y,\chi_j) = -e^{-\frac{1}{2}y} \frac{1}{2} \log (1 - e^{-2y}) + O(1) = -\frac{1}{2} \log (1 - e^{-2y}) + O(1)$$
$$= -\frac{1}{2} \log y + O(1) = \frac{1}{2} \log \frac{1}{y} + O(1),$$

i.e.

(2)
$$g_j(y) > \left(\frac{1}{2} - \varepsilon\right) \log \frac{1}{y}.$$

On the other hand $|g_i(y) - g_j(y)| \ll 1$. Using Lemma 8 we get

(3)
$$g_j(y) < -\left(\frac{1}{2} - 2\varepsilon\right) \log \frac{1}{|y|},$$

 $|g_i(y) - g_j(y)| \ll 1$ for y < 0, sufficiently close to 0.

Now define $g(t): \mathbf{R} \to \mathbf{R}^{\varphi(q)}: t \mapsto \left(g(t,\chi_1), \dots, g\left(t,\chi_{\varphi(q)}\right)\right)$ and $g_N(t): \mathbf{R} \to \mathbf{R}^{\varphi(q)}: t \mapsto \left(g_N(t,\chi_1), \dots, g_N\left(t,\chi_{\varphi(q)}\right)\right)$, where $g_N(t,\chi)$ is the series restricted to the N zeros with least absolute values.

Using Proposition 4 we have, using $N(T, \chi) \ll T \log T$,

$$\int_{r}^{x+1} \|g(t) - g_N(t)\|^2 dt \ll \frac{\log^4 N}{N}.$$

Now if $N = \log^{1-\varepsilon} Y$, and Y is sufficiently large, the right hand side becomes $< \varepsilon^3 \log^{-1+2\varepsilon} Y$. Together with the estimate (2) we get that for all $0 < y < \log^{-1+3\varepsilon} Y$ with the possible exception of a set of measure $\varepsilon \log^{-1+2\varepsilon} Y$ at most we have for all $\chi \pmod{q}$ the estimate

$$g_N(y,\chi) > g(y,\chi) - \varepsilon > \left(\frac{1}{2} - 4\varepsilon\right) \log_2 Y.$$

Similarly, using (3) we get for $-\log^{-1+3\varepsilon} Y < y < 0$ with the possible exception of a set of measure $\varepsilon \log^{-1+2\varepsilon} Y$ at most the estimate

$$g_N(y,\chi) < g(y,\chi) + \varepsilon < -\left(\frac{1}{2} - 4\varepsilon\right)\log_2 Y.$$

Now we apply Lemma 9 with n = kN, $k = \varphi(q)$ and $\varepsilon = \frac{1}{4\pi\sqrt{kN}}$. We obtain the existence of a real number s with

$$1 \le s \le \frac{(8\pi\sqrt{kN})^{kN} \Gamma(kN/2)}{\pi^{kN/2}} < e^{2kN\log kN} < e^{2k\log^{1-\varepsilon/2} Y} < Y - 1,$$

such that

$$\left(\sum_{\rho} \left\{\frac{s\gamma}{2\pi}\right\}\right)^2 \leq kN \sum_{\rho} \left\{\frac{s\gamma}{2\pi}\right\}^2 \leq \left(\frac{1}{4\pi}\right)^2$$

where ρ runs over the N zeros with least imaginary part of every L-series (mod q). Hence we conclude

$$\|g_N(y) - g_N(y+s)\|^2 \le \left(\sum_{j=1}^k |g_{Nj}(y) - g_{Nj}(y+s)|\right)^2$$

$$\le \left(\sum_{\rho} \left| \frac{e^{iy\gamma}}{\rho} - \frac{e^{i(y+s)\gamma}}{\rho} \right| \right)^2 \le \left(\sum_{\rho} \left| \frac{e^{is\gamma} - 1}{\rho} \right| \right)^2$$

$$\le \left(2 \cdot 2\pi \sum_{\rho} \left\{ \frac{s\gamma}{2\pi} \right\} \right)^2 \le 1.$$

Now choosing $|y| < \log^{-1+3\varepsilon} Y$ and using the estimates for $g_N(y,\chi)$ given above, we conclude that in the interval $[s,s+\log^{-1+3\varepsilon} Y]$ with the possible exception of a set of measure $2\varepsilon \log^{-1+2\varepsilon} Y$ at most for all characters $\chi \pmod{q}$ the estimate

$$g_{Nj}(z) > \left(\frac{1}{2} - 4\varepsilon\right) \log_2 Y - 1 > \left(\frac{1}{2} - 5\varepsilon\right) \log_2 Y$$

holds, where z=y+s. In the same way we get for $y\in [s-\log^{-1+3\varepsilon}Y,s]$ with the possible exception of a set of measure $2\varepsilon\log^{-1+2\varepsilon}Y$ at most the inequality

$$g_{Nj}(z) < -\left(\frac{1}{2} - 4\varepsilon\right)\log_2 Y + 1 < -\left(\frac{1}{2} - 5\varepsilon\right)\log_2 Y.$$

Now using Proposition 4 once again we get that for $z \in [s, s + \log^{-1+3\varepsilon} Y]$ with the possible exception of a set of measure $\leq 3\varepsilon \log^{-1+2\varepsilon} Y$ at most all the $\varphi(q)$ inequalities

$$g(z,\chi) > \left(\frac{1}{2} - 8\varepsilon\right)\log_2 Y$$

are valid. For $z \in [s - \log^{-1+3\varepsilon} Y, s]$ with the possible exception of a set of measure $\leq 3\varepsilon \log^{-1+2\varepsilon} Y$ at most we have

$$g(z,\chi) < -\left(\frac{1}{2} - 8\varepsilon\right)\log_2 Y.$$

In the same way we obtain that in $[s - \log^{-1+3\varepsilon} Y, s + \log^{-1+3\varepsilon} Y]$ with the possible exception of a set of measure $3\varepsilon \log^{-1+2\varepsilon} Y$ at most all the inequalities $|g(z,\chi_i) - g(z,\chi_j)| \ll 1$ are valid.

Combining these considerations we get that the measure of $z \in [s, s + \log^{-1+3\varepsilon} Y]$ such that

$$g(z,\chi) > \left(\frac{1}{2} - 8\varepsilon\right) \log_2 Y$$

for all $\chi \pmod{q}$ and

$$|g(z,\chi_i) - g(z,\chi_j)| < C$$

for all $\chi_i, \chi_j \pmod{q}$ is at least $\log^{-1+3\varepsilon} Y - 6\varepsilon \log^{-1+2\varepsilon} Y$. Without loss of generality we can assume $\varepsilon < 1/6$, so this set is not empty. Let s_- be an arbitrary point from this set. Similarly there is an $s_+ \in [s - \log^{-1+3\varepsilon} Y, s]$, such that the inequalities

$$g(s_+, \chi) < -\left(\frac{1}{2} - 8\varepsilon\right)\log_2 Y$$

and

$$|g(s_+, \chi_i) - g(s_+, \chi_j)| < C$$

hold. Obviously we have $s_+ < s_- < s_+ + 2\log^{-1+3\varepsilon}Y < s_+ + \log^{-1+4\varepsilon}Y$. Now replacing ε by $\varepsilon/8$, we obtain the claimed inequalities for g, and these imply the statement of our theorem. \square

References

- [1] M. Cramér, Ein Mittelwertsatz in der Primzahltheorie, Math. Z., 12 (1922), 147-153.
- [2] J. Kaczorowski, The k-functions in multiplicative number theory I, Acta Arith., 56 (1990), 195-211.
- [3] J. Kaczorowski, The k-functions in multiplicative number theory II, Acta Arith., 56 (1990), 213-224.
- [4] J. Kaczorowski, The k-functions in multiplicative number theory III, Acta Arith., 57 (1991), 199-210.
- [5] J. Kaczorowski, The k-functions in multiplicative number theory IV, Acta Arith., 57 (1991), 231-244.
- [6] J. Kaczorowski, On the Shanks-Rényi race problem mod 5, J. Number Theory, 50 (1995), 106-118.
- [7] J. Kaczorowski, A Contribution to the Shanks-Rényi race problem, Quart. J. Math. Oxford, 44 (1993), 451-458.

- [8] J. E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris, 158 (1914), 1869–1872.
- [9] A. Wintner, On the distribution function of the remainder term of the prime number theorem, Amer. J. Math., 63 (1941), 233-248.

(Received August 14, 1998)

UNIVERSITÄT FREIBURG MATHEMATISCHES INSTITUT ECKERSTRABE 1 79104 FREIBURG GERMANY E-MAIL: JCP@ARCADE.MATHEMATIK.UNI-FREIBURG.DE