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On sign-changes in the remainder-term
of the prime-number formula, III

by

-J. Kaczorowskr (Poznan)

1. In the previous two papers of this cycle, [4], [5], we have proved
some estimates from below for the number of sign-changes of the functions

(1.1

(1.2) A, (x) =H(x)—lix,
(1.3 A3 (%) = ¥ (x)~x,
(14 d4(x) = 8{x)—x,

which are the remainder-terms of various versions of the prime-number
formula.

In this paper we shall be concerned with the behaviour of the function

A (xy=m(x)—lix,

}
)

o

(15) A5 =Y (Am)—1)e ",
a=1
which is substantially the “Abel mean” of 4,.
It can be proved that the prime-number theorem is equivalent to the
formula

(1.6) Asg{x)=0(x) as x—c0,

and thus we can call A5 the fifth remainder-term of the prime-number formula.

The fungtions (1.1)~(1.4) and (1.5} have many prcperties in common.
They are closely connected with the distribution of non-trivial zeros of the
Riemann zeta function. In particular, the well-known formula

log™ 4
%) fim sup ﬁﬂ;—(x)'—

X oo 1

=supReg, 1<j<4,
[

(o = B-+iy ranging over non-ttivial zeta-zeros) is also true for j=35. .

Most of the methods usually applied to 4;, 1 <j <4, work also in the
case =3,
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But there are also differences. For instance, the best Vinogradov's zero-
free region for {(s) gives

(1.8) A5(x) = O(xexp(—colog x(loglogx)~2*~), & >0,

which is stronger than the known estimates
(1.9) 4;(x) = O(xexp(—c, (log x)** (log log x)~ /%))

obtained for j =1, 2, 3, 4 (¢, and ¢, denote positive, absolute constants).
Osciliatory properties of 45 were first studied by G. Hardy and J. E.
Littlewood in 1918. They proved [1] that, under the Riemann hypothesis,

(1.10) 45(x) = O(x*7?),
(1.11) As(x) = 2, (x'?)

as x tends to infinity.

In particular, under the Rlemann hypothesis, 45 changes sign infinitely
often as x — co.

Let V5{T) denote the number of sign-changes of Ay in the interval -
0<x<T

From a general theorem of Pélya [8] it follows that

(1.12) limsup —— Vs (T)

T-ew lg TE

™

where, as usual, y denotes the imaginary part of the “lowest” zeta-zero on the
line

(1.13) o= (.= sup Reg,

: Hoy=0

provided there are any. If not, y = + oo,

If we accept the Riemann hypothesis, we get v = yo = 14.13... For this
case Pdlya [9] has proved a result stronger than (1.12), with liminf in place
of limsup.

The ideas of Ingham’s paper [2] from 1936 lead to the following result.
If there is at least one zero on the line ¢ = @ then 45 changes sign in every
interval of the form

(1.14) (TesT)

for some positive ¢, and T sufficiently large.
Turdn’s power sum method is also applicable to this problem S.
Knapowski and W. Sta§ proved [7] that

(115) ' max As (x) > T2 exp (_ 14 10g TlOg ]0g log T
T3 gxgT log log T

On sign-changes in the remainder-term... 111 349
and
i ' log T'l
{1.16) min  A5{x) < '“Tl"zexp(qm og Tlogloglog T
TR sxgr loglog T
for large T.

This result gave the first effective lower bound for the number of sign-
changes:
{1.17) Ve(T) = c3loglog T for T3> T,
with numerically calculable constants ¢; and T,.

2. There are some reasons for believing that there exists a positive
constant C such that

(2.1) Vs{T)~ClogT as T— co.

The aim of this paper is to prove certain facts which may support this
conjecture.

The first approach to (2.1) is given by the following theorem.

TueorREM 2.1. There exists an effectively calculable numerical constant T
such that
2.2) I/;(T);z—i-logT for T>T,
where y, = 14.13...
and ineffectively,

denotes the imaginary part of the “lowest”™ zero of {(s),

2.3)  himinf 20

where vy has the same meaning as in (1.12).

The proof of this theorem is essentiaily the same as in [4], [5] and is
therefore omitted.

The problem of finding good estimates from above for ¥; (T) appears to
be very deep. In particular, we cannot prove any result as sharp as V(T)
< log T without any hypothesis. In fact, any hypothetical estimate of the
form:

(2.4) Vi(T)<alogT for T3 Tya),

or even a weaker statement of type _

(2.5) Vs(T) < alogd; for a sequence' T, — w,

implies that the Riemann zcta—funétion does not vanish in the half-plane:

(2.6) g>1—0y(a)
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where
Ca

(log a)** (log log a)*’*

oola) =

This follows from Theorem 2.1 and Vinogradov's estimate of the zero-
free region for {(s). .

In view of this observation, our results concerning upper estimates of
Ve (T} have to depend on some unproved hypothesis, '

3. Let us first discuss the consequences of Ingham's condition which
says that there is at least one zero on the line ¢ = {.

TurorEM 3.1. The following statements are equivalent:

1. Ingham's condition is true;

2. there exists an absolute constant n, such that in every interval (T, eT),
T >0, A5 changes sign at most ny times;

3. hmsup V; (Tlog T < co;
T~

4. timinf V5 (T)/log T < co.
T

Theorem 3.1 and (1.14) {or Theorem 2.1) immediately imply that, under
Ingham’s condition,
(3.1) eslog TS Ve (T) S cglog T
for some positive constants ¢; and cq.

4. Tt is possible to improve (3.1) under some additional conditions upon
the zeta-zeros on the vertical line ¢ = 6. To this end we shall use the Bohr—
Weyl method from the theory of almost periodic functions.

Suppose Ingham’s condition is true and let

4.1) 0<w, <y <...

denote the imaginary parts of zeros on the half-line ¢ =4, t > 0.

Let T denote the one-dimensional torus, ie. the topological group R/Z
with quotient topology, We shall identify T with the interval {0, 1) with
addition modulo 1 as group operation,

Let

4.2) Q= TY
where N denotes the number of w;’s (N = oo is possible). Then € with usual
product topo]pgy is a compact abelian group,
Let : '
(4.3) - Qo= {§= (&)l & =0},

icm

On sign-changes in the remuinder-term... IH 351

and
(44) Q- 0
be the projection defined by:
N . 51 o
(4.5) n((éj)jzl)"‘ §j——w )
oy i=1

where [a} denotes the fractional part of a real number a.
Let further

(4.6) F: Q- R
be defined as follows:
4.7) F((&)i-y) = §1|F(0+iwj)i cos (2né;+b)),
where g
4.8) b; = arg I'(0+iwy),
and I' denotes Euler'’s gamma function.
Let finally ‘
(49 _ My ={{eQ| F(§) =0}
and .
(4.10) v: 0o N U0}
be defined by the formula
@11 v(n) = # (2= () M),

The symbol “#A” denotes here the cardinality of a set A. It will be
proved that the set =~ (y) " My is finite for every ns(l, (see Lemma 8.1
below). Hence, the definition (4.10)-(4.11) is correct.

Using this notation, we have the following result.

THEOREM 4.1, Suppose that Ingham’s condition is true and that the num-
bers wy, @y, ... in (4.1) are linearly independent over Q. Then

4.12) Ve(T) ~xlogT, as T-cow
where

(1)1 ’
(413) w2t [ vindutp

€20

and du denotes the normed Haar measure on the group Q,.

The assumption that /s are linearly independent is made for the sake
of simplicity and Theorem 4.1 is just. the simplest result of this type.
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Nevertheless, it seems difficult to prove (4.12) by the method presented hete
without any conditions concerning the algebraic structure of the Z-module
generated by the numbers ;.

Let x, < x; < x; denote three consecutive sign-changes of A.-, We say
that x, is &-small when

max 22 f,x)' <4

xléxf:xz X

As(x
or max i__sw(*ﬂ < J.
Xy Sx€xg x

Let us denote by ¥; (T, 8) the number of d-small sign-changes of 4y in
the interval [0, T1. ‘

Tueorem 4.2. Under the assumptions of Theorem 4.1, almost all sign-
changes of ds are “big”, i.e. for every & > 0 there exists & > 0 such that
4.14) Vs(T, &) <

5. A yet more precise information about the behaviour of A can be
obtained under the assumption of the Riemann hypothesis. The result is as
follows.

TueorEM 5.1. Suppose that the Riemann hypothesis is true and let

elogT

(5.1} Oo =4+iyy =4+1 1413,

denote the “lowest” zero of ((s). Further, let

(52) g =Argl(g,)
and
(5.3) t = (kn—@)/ye, k=1,2,...

Then:

L. All sing-changes of As are “big”; this means that for every two
consecutive sign-changes O < x, < x; we have :

ds{x
(5.4) wax | 5152” > ¢
Xy ExK Ay }
with an absolute constant ¢, > 0.

2. For sufficiently large k, every interval of the form

(5.3) . (', "ty
contains exactly one sign-change of A,

3. For T— oo,
(5.6) Ve(T) = znﬂmg T+0(1).

Let us notice that, a_ss_urm'ng the Riemann hypothesis, our Theorem- 5.1

icm
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solves completely the oscillatory problem concerning 45. In particular, (5.6)
proves the conjecture (2.1) in a considerably stronger form.
Let us define a real-valued function K(x), x > 0, by the formula

(5.7) K(x) =Y I'(@e™,
¢

where the summation is spread over all non-trivial zeros of {(s).
Let V(T) denote the number of sign-changes of K on the interval
[0, T]. Then we have the following result.

Treorem 5.2, Under Riemann hypothesis we have for T >0
(538) V() =219 (D),

where ¥ denotes an almost periodic function belonging to the Stepanov class SP
Jor every p = 1. Moreover, the function ¥ is bounded.

Recall, [12], that a complex-valued function f belongs to the Stepanov
class ¥ il for every ¢ > 0 there exists a relatively dense set of numbers
1 =1(g} > 0 such that

(5.9) ' sup{jfj(x+r+u)-f(x+u|f’du}””

xeR
Let 0 <y; <y, <... denote all sign-changes of K and let 0 < x, < x,

< .. denote all sign-changes of 4. Then it can be proved that there exists
an integer [ such that

(5.10) y; = log x;.+0(1) for

Theorem 5.2 shows that the numbers y; are distributed “almost period-
ically”. Hence, in view of (5.10), the logarithms of the s1gn-changes of Ag
are also in some sense distributed almost periodically.

Jj— oo,

6. Let us write

(6.1) G(z) = 45 (&)
for complex z satisfying
(6.2) Imz} < /2.

The function G(z) is regular in the horizontal strip (6.2).
Applying the Mellin transform and shifting the line of integration to the
left we get

1 2T+ioo gf o
(6.3) G(z) = | {-——(s]——.i(s)}l’(s)e ds

27‘: 2-jay E
= % I'(0) e¥ +h(2),
4
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where ¢ runs over all non-trivial zeros of {(s), and

C 1 -—1/2-}-100{?

(6.4) h(z) = —{(0)— () § (9)+C()} () e* ds.

2 — 1t A C
This function is regular in the strip (6.2) and
(6.5) [h{z)) €51 for [Imz] <n2-d, &>0.

The foregoing formulae are the basis for most of the considerations in
this paper.

7. Proof of Theorem 3.1, It suffices to prove the implication *1 = 27,
because “2 =3 =-4" are trivial, and “4 = 1" follows from Theorem 2.1,
(6.3) implies that, for z = x-+iy, |¥| <n/4, x 2 0, we have

(7.1) G2} <) IT

() =7 e

Moreover, for real x - oo

(7.2) G(x) = —e®™ {g()+o(1)},
where
(7.3) g(x) = ; I'{p) e .

We shall use the fact that g is an almost periodic function in the sense of
Bohr.,

Since g is not identically zero, we have
(7.4) : suplg(x) = ¢ = 0.

xeR

It follows that there exist two positive constants T, and ¢, such that for
every T2 T,

(7.5) max

TEL£x€T+eg

lg ()l = co = (1/3)cy.

(To prove (7.5) it suffices to consider the set of all translation numbers
of g belonging to the number & = ¢ (compare [37).)
Hence, owing to (7.2) and (7.5), we have
(7.6) max e ™|G(x)| = ¢y
Tsx€T+ey o
for T> T, and a positive constant ¢, .
Our assertion is equivalent to saying that the number of sign-changes of

G in every interval of the form (T T+ ¢10) 15 bounded for large T. We shall
prove it in thlS form.,

icm
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Let xpe[T, T+c¢y0] be such that
0

(1.7 |G (x0)| = 6113
and let
(7.8) T K(0, 1) = {z = x+iy| |y < n/d}

be the conformal mapping given by

(7.9} T(w) = xowl-;log %_L

There exists a real number ry; 0 < ry < 1, independent of T such that
(7410) {T T“I‘Clo] c T(K (0 ?'0)).

We see that the number of sign-changes of G in the interval (T, T+ Cm)
is less or equal io the number n(r,) of zeros of the function
(7.11) Gy (w) = Gz (w))
in the disc|w! <ry.

The well-known Jensen identity and the estimates (7.1), (7.7) give

|G (W)

]wfé(rO-I-i)[Z

G, )

w| < 1.

(7.12) <1

niro) €log

and the result follows.

8. We shall prepare in a series of lemmas some auxiliary results needed
for the proof of Theorems 4.1 and 4.2. All these results are conditional and
we shall not repeat the words “under the assumptions of Theorem 4.17,
which apply throughout the section.

The following notation will be used in the sequel.

Let Ai: R— Q be the function defined by the formula

(8.1) Aty = ({o )y
Let '
(8.2) g Qe 2
‘be defined by
(8.3) (1) = (-h {gl-p-.fl %:—}, {53 +¢&, %}, ) _

The function y is a bijection and

B4 a(ER)= (£{¢~f-§—} {53—612’)—:}, )
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Denote by H, F,, H, the functions defined on 2 as follows:

N
(8.5) H((E) ) = z“\: [T (6 + i) w;sin (2rE;+ b)),
8.6) F,=Foy,
8.7) H, =Hoy.

We may suppose that the metric in Q is defined by
, o i 2mg)
{8.8) 0(8, 8) =} —xle =™
=19

for §=(Ep,, &=
Lemma 8.1. There exists an absolute constant 1, such that, for every
neQy and te{0, l/m,), there exists I, 05 1< 1, for which
f

g .
(8.9) -&TF(th(r)) # 0.
Moreover, the function v in (4.11) is well-defined and bounded,
Proof Let 9, and let t5c[0, Ljw,) satisfy

(8.10) [F {9+ A(to)| = a > 0.
There exists r, > 0 such that
811 |F (i + (o)) = a/2 >0

for all ¥eQ, with o(n, ) <r,. :

Consider the functions ¢+—F (y'+A()) for complex t with [Imt] < n/4,
—1<Ret < 2/w,. By similar arguments to those used in the proof of
Theorem 3.1 we see that each function F(yf + (1)) bas at most N, < oo zeros
(counted with mulfiplicities) in the interval 0 <t < 1/w,. N, depends on a
(and thus on #) but not on . Since Q, is compact, this implies the existence
-of such an absolute N,. The first assertion thus follows.

To finish the proof, let us notice that

n™Hm) My = {4+ 2()] 1[0, 1w,), F(n+A(#) = 0}.

Thus v(n) < N, for every neQ,.

Lemma 8.2, Let E denote an arbitrary topological space and let U be. an
open set in R*xE, k2 1. Let (x5, e))eU, xo=(x?, ..., x0)e R¥, epe E and
let f: U — R* be a function such that

(8.12) : ' f(xo, €g) = 0.
Suppose that [ has partial derivatives with respect to each xi‘and that they
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are continuous as functions of (x, eye U. Moreover, let the Jacobian of f be
non-zero at the point (x, eo):

¥

ﬁ(xll EERE xk) (xe)=(xp.eg)

(8.13) # 0.

Then there exist two open sets, 4 in R* and B in E, containing x, and e,
respectively, such that for every ec B there exists exactly one x(e)e A satisfying

(8.14) f(x(e), e) =0

The function Boer—sx(e)e A is continuous.

This is the well-known Implicit Function Theorem (see for example-
[117, Chapter 3).

In analogy to (4.9) we write M, = {£cQ| f(& = 0} for any real-valued
function f on Q. Moreover, My, = M, N€Qy. Thus the meaning of My,
Mp. . My, and Mp g, below is clear.

LemMMA 8.3. We have
(8.15) p(n(Mp n My)) =0

where the bar denotes closure in §, and p is the normed Haar measure on
this group.
Proof. We have

" (8.16) n(Mp N\ Mpy) = m (My My )
where m; is the projection
(8.17) Com Q-0
defined by
(8.18) 7y (610 &2y - ) =10, &a, &5, -0

We shall examine the set My, My, more carefully.
Let us write

(8.19) ' Q, ={(¢) e { =&, =0}

Consider F, as a function defined on R*x£;:

(8.20) FylEes &an = Fy(G, 2 o )
for y=1(0,0, &3, &4, .. 08,
We have
7 2
(8.21) S F,=—"H,

08y 0y
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and
822 F8 = Flm (O+A(E), e@.

In view of Lemma 8.1,

by
{8.23) My "My < () M,
X x - .
where : =t
a} al+1 r
(824) M, = {fe() aT:J?F"(‘f) =0 for j=0,..,1 b-aan(é) # 0} :
Write
(8.25) M, = MU M|,
where
o K ahl
(8.26) My e {EEM; bE; EE;I:TFI(@ 7+ O}:
(8.27) Ml =<teM ~—6—~§E—1F =0
' ‘ | a @ =0

Let us consider M} first. We apply Lemma 82 to F = €4, k=2 and the
function

31—1 5!
8.28 A
(8.28) 7=( e 7 Fx).

For &% = (&9, &9, no)e MY, 9,682, the Jacobian of }" is non-zero. Indeed,

ﬁf a al~l al+1

m - —55 oEL=1 F"(fo) a§r1+1 Fx(fo) %0,

Lemma 8.2 implies that there exist three open sets Uy =« T, Uy =T,

Us =@y, &el,, EeU,, yelU; and two continuous functions i Uy
= U, i=1,2 such that

(8.30) M?ﬁUl XU:2XU3 s {(61! 62, ")EQI (f?: qpl.(p’), 1_-_—-_ 13 2’ "E Ua}*
If §=(£y, &, We M) then

(8.29)

(831) CO8 (2n§2+b2+2n%1—’g'1)=0
1
or '
(8.32) " sin (2::52 +b, +2ngi§1) =0,
. 1

Thus there exists a finite set of real numbers a, a4, i = 1; 2,000, 's'ﬁc'h

icm
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that
(8.33)

for at least one i < ig.
Moreover, for any such £ the point (£,, e TxQ,, n=(0,0, &, ..., is
a zero of the function

(8.34)  F(£,, ) = a+|{0+io,) cos(2né, +by)

S =&l +a

N
+ Z |r(0+i(03)[003 (2ﬂfj+b.,+2ﬂ'gj“é:l)
j=3 ‘ 1

where o is equal to 0 or +{I'(f+iw,), depending on which one of the
equalities (8.31) and (8.32) is actually satisfied.

As in the proof of Lemma 8.1, there is a natural number [}, such that, for
every e, there exists I, 0 I < I, satisfying

& -
(8'35) a—}F(éls ’1) = 07 0 ‘g-j < lj:
1

¢
41

gty
(8.36) WF(él, m+# 0.

Applying again Lemma 82 to E=8;, k=1, and the function
f =0 F/EY we see that there exist two open sets U, = T and Uj; = £,
such that : ' )

837 MinU, xU, xUs = {1, a: &y +ap, el & = o, (n), neUs},

where @,: U;— U, is a continuous function and U, = {4, U, +a{}.'
We have proved that the set M, ¥, M B, is covered by the sets U, x U,

x Uy as in (8.30) and (8.37). Since M PN M i, is compact, it can be covered
by a finite number of such sets. Thus there exists a natural number m sauch’
that :

839 My, My, < U (o e &= oula). i=1,2, 7eU3)

and ¢, are continuous.

Hence,

(839)  n(My N Mp) =, (Mz, ~ Mg)

e 010 & e & = ouin, n=T%)

and such sets have p-measure zero.
The proof of Lemma 8.3 is complete.
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Lemma 8.4. For every e > 0 there exist § > 0 and a sequence of disjoint
intervals

(8.40) Ij(é) < [0, oc), j= 1,2,...,

such that

(8.41) m(1;(5)) = 2n/w,,

(8.42) m(0 L)AL, T <eT for T2 To()
Jj=1

(8.43) gl +1g' (0 > 6 ﬁrtﬂgh@J>m

where g is defined by (7.3) and m denotes the Lebesgoe measure on the line R'.
Proof. We have

(8.44) g(2nt) = 2F (A1)} and

with 4 given by (8.1)
Let us partition the interval [0, oo) into subintervals of the form

¢ (2mt) = 2H(A{))

. k+1
(8.45) [i, me) k=0,1,2,...
a)l 04 .
For kfw, <t <(k+1)/w; we have

846 )= ({“"f%} )T

(=)

Fix a positive . Write

l .
),
oy j=1.

(847) My =n(MgMg) U Mpig, v (MFmo'"'l(l/C‘h)),
where _
(8.48) | Myjgy—A(l/oy) = {n~A(l/ay)| neMgg,},

and “—” denotes subtraction in the group .
By Lemma 83, u(My) =0. Since M, is closed, there exists a finite
sequence of closed (in the topology of Q) cubes Qy, ..., @, such that

] !
849 . . L Mchtlg,
=1

4
(8.50) Y u(@) <&.
i=1 ‘
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Further, let

3

(8.51) & = inf {|F (& +|H (| se\="" (U ¢))}.

i=

Suppose & = 0. Then there exists a sequence ﬁieQ\n“l(

Tt
r

Q;) and two
pOintS fQEMF ﬁMH, D:OE.QO such that gj—* 505 ﬂ(éi)‘"* o
If &,¢Q, then 5, = ®(&p), since = is continuous on 3, and thus
{
ﬂoEﬂ(MFmMH) < Mo = Int U Qj
=1
Hence &en™' (U Q;) for sufficiently large i, which is impossible.
If foego then no=2E or 1ny=~&—A(1/ey).
oMy « Int U Q; and as before we get a contradiction.
=1 .
Thus
(8.52) _ o=>0.

Now we can take for intervals [;() those from among the intervals
[2rkfewy, 2w (k+ 1)/w,) for which '

. ] N’ !
(853 ({ %})EIEJQIQJ-

Then, by the well-known Kronecker theorem on simultaneous diophanti-
ne approximation {or its extended version if N = oo), we get

In both cases

a0 i
59 m(U LG0T < ) o~ KU @)T <.

ko I ’
(G, = 8,2
k<wyTi{2n)

Finally, for t¢ {J I;(6) we have
j=1 '

(855) At/ me 2\a? (}Ql 0).

Hence by (8.44), (8.51)
(8.56)

and the lemma follows
We shall denote by V(T g) the number of s1gn—changes of g in the
interval [0, T7].

At/2m)| + 2 [H (A(t/2m)) > 5
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Lemma 8.5. The asymptotic relation

(8.57) Vs(T) ~xlogT, T-—o0

Jollows from the formula

(8.58) V{T, g) ~xT, T— 0.
Proof. Writing ‘

(8.59) go(x) = —e "G (x)—g (x)

we have

(8.60) gR )| —~0 as x-—oco

for every integer k = 0.
Fix ¢ >0 and let 4,0 <38 <1 and I,(9), ]—1 2,.
meaning as in Lemma 8.4. Write

(8.61) J;(8) = {te R| li—t) <8}
: j(a)

~and denote by

(8.62) 0<t <t; <..,

all zeros of g in the set [0, oo}\ CJ I, (8).

Suppose (g +¢o){to) = 0 for toé U J;(8}.
If ty is sufficiently large then

(8.63) . lg (to)l = lgo (to)] < 6%/(10cy,),
where
(8.64) €12 = max(suplg” (1) ), 1).

. teR
Hence, in view of Lemma 8.4,
2

3 _
lg' (to)l > &~ om > 39,

8.65
(8.65) Toe;

For |t—rto] < 8/(4c,5) we have

o
{8.66) lg' O = Ig' (te)l —| § 9" (x)dx| = 6/2.
" Therefore .‘
(5'-67? o Cog (to —ZE;) = - (Sgi_? g'(to)) W (to)

, have the same
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where
to
(8.68) Wity = |

to— di(deq 9)

lg’ (x)| dx —g {to) sgn g’ (1o) = 6*/(dcy5) > 0.

Consequently
(8.69) sgn g(fo—0/(4c,5)) = —sgng’ (to)
and simi;larly
870 - sgng (to+58/(4cy ) = sgn g’ (to).
Since '

871 (o~ 0/(4e12), to+3/decs) U 1,0) = @,

the formulae (8.66), (8.69) and (8.70) imply that there exists exactly one t;
with [to—1t;] < d/(4c¢;3). _
Similarly, it can be proved that for every sufficiently large j the function
g+4¢o bas exactly one sign-change in the interval (t;—d/(d¢,,), t;+5/(dcy,)).
Theorem 3.1 and Lemma 84 imply that g+g, has O(sT) sign-changes

on the set | J;(6) [0, T, and the same can be said of g. Thus
j=1 .

8.72) V(T G) = V(T, g+go) = 3 1+0(T)

th.T
=V(T, )+ 0T) = xT+O(sT)

whxch is simply another form of (8.57).
“'LEMMA B.6. In the notation of the previous lemmas, there exists a natural
number my such that

(8.73) n(Mp)\ U Qy=UsU...UUp,
where U, are open and d:sjomr sets defined by

: !
(8.74) , Uy= {'Iﬁﬂ(M}v)\JUl Q) vin =Jj}.

The function v is defined by (4.11).

Proof. The rcprescntatlon (8.73) is possible because v is bounded We
have to. prove that U)'s are open. S

. Let yeU,, 1 €r< mg. Then‘
879 R O M = {8, 8} o

There exists a real number 8, > O depending only on the choice of ‘the
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cubes Q; and independent of #, such that

(8.76) G=n+i(), 1<i<r,
(8.77) , d, << {lw)—86;, 1<€i<Lr,

Moreover, we may assume that §, < and thus

I
(8.79) (F(O+H{H >8, for §¢1:"‘(jul Q).
Let
!

(8.80) R, = min {sr iflf ) |F (n+A0), se (. JUl Q). ¥ 87}

t—1; Zs 1 =

1<€isy
0<t<1joy

where ¢ > 0 is sufficiently small.
Then for [t—t] > 26, and o(y, 7} < R, we have

(8.31) |F (of + 2(0))| = [F (s+ A (0))| + O (e (w, )
>(1-0() inf [F(y+An) >0

|t'—lil 3351
1Kis,
05tS 1w,

Hence
(882 F(H+A(1)#0 for [t—t] >
On the other hand, we have
(8.83)  F(if+A(t£edy)
= F(p+ A0) T 2ned, H(n+ A1)+ 0 e(n, m)+5283)
= F2ned, |H (n+ A ()] {sgn H (n+ 4 (8))+ O (&)}

5y, 0<1 < oy, ol 1) <R,

for g(q,' 1) <R,.
_ This means that the function F (s -+A(z)) has at least one zero in the
interval t;—gd, <t < t;+8d,. :

!

Since #'¢ |J Q;, we have
Jj=1
[ (o + 2 )+ [H (o +20)) > 8,

and thus there is exactly one such zero.
This means that v(g) = v(y) for o(n, #) <R, and the set U, is Open
. Lemma 8.7. In the notation of previous lemmas we have

(884 - CpbAUY =0 for r=1,2,0., m,

- (8.86) vify=r for

(9.1) V(T, g) ~xT for
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where bd U, denotes the boundary of the set U, and y denotes the normed
Haar measure on 2.

Proof. Let V= U Q; denote the union of a finite family of closed
cubes satisfying f=1

i
(8.85) MocIntVeVeint U Q.
. Jj=1

As before, we can prove that for every 5= U, there exists R:>0‘
depending on ¥ such that
o{n, m) <R}

This shows that
(8.87) U’,l M 5,2 =@ for

Now it is easy to see that

T FE T

. ]
(8.88) bdU,cbd {J Q;, r=1,2,....,my,
=1 '
and thus
; I
(8.89) u(bd U) < p(bd U 0) =0,
JE

which ends the proof.

9, Proof of Theorem 4.1. It follows from Lemma 8.5 that it suffices
to prove the relation
T— 0.

As before we use the Kronecker theorem on simultaneous diophantine
approximation. By Lemmas 8.6 and 8.7 we get
9.2) Y 1~pUyx for

kSx

({"mj )i=1eU,

X — oG,

and .
9.3) - Ex 1~ p(jgi Q) x <ex.
({"%})Fls Y, 9
Thus

4 V(Tg= Y | v(({kf’i}y )+0(1) |
(9- ) ( ’g)wksmll‘l(iﬂ) Wy Ji=1/. .
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= 3y 7 ¥ 1+0@ED)
1<rs .
r<mg ({kai-}) N1 €U,

kSwT/(2N)

T
~ T 06T = [ +OGT),

1€r€mg 2 2
which is equivalent to the assertion of our theorem.
10. Proof of Theorem 4.2. It follows from the foregoing analysis that
for every &> 0 there exist § > 0 and cubes @, ..., @; such that
i

(10.1) Y u@) <,
=1
and
(10.2) Vs(T, 8) < 5 v{( ke, 1) 1)

k%wllngT/(zﬂi)
kajjo) N e Q;
douh 2y e U

o
<p(lJ Qlog T<elog T
J=1
The result therefore follows.

11. Before we turn to the proof of Theorems 5/1 and 5.2 we prove some
subsidiary estimates.

Let
(11'1) 0 < ’))0 < '})1

denote the imaginary parts of the zeros of the Riernann zcta functlon
The first y/s are approximately

‘ 'YQ=14.13.-_.,'
(11.2) vy = 21020,
| | y2 =25.01...

Further, let us write g; = 1/2+1iy;, j > 0,
(11.3) @ =Y (Ple) e+ I (g)e "7,
. C Jj=1 ’
and _ _
(114) fol@) = I'eo) "™ +F (2o) e~ .

The function f is regular for |Imz| < n/2; f, is an integral function. .
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Lemma 111 For z = x+1y, |y < /4, we have
(11.5) I/ @) <5./2me P

Proof The well-known results

(11.6) | (1/2+4iy) = ; < /2m e W2l
(11.7) ¥ 972 <0.0233  (see [10]),
J=0

and also the numerical estimates (11.2) furnish the estimate

- - 16 -
£ (@) < ZV/:_ZMTHEE ridn2= Iy (1-+—TE3(1_7)1/3}2) 2 Z ¥ 2)
j=2
<5\/§‘Tze~—n(n/2—lyl)
~3

and the prool is complete.
Let us denote by.Cp, k=1, 2,

(11.8)

..., the ractangle with vertices

{11.9) w,tin/d,  wy tin/d,

where the numbers u, are defined by (5.3).
Lemma 11.2, We have

(11.10) [fol2l >21f @) for
Proof. As usual we write z mx—i-iy. By (11.6) we get for ly| = n/4
(11.10) ool 3 [T loh €721 -

?%\/— ~nyo/4 =%\/— —vom2-lx

/4, we have

ZE Ck‘
"75'2’0!’2)

Moreover, for x =, OF X'= 4y, Y] €

o2 = 2| (g0 COSh(yoy) SN TR

On the other hand, Lemma 11.1 and (11.2), (_11.11), (11.12) give for ze C,,

(11.12)

(L13)  [F@) <5 /Fne M < 415,120 /2¢O <dfolal,

the required result.
12. Proof of Theorem 5.1. The formula (6.3) can be written as
follows:

12 (@) =~ o)+ @)+,
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It is easy to see that for ze C,, k = 1, we have

(12.2) |fo(2) 2= cua

for a certain positive numerical constant c¢,; independent of k.
Using (12.1), (12.2) together with Lemma 11.2, we get

(12.3) |- &2 fo @) = €92 fo 2]
> & f @ +hera e > | -2 (2)+ b)),

for ze C, and sufficiently large k.
Now, the Rouché theorem implies that for large & the functions f, and G
have equally many zeros inside C,. But if z5 = xp+ 1y 18 4 zero of fy then

1 {2o) exp(Eyozo)l = |I'(@o) exp(—ivo2oll;

thus y, = 0. The function f, has therefore only real zeros. But for real x we
have:

(12.4) Jo(x) = 2|I" (go)l cos (o x + ).
Hence, f; has only one real and simple zero inside C,. Since G(&)

= G(z) the same statement is true for G. This proves assertion 2 of our
theorem.

The first assertion now easily follows. It suffices to note that

(12.5) 1G (| = € ((fo (w| —1.f @)+ 0 (1)
>3 fowl +0() =17 (ool ¢ +0(),

for k large enough.
As regards assertion 3, i.e. the equality (5.6), we have

(126) W(T)=

log T+ .
1+0(1) = [w]+0(1) = l0g THo ().
0 <ug LJogT i T T
13. The function K deﬁned by, (5.7) is regular for |Imz| < /2. Further,

-propertles of this function are described by the following lemma (we assume
the Riemann hypothesis).

Lemma 13.1. 1. The function K is almost periodic in the sense of Bohr, in

the strip [Imz| < n/2. This means that for every real y, |y| < n/2, the function
K, () = K (t+i)
is. almost periodic. '

2 AlI zeros of K in. the strip {Im z| € ©/4 are real.
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3. Let us define the function w by

(13.1) w(zy=minlz—v|, |Imz| < n/4
where the minimum is taken over all the real zeros of K.

Then for z = x+iy, |y < n/8, we have
(13.2) K (z)| =

Jor an absolute constant cyy > 0.

Proof. 1 is obvious.

2. In the same way as in the proof of Theorem 5.1 one can show that K
has only real zeros in the region z=x+iy, x> x,, |Imz| < x/4, for a
sufficiently large x,.

Suppose K (z,) = K{(x;+iy;) =0 with 0 <|y,| € n/4. Then in view of
the almost periodicity, K has infinitely many zeros in the horizontal strip
|ly—yi] <& for every arbitrarily small ¢ > 0. But this is impossible. '

3 follows from the amalysis of [3], Chapter II.

¢14. @ (2},

14. Proof of Theorem 5.2. Analogously to Section 12 we can assert
that the function _ .

(14.1) P(T) = Vm.-%:? T

is bounded.

So it remains to prove that ¥ is the Stepanov almost periodic function
from the class §? for every p> 1.

From Lemma 13.1, 3 it follows that for every y, 0 <|y < 7/8, we have

(14.2) inf [K {x+iy)| > 0.

xeR

Hence, by the well-known Bohr theorem (compare [3]),
(14.3) Arg K (x+iy) = co(W x+ P (x, V),

where ¥ is again an almost periodic function of x.
Let us denote by L the polygonal line with vertices.

(14.4) 0, =iy, T—iy, T (0<y<mnf8),
and let us assume that K(7T)= 0. Then

(14.5) V(T)=%A5Argl((z)
W1y % AL A
s 2 T (T, y)+ O (A Arg K (o)) +| A Arg K (z))).
T N 0 T—iy

This fbrmula can be also used as a definition of ¥ for T<0. .
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Since V(1)
(14.6) o) =0

Moreover, Lemma 13.1, 3 yields

~ (yo/m) T, we have

for every 0 <y <m/8.

! ¥
(T+if)|dt € ——=
N < om

Similarly, since K(0) # 0 (compare [6], page 165), we have

(14.7) | A ArgK(z)| < j

(14.8) |8 ArgK ()] <.
0

Let ¢ >0 be fixed.
Using {14.51(14.8) we get

(14.9) YD =Y(D+0() for ofT)=e"
where '
(14.10) ¥, (T) = “}g (T, e7+ ).

Since ¥, is almost periodic, there exists a real number [ > 0 such that
every interval of length [ contains a number ¢ such that

(14.11) supl!l’ (T+r)—— AT < .
Let
(14.12) X, = {te[0, 1] o(T+1+1) = ¢ and w(T+t) &}
and
(14.13) X, =10, 1]\ X,.
Then
{14.14) m(X;) <é”.
Owing to (14.9)-(14.14), we get
(1415 [ P(T+t+r)—F(TH o) dt <eP,
X1
(14.16) 1P (T+t+1)— P (T+ 0P dr <P
Xz
. Hence
1
(14.17) {9 (T+e+0)=—P(THopd}” <.
0

and. the result follows.
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15. We now prove (5.10). Each one of the functions G and K has exactly
one zero inside the rectangle C, for large k. Let y, be such a zero of K. Then
for [z—yi| = ¢ysexp(—y/2) with sufficiently large ¢, we have

(15.1) K 2 epgese " > e h(z),

where h is defined by (6.4). Thus, by Rouché’s theorem, G has a zero inside
the circle |z —v| = ¢ s exp(—r;/2).

Since the sequences x; and y; may differ significantly only in a finite
number of initial terms, there exists an integer / such that

(15.2) log x;1, = yi+0(e™"/?)
for large j: (5.10) therefore follows.
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