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OSCILLATORY PROPERTIES OF ARITHMETICAL
FUNCTIONS. 11

J. KACZOROWSKI (Poznan) and J. PINTZ (Budapest)

1. Introduction and statement of results

In the first paper of this series, [5], we have proved that the real-valued function
f(x) has at least ¢(f)log Y sign-changes in the interval (0, Y] provided the ana-
Iytic continuation of its Mellin transform

(1.1) F(s)= [ fx)x~*~dx
0
has all singularities of the form
1.2) P (s—g)log(s—o)+E(s)

where F,(s) is meromorphic at s=g,, and P, is a polynomial (or P,=0).

Using the method of [3] it is possible to generalize it for a much wider class of
functions f(x). Before we state our theorem let us recall that for any real function
f(x), x>0 we define the number V(f, Y) of sign-changes in the interval (0, Y]
as follows:

(1.3) VI, Y)=sup{N: I{x}:, O<xy< ... <xy =Y,

J) #Z 0,sgnf(x;) = sgnf(xieq), 1 Si< N}.

Moreover, we shall say that V(f, Y)=h(Y) with combined oscillation of size
g(x) if there exists a series {x;}!% with sgn f(x;)=sgn f(x;.,) and

(1.4) /Gl = g ().

Under these notations our theorem may be formulated as follows:

THEOREM. Let f(x) be real for x=0 and suppose that f f)x—s-1 dx con-

verges absolutely for o=ao; and represents in that half-plane a functzon F(s) having
the following properties:
(1) F(s) is regular for ¢>=0O but not in any half-plane c>0—¢& with §=0,
(2) there exists a denumerable (finite or infinite) set of singularities of F(s),
S={o,=p,+iy,}, v,>0, without finite limit point satisfying O —c,=p,=0 for
some c¢y=>0 and such that F(s) can be continued as a meromorphic function in the
open set D obtained by making cuts s=oxiy,, a<ﬁ,,, in the half-plane ¢>6 —c,.
(3) Por|s—o,)l=1ny,n, >0, scD:

(1.5) F(s) = (s—o)™ ; gu(s—0,) log (s—o) +F,(s—0,),
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where g,, and F, are regular for |z|<n,, k, is a nonnegative integer, a, an arbi-
trary complex number and g, (0)#0.
Let y:gn_i%yv and y=o if B,<O for all v=1,2,.... Under these condi-

tions we have

(1.6) lim

and every interval of the form
(1.7) [Y'=5, Y], Y= Yo()

contains at least one sign-change of f(x) . The sign-changes in (1.6) and (1.7) are
combined with an oscillation of size

(1.8) x0-¢
for arbitrary e=0.

Our theorem has immediate applications to the theory of distribution of prime
numbers. Oscillatory properties of the difference n(x)—1li x has been discussed in
details in [3]. Further applications are the following.

CoroLLARY 1. If (I, q9)=1 and all L-functions (mod q) have no real zeros in
[1/2,1) then for the difference

1 A(n) i x
1.9 M) = Ix, g, )= s lix = -
( ) 1() ( 9 ) (Q) n=l(mod 4) IOgn (0(4)
we have
. V(4,,Y)
Lo | M2 Jogy 7 °

with combined oscillation of the size x'12~°, £¢>0. Moreover, every interval of the
Jorm

(1.11) rt-5¥], Y=Y()
contains at ledst one sign-change of A.(x).

The same assertions are true for the functions

(1.12) dy(x) = I(x;39,h)—I(x; g, 1)
where [, 1, (mod q),
lix
1.13 x) = n(x;q,!
( ). ' Ay(x) = n(q)q,(q)
where [ is a quadratic nonresidue,
(1.14) 4,(x) = n(x; g, 11) n(xs g, L)
where [, and I/, are both quadratic residues or they are both nonresidues (mod q),
lix
1.15 : x) = n(x;q,1
(1.15) 45(x) = n(x; ¢, )~ @
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and

(1.16) A5(x) = n(x; ¢, h—7(x; 9, 1)

for any /#1 (mod g).

Still another field of applications of the Theorem is offered by the theory of
factorization in algebraic number fields. Let K denote an arbitrary algebraic number
field, Rk its ring of integers and H(K)={X;=E, X,, ..., X,} its classgroup (E de-
notes the unit class). Let further M denote the set of all irreducible algebraic integers
in K and let M(x) and {(ss, M) denote the counting function of M and the associated
zeta-function respectively, i.e.

(1.17) Mx)= 2 1,

N(@aR)=x
acM

where from each set of associated integers only one is counted,

(1.13) {(s, M) =§IN(0)I‘S,

acM

and N=N~Ny,, denotes the norm-function.

If V denotes the set of all sequences [d;, ..., d;], ;¢ NU{0} such that X{r.. X
equals E; moreover, the product X{*... X», 0=e¢;=d; is equal to E if and only
if either all ¢;’s are zero or e;=d; holds for i=1,2, ..., 5, then

LA | P(mys) ... B(mys
19 M= 3 [ 53 .. 3 2By
[y ndgleV i=1 k=1 Kl m=1 mz1 My ... My
where
(1.20) P = 2 Np~*
vEX,

(compare [4]). The summation in (1.20) is taken over all prime ideals from the class X;,
We define

(1.21) T(x) = -2% gf L(s, M) —’;ids;

% denotes the curve of integration consisting of the segment [1/4, 1 —¢g,] of the
lower side of the real axis, the circumference C(1, &) and the segment [1 —¢&,, 1/4]
of the upper side of real axis, where

(1.22) &= 1/2min_ min [1—g].

2€HE ¢ (g)=0

T(x) attains real values only and it was proved in [4] that it is the main term
in the asymptotic formula for M(x). T'(x) is a rather complicated function of x
but for large x its behaviour is described by

= W(log 1
(1.23) HORED ——%ﬁ"f—x—)—
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(compare [4, Theorem 1]) where W, are polynomials, deg Wy =D-1 and deg W.=D
for r=2; here D is the Davenport s constant of K (see [6])
Now we can say more about the difference

(1.24) | Ay (x) = M(x) T(x).

COROLLARY 2. If the Dedekind zeta function of the Hilbert class ﬁeld Ky of K
does not vanish in the segment [1/2, 1) and has at least one szmple zero in the half-plane
o>=1/2, then

. V(4,,7)
(1.25) yl%l}o fog¥ 0
with combined oscillations of size xY. Moreover, every interval of the form [¥1~¢, Y],
Y=Y(e) contains a sign-change of A;(x).

In the same way as in the proof of Corollary 2 we can treat analogous remainder
terms in the asymptotic formulae for the counting functions of certain subsets of
Ry (compare [4]). There are some examples of such subsets: the sets F, k=1,2, ...
of all algebraic integers from K which have at most k factorization into irreducibles,
the sets G, k=1,2, ... of all algebraic integers from K which have at most k such
factorizations of distinct lengths, F;=F,NZ, G,=G,N\Z, and many others.

Oscillatory properties of the associated remainders depend of course on the
analytic properties of the involved zeta-functions. These zeta-functions belong to the
ring € (see [1]) which is the smallest ring containing all Dirichlet series with abscissas
of absolute convergence <1 and also functions of the form {¥(s, x), logk{x(a. x),
where K denotes a certain number field, x is a Hecke character, wEC Re w=0
if =y, (principal character) and k is a natural number. Hence such zeta functions
have analytic continnaticn into the half-plane ¢=>ay, g4<1 and a slightly extended
version of our theorem is applicable in all these cases.

1t wounld be interesting to prove a stronger form of Corollary 2 assuming only
that (¢, (s} does not vanish in the segment [1/2, 1].

The authors hope to reiurn to this problem on another occasion.

2. Some auxiliary results

Let us introduce the following notations:
N={1,23..},
[=log?,
x=el=¢" yy=a=1,

o lo]

T e=p+iy, v=0,

n= bl (naninteger), 0 <b <

0 <1 < |ol/10,

£(2) a regular function for |z[=#n with g(0)#0, keéN*={0, 1,2, ...},
B an arbitrary complex number; but B¢N if k=0,
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Let L,(r) consist of the segment [—a, —r] on the lower side of the real axis,
the circumference C(0, r) and the segment [—r, —a] on the upper side of the real
axis, O<r=a, r,areal; L(r)=L_(r).

Let L,(r; 0)={s: s—0€L,(r)}. Let

F(w,B) = f e*°z8-1dz
‘ e
which is convergent for every B and every we€C with Re =0, the value of ['(w, B)

being independent of r by Cauchy’s theorem.
Let

AT (w,B) 1

Lo By = — =75

f e z8-llog/zdz, jEN*
L)
and let ['(B)=I'(1, B)=n""(sin nB)I'(B), according to Hankel’s formula (see [7]).

LEMMA 1. For [—> o we have

1 x°g(s—o)logls—o)(s— 0" , _
@1 I(x) = o, (f ) S,, ds =
4 k
N szs ;:,[f ) (— ¥ (log 1)~ 4,;(a)
with ’
b .
(2.2) A;(@) = g(O)F, (cx~z, B) +

+ g OF (s-2.84+1) 160 22 1 [- 2. 5+ 2)} 00

where the constant in the O-symbol may depend on all parameters o, b, y, B, k, j, ¢
and on the function g.

Proor. Writing w=s—¢ and z=Iw we have

. . 1 N o
2.3) =X L [ erg@lbgoa™
e 27i ) (1 +_CO_)”
e
_ X 1 ¢ egh(ogz—loght?
0"IB2ri Lo [1.;.1_)”
le

o2z j>»oB—1
25 2 () v-rtopty-is f LEEDIEEEE g,

1,50 [1 + —Z)—]"
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To evaluate 4(x) we note that for hcC, |h|=1/10:
24 (14 )t = e~ htB2+00® (1 | p)—1 = 2N,

further |z/lo|=|n/ol=1/10 for z€L,(r). Since we can choose r arbitrary with
O<r=nl we choose r=1 and consider the shortened integral A*(x) on L*=

= Liggas(D). .
Then by (2.4), b<a,]g|/10, and the regularity of g we have

az JoaB—=1
@2.5) () — - IE g@/Dlog'zz" )
2mi ( z )"
1+ =
lo
nl

=0 ( f e—ax+2blx(l| o] logjxxB-—ldx) = O(e"(“l log? l)/2)‘
log?!

Further again by (2.4) we have

bz bz

2.6) A*(®) =——~fexp [az~ 2l - +0( ]]g(z/l)logJ zzB-1dz =

L feaz—bz/e[1+” vol5 )][g(0)+g 3 +o(% )]logfzz"-ldz=

T 2lg?

b2 :
= 55z [0 {50 +80) g5+ 0) H gzt dz-+ 011 =
*

b
= e [N o041 50+ 82 tow 10 0,

2mi g
similarly to (2.5). Now (2.6) yields the required result (2.2).

LEMMA 2. If g€N then [Fy(w, g) =0 for Rew=0. Ifg¢N then for A<
4y(b, 0, ) we hawe |Fy(2—b]e, g)|>4 for ag U (s B)Cla, 1] where r(d) <,

h=h(r=1,...,r(d)-1), HA)=1—o0— Z’ h—h)—0 as A4-0. If geN
then the above assertion holds for Fl(oc b/g) m place of T'y(a—bjo, q).

Proor. If geN it is sufficient to show that for real >0 we have Fy(w, g)=0,
since for fixed a [y(w, @) is a regular function of w in the half-plane Re v=0. But
for w€R™ we have with w=zw

i — o~ W 1,d—1 o F(Q)Sln(qﬂ) .
2.7 Ty, 9) = - L(.[.,)e Wtdw = =t = 0,
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If g¢N then in view of (2.7), Iy(w, q)=0 for wcR*. Since Iy(w,q) is a
regular function for Re w=0 the relation

~ b
2.8) O SORT
holds at most for finitely many a3, ..., 0z€[e,, 11
Let
~ b
r [a———, )l
[} 0 q

Now we have clearly for every non-negative continuous real function £(x) the
r(4)

relation E()=4 for a€ | (hy, hy)<{oy, 1] where h =h,,, for r=1,...,r(d)-1,
r=1

So(0) =

r(4)
r(d)=< e, gin%{l—ocl— 2 (h—h)}=0, if &() has only finitely many zeros in
- r=1

[oy, 1]. If g€N then the same is true for I [a—?b, q] since then for wéR*

) (F@sin(o)
@9 Fog=% ) S e @a) _ g,

Now Lemmas 1 and 2 clearly imply
Lemma 3. Let meN*, x=e*, O<oy=oa=1, I->c. Then there exists a
r(4)
A=A(x,, b, 0, B, g, m) independent of 1 such that for ac\j (h,, h))C[e;, 1] where
r=1

r(4)
rl)<oo, 1—ay— > (H—h)= % K.=h,.y for r=1, ..., r(d)—1, therelations
r=1

_ (= DH(—kYxeogly=if o nf b 1
@10)  I(x) = 2 {g(O)Fj(a——é—,B)+O{T)),

lg(O)fj (a~—2—, B]IEA
hold, where j=j(B)=0 if B¢N and j=j(B)=1 if BEN.
Lemma 4. If
2n r(4) ’
J= [x,), Xo €XP (T (1 +c))] c U @,y
r=1

where c¢=0 is an arbitrary constant then for sufficiently large Y there exist
Xy, Xos Xg€J such that

xb (log e~ 1®
lol” jR<#
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Proor. In order to prove (2.11) we have only to note that for x¢J we have

2.12) logx = logxo+0(1), ie o= 1°glx° +0[—11—].

Therefore we have for xcJ

(2.13) o
_(—=Df(=k) (logh*~ logx, b o 1
I(x) = g wn*[ > EﬁB)ﬁ+ p+L%7J}

which implies (2.11).

-3. Proof of the Theorem

We are entitled to assume @ >0, since otherwise we work with [ (x)=f(x). x¢
with suitably chosen C. Also we can assume that y>0 since otherwise we have
nothing to prove:
Since the proof is in many aspect similar to that of Theorem 1 in part I [5]
we shall be brief at these places.
Similarly to [S, Section 3] we define f01 an arbitrary function 2(x) the opera-
tion 6 by

G.1) ohe = [ h(f) 3

0"

and denote by J, the n times iterated opera‘tion 0. Then we have

(3.2 5= 5= [ F(s)
(0' )
Let us choose an #’ =0 in such a way that 5 <c,, 7'=<6/2 and that the
following region and line, resp.,-

(3.3) =0y, |t|=y and ¢ =6O-y

should contam no smgularuy except O +Liy, if y< oo,

If y=-cc let #* be defined so that %' <c¢y, #'~<0/2 and that the segment
[@—1’, O] should be free of singularities of F(s).

We shall choose later on a sufficiently large constant T, so that there should
be no singularity ¢ of F(s) on the broken line L’ defined by

c=0, if [t]=T,

(3.4) L'={0-n"=o0=0 i (=T
c=0-y if |f|=T

but there should be at least one singularity to the right of L”. Let ¢,=f,-+#y, denote
the lowest singularity above the real axis with =@ —»". If there are more of them
then let us choose that with maximal B. Let'for v=1 0,.1=B,+1+i,+; denote
the singularity with minimal y>y,, among those with f=p8,, y<T. If there are
more of them then let us choose that with maximal §.

Let us suppose that we obtain exactly m singularities ¢, ..., 0,, in such a way.
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Let us choose  with @ —5’=f; —# and so that the domains

(35) {ﬁv_” =0 <ﬁva Pv = Itl = ?v+1}
should be free of singularities of F(s), for v=1, 2, ..., m, further let

(3.6) 1< min min (nv, leu/20, y—‘—;—‘l]
=v=Em

where we define y,=0, y,..=7.
Let us choose now with an r<p, defining y,e1=7-+1, Bo=0+n—y, the
following broken line:

G.7) L={o=0,T=t)Ufo; = 0= fp—nlt| = T}
Ll) [{O' = ﬁv_nv Yv41—H = ltl é’yv}ULtz(rs QV)U

ule=p-nyzltl=zy,—mUB,—n=oc= p_y—nltl = p,—y}JU
Ufo=0—%,p—n =t}

Then F(s) is regular on L and to the right of L, so we obtain with the notation
Lt={s¢L: Res=0}

(3.8) 5, f(x) = Lf F(s)—;‘;-ds = 2Re / F(s)%:— ds

since L is symmetric to the real axis and F(5)=F(s).
Using the notation

(3.9) L= [ Fds
. L) §
we have by easy calculation
3.10 2 3 Re SN N i
(3.10) 0 f (x)— 2 e J,(x)| < T" 1+(@/2)., g;—'v":—z*”“)?
Let
(3.11) n=1[blogY], x=Y% Vb=a=1
If we fix b satisfying
(3.12) b < by = by() < min (1/100, (lo4]/10)?)

where b, is chosen sufficiently small (but independently of T') then with a positive
constant d,=d,(y’, b)

O—n By
(3.13) * ¥

LA,
@27~ Tal

Further we have by |g|=...=]g,| and (3.6)
(3.19)

—d

xBv—n

xbBv — —
x—tetnlley] = y-nVba-yfieh = X y-ufsp,

(lgvl —271)" o |Qv|n Igv‘n |Qv|n
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Now we fix T satisfying
(3.15) T=1T4b,n,1n)
where T, is chosen sufficiently large. Then with a positive constant d,=d, (', 3, b, T)

X% xB1

AN
nT"=* oy

(3.16)

So we have by (3.10)—(3.16) with dy=min (d,, d, nV5/2)>0

m ﬂv
(3.17) 8,/()=2 3 ReJ,(x)|< max I—EFY—%.
y=1 =vEm v

From now on we consider b,#,n’, T (hence o, ..., ¢,) as fixed constants.
Further we restrict ourselves for the sake of convenience for those values of Y for
which b log Yis an integer. But it is clearly sufficient to show V(¥)=clog Y (¥Y=Y,)
for these values of Y, since this implies V(Y)=clog Y+0O(1) for all Y.

Similarly to [5, (3.12)—(3.17)] there exists a small positive constant d,=

=dy(b, 04, ..., 0m) such that we have disjoint intervals (e,, e\’,)c[l/g, 1] (where
e,=e¢, is possible), v=1, ..., m with total length at least

(3.18) 1-2Vb
so that for 1=v=m

xPu x" . ,
(3.19) ~dif  x€ (Y, Yel).

max —— < ——Y
1=p= " "
=m0, le,l

Let v be fixed and let us consider from now on always x€(¥Y*®, YE;). Then we
have with d;=min (d,, d,)=0
xBv
le.l"

Denoting the integral 7(x) in (2.1) of Lemma 1 by I,,(x) in case of ¢=g,,
£=8u, B=B,=a,+1, k=t, we have by the regularity of F,(s)

Y4,

(3.20) 5, ()—2 3 ReJ,(x)| <

kll-
(3.21) Ju(x) = 20’ L.(x).
Taking into account Lemma 3 we obtain

(3.22) Ouf () =2 Re Iy (x)| < (log yev—1-7G@,)

XFv
lgy|" FRea

where as before
.(a)_{1 if a,eN%,
HSB) =00 if a,¢N*.
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Thus in view of (3.22) and Lemma 3 the oscillatory behaviour of &, f(x) is
completely described by that of I, (x), which is given by Lemma 4 and this clearly
yields that J, f(x) has at least

[e$~e,,——]/—l-)-] logY (e;—e‘,—gl/—b—}log Y
(3.23) 2 =2 i
@r/y)(1+0) (2r/y)(1+b)

sign changes in the interval [V, ye , if Y is large enough.
This yields in view of (3.18)

(3.24) V(.f,Y) = (1—5VB) l’ni log Y.
Since for any real function A(x) we have
(3.25) V(h,Y) =V(6h7Y),

inequality (3.24) clearly proves (1.6) if y<-o= since then y=y; and b can be chosen
arbitrarily small. If y=-<> we have only to note that for every constant C we have
y,=>C if we choose #" so small at the beginning that the domain ¢=@ -y, |t|=C
should be free of singularities of F(s).

The assertions (1.7) and (1.8) follow completely in the same way as in [5, Sec-
tion 3]. To show (1.7) we need, apart from (3.22) and Lemma 4, the trivial obser-
vation that if for any function A(x), 6 has at least k+1 sign changes in [4, B]
then £ has at least & sign changes.

To show (1.8) we have to work with the functions

Joy = T

F(s) = F(&) +(s— O —g)~*

and choose at the beginning #’<g/2.

4. Proof of Corollary 1

We shall prove Corollary 1 incase 4;(x)=I(x; q,])— only. The other

()

proofs are very similar using the fact that the corresponding generating functions
have non-real singularities in 6=1/2 (see Grosswald [1]) further that Corollary 1
is true for A;(x) and 4g4(x) if the Generalized Riemann Hypothesis is true which
follows from the work [2] of Ingham (although he treated only the special case
:1). Let
0 for 0= x =2,
“-1) SO = ¢~

for x >2.

¢(q) f 10 u
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Then the corresponding F(s) function is

(4.2) F(s) = —s;l(q—) 2 uDlog {(5— < L(s, D}+h09)
where

I f = Xo
4.3) &y = {0 otherwise

and A(s) is holomorphic in the whole complex plane.
In the half-plane ¢=>0 F(s) has singularities of the form

44

o (q) log (s—0) + F,(s)

where ¢ denotes a zero of L(s, x) for some y, and k, is a complex number. More-
over, k,>0 for at least one zero with Re ¢=1/2 (compare {1]). The results (1.10)
and (1.11) therefore follow from our Theorem.

5. Proof of Corollary 2

Let
for 0=x=1,
G-D Fe = {M(x) T(x) for x= 1.
Then
(-2 F(s) = _-c(s M)—— 2m 1 C(zaz M) .

Using (1.5) and (5.2) it is easy to prove that F(s) is regular in the half-plane
6>1/2 with the cuts s=o+tiy, 1/2=c=p where o=p+iy is a zero of (g _(s).
At these points F(s) has singularities of the form (1.5) with a,=0. At least one of
these singularities is non-trivial. Indeed, (1.19) implies that in the neighbourhood
of g,, the simple zero of (g, (s) with Re g,>1/2, we have

R D1 ,
(5.3) F(s) = 45 log”(s— o) + Zo g;(s) log’ (s~ o),
J=
where g;(s), j=0, 1, ..., D—1 are regular near ¢, and
1
5.4 R= = 0.
( ) [d ,-‘.,Zd:JEV di!... dy!

X rd,=p

This proves Coroliary 2.
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