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OSCILLATORY PROPERTIES OF ARITHMETICAL 
F U N C T I O N S .  II  

J. KACZOROWSKI (Poznan) and J. PINTZ (Budapest) 

1. Introduction and statement of results 

In the first paper of this series, [5], we have proved that the real-valued function 
f ( x )  has at least c ( f )  log Y sign-changes in the interval (0, Y] provided the ana- 
lytic continuation of its Mellin transform, 

0 0  

(1.1) F(s) = f f (x)x- ' - 'dx 
0 

has all singularities of the form 

(1.2) P~(s - e,) log ( s -  O,) + F~ (s) 

where F,(s) is meromorphic at s=q~,  and P~ is a polynomial (or P ,=0) .  
Using the method of [3] it is possible to generalize it for a much wider class of  

functions f ( x ) .  Before we state our theorem let us recall that for any real function 
f ( x ) ,  x > 0  we define the number V(f,  II) of sign,changes in the interval (0, Iv] 
as follows : 
(1.3) V(f ,  I7) = sup{N: 3{xi}~=l, 0 < x 1 < . . .  < X N "~: Y ,  

f(xi)  # O, sgnf(xi)  ~ sgnf(xi+l) ,  1 <= i < N}. 

Moreover, we shall say that V(f ,  Y ) > h ( Y )  with combined oscillation of size 
g(x) if there exists a series {xi}h(=rl ) with sgnf(xi)r  and 

(1.4) If(x~)t => g ( x , ) .  

Under these notations our theorem may be formulated as follows: 

Tm~ORI~M. Let f ( x )  be real for x > 0  and suppose that f f(x)x-S-ldx con- 
: 0 

verges absolutely for a>=al and represents in that half-plane a function F(s) having 
the following properties: 

(1) F(s) is regular for a>O but not in any half-plane a > O - 8  with 8>0,  
(2) there exists a denumerable (finite or infinite) set o f  singularities of  F(s), 

S =  {Qv=fi, +_iT,}, ~ > 0 ,  without finite limit point satisfying O-Co<=fl,<=O for 
some Co>0 and such that F(s) can be continued as a meromorphic function in the 
open set D obtained by making cuts s=a+__iT,, a<-fl,, in the half-plane a > O - c  o. 

(3) F o r l s - e ~ l  <= ~ , ~  > O, sCD: - .  

k,, 

(1.5) F(s) = (s-e,)"v Z g ~ t ( s - o , ) l o g '  ( s -  e~) + F ~ ( s -  Or), 
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where g~t and F~ are regular for Izl<rt~, 
trary complex number and g~k~(O)#0. 

Let T= min~,, and ~= 

tions we have 

kv is a nonnegative integer, a, an arbi- 

i f  fl~<6) for all v = l ,  2 . . . . .  Under these condi- 

(1.6) lim V ( f , Y )  > y 
y~--L IogY -- lr 

and every interval of  the form 

(1.7) [Y~-~, Y], Y >  Y0(e) 

contains at least one sign-change of  f ( x )  . The sign-changes in (1.6) and (1.7) are 
combined with an oscillation of  size 

(1.8) x e-~ 

for arbitrary ~>0. 

Our theorem has immediate applications to the theory of distribution of prime 
numbers. Oscillatory properties of the difference n ( x ) - l i  x has been discussed in 
details in [3]. Further applications are the following. 

COROLLARY 1. I f  (I, q ) = l  
[1/2, 1) 

(1.9) 

we have 

and all L-functions (mod q) have no real zeros in 
then for the difference 

A~(x) = /7 (x ,  q, l ) - ~ q ) l i x  --- ~ A(n) li x 
nw./(mod q) log n q9 (q) 

V(A1, Y) > 0 
log Y 

X 112-g, ~ > 0 .  

(1.10) li____m - -  
y~oo 

with combined oscillation of  the size 
form 

(1.11) [yl-~,y], y ~  Y(e) 

contains at least one sign-change of  dl(x). 

The same assertions are true for the functions 

Moreover, every interval of  the 

(1.12) 

where 

(1.13) 

where 

(1.14) 

where 

(1.15) 

A 2 (x) / I  (x; q, 1i) - / 7  (x; q, 12) 

ll ~ 12 (rood q), 
li x 

As(x) = ~(x;  q, l) ~0(q) 

l is a quadratic nonresidue, 

A4(X ) = 7~(X; q , /1 )  - -  ~ ( X ;  q, Is) 

/1 and 12 are both quadratic residues or they are both nonresidues (rood q), 

li x 
As(x) = n(x ;q ,  1) q~(q) 
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and 

(1.16) A6(x) = n(x; q, 1) - n ( x ;  q,/) 

for any l ~  1 (rood q). 
Still another field of applications of the Theorem is offered by the theory of 

factorization in algebraic number fields. Let K denote an arbitrary algebraic number 
field, RK its ring of integers and H ( K ) =  {X~ =E, X2 . . . . .  Xh} its classgroup (E de- 
notes the unit class). Let further M denote the set of all irreducible algebraic integers 
in K and let M(x) and ((s, M) denote the counting function of M and the associated 
zeta-function respectively, i.e. 

(1.17) M(x) = Z 1, 
N(aRk)<=x 

aEM 

where from each set of associated integers only one is counted, 

(1.18) ( (s ,  M)  = ~ '  IN(a)l-~, 
aR k 

aEM 

and N=NK/Q denotes the norm-function. 
If Vdenotes the set of all sequences [dl . . . . .  dl,], dzENU{0} such that Xdl...X dh 

equals E; moreover, the product X(I ... Xf, h, O<~eiNd~ is equal to E if and only 
if either all e~'s are zero or ei=di holds for i=1,  2 . . . . .  h, then 

~1" ~-" 1 Pi(mls) ... P~(m~s) 
(1.19) Z Z ... Z 

[d 1, ...,dh]EV i=1 k = l  r e x : > 1  mk~_l 1TI1 . . .  l~k  

where 

(1.20) Z NP 
PEX i 

(compare [4]). The summation in (1.20) is taken over all prime ideals from the class Xi. 
We define 

l f ( ( s , M ) - ~ - d s ;  (1.21) 7(x) = 

cg denotes the curve of integration consisting of the segment [1/4, 1-e0] of the 
lower side of the real axis, the circumference C(1, co) and the segment [1 -% ,  1/4] 
of the upper side of real axis, where 

(1.22) eo = 1/2min A rain I I -a [ .  
Q 

zE H(K) ~ ( a , z ) = O  

T(x) attains real values only and it was proved in [4] that it is the main term 
in the asymptotic formula for M(x). T (x) is a rather complicated function of x 
but for large x its behaviour is described by 

(1.23) T(x) ..~ x ,~ W,(log log x) 
,~-1 (log x)' 
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(compare [4, Theorem 1]) where IV,, are polynomials, deg W~ = D -  1 and deg W~<_-D 
for r=>2; here D is the Davenport 's constant of  K (see [6]). 

Now we can say more about the difference 

(1.24) A7 (x) = M(x) - T(x). 
: ii 

COROLLARY 2. I f  the Dedekind zeta function of the Hilbert class field Kn of K 
does not vanish in the segment [i/2, 1) and has at least one simple zero in the half-plane 
a > l / 2 ,  then 

(1.25) lira V(A7, Y) _-. 0 
~7~--Z log Y 

with combined oscillations of size x a/2. Moreover, every interval of the form [yl-~, y], 
Y ~  Y(O contains a sign-change of AT(x). 

In the same way as in the proof  of Corollary 2 we can treat analogous remainder 
terms in the asymptotic formulae for the counting functions of certain subsets of 
R~ (compare [4]). There are some examples of such subsets: the sets Fk, k= 1, 2 . . . .  
of all algebraic integers from K which have at most k factorization into irreducibles, 
the sets Gk, k =  1, 2 . . . .  of all algebraic integers from K which have at most k such 
factorizations of distinct lengths, F[=FgNZ, G~=GkNZ, and many others. 

Oscillatory properties of the associated remainders depend of course on the 
analytic properties of the involved zeta-functions. These zeta-functions belong to the 
ring f2 (see [1]) which is the smallest ring containing all Dirichlet series with abscissas 
of absolute convergence -< 1 and also functions of the form ~ ( s ,  Z), log k ~K(a. Z), 
where K denotes a certain number field, Z is a Hecke character, w6C, Re w=>0 
if Z=Zo (principal character)and k is a natural number. Hence such zeta functions 
have analytic continuation into the half-plane o->~0, % <  1 and a slightly extended 
version of our theorem is applicable in all these cases. 

It would be interesting to prove a stronger form of Corollary 2 assm-ning only 
that (i~n(s) does not vanish in the segment [I/2, 1]. 

The authors hope to return to this problem on another occasion. 

2. Some auxiliary results 

Let us introduce the following notations: 

N = { 1 , 2 , 3 ,  ...}, 
l = log Y, 

X = e ~ t -=  e v, ~1<= ~ ~ l ,  

n = bl (n an integer), 0 < b <  el[QI 10 ' O =  f l+ i~ ,  7 > 0 ,  

o < n < 101/lO, 

g(z) a regular function for Izl<_-rt with g(0)#0, k~N*={0,  1, 2 . . . .  }, 
B an arbitrary complex number, but B~N if k=0 ,  
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Let L,(r) consist of the segment [ - a ,  - r ]  on the lower side of the real axis, 
the circumference C(0, r) and the segment [ - r ,  - a ]  on the upper side of the real 
axis, O<r<=a, r, areal;  L(r)=L=(r). 

Let L,(r; Q)={s: s-oEL,(r)} .  Let 

if(co, B) = 1 fe=o, zB_ad z 
2rci L(r) 

which is convergent for every B and every co~C with Re o~ >0, the value of/~(~o, B) 
being independent of r by Cauchy's theorem. 

Let 
r j ( o ,  B) = dsr(c~ B) 1 

dBs = -f~i f )  e~~176 jCN* 

and let /~(B)=,P(1, B)==-1  (sin zB)F(B),  according to Hankel's formula (see [7]). 

LEMMA 1. For I~ co we have 

1 xSg(s-  4) logk(s- O)(s- O)B-1 ds = 
(2.1) I(x) = ~ f s" 

Ln(r; e) 

_ x ~  
- -  0"l B j~o ( j )(--1)k--J(iogl)k-J AJ(~ 

with 

(2.2) Aj(~) : g (0 ) ; ,  ~ -  7 '  B + 

+--i-l{ g'(O)ffj (c~ - b  , B + I )  +g,0)  ~ ~ F J f c ~ - b ' B + 2 ) }  t 0 

where the constant in the O-symbol may depend on all parameters cq, b, tl, B, k, j, 
and on the fimction g. 

PRooF. Writing o )=s -Q  and z=lo) we have 

x ~ 1 e~~ ((.o) log~ co o) ~-1 
(2.3) I(x) = ~--r 2W f ~ do = 

x ~ 1 i. e=g(z/1) (log z-- log l)~z B-1 
- -  I d z  = 

0 . l  B 2~zi 
L.~(O J ( 1 + "z--l" 10) 

x k 1 

where we denote the integral by A(e). 

f e = g ( z / l )  log~zz B-1 
dz~ 
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To evaluate A(~) we note that for hEC, Ihl <- 1/10: 

(2.4) (1 +h) -1 = e -h+h'/2+O(he), (1 + h) -1 <- eelh~, 

further Iz/lql<=lq/ql<:l/lO for z~L,l(r ). Since we can choose r arbitrary with 
O<r<=ql we choose r = l  and consider the shortened integral A*(~) on L*= 
=Llo,~l(1). 

Then by (2.4), b< allq[/10, and the regularity of g we have 

(2.5) A(=) I_ re'*g(z_./l)logJzzB-adz]= 

= O (  f e-~x+=btxltlollog'ixxB-ldx)= 0(e-%'o*'0/2). 
log ~ ! 

Further again by (2.4) we have 

(2.6) 2~iLa, I, --~-+ 2--~Q 2 + 0  --ff g(z / l ) l~  

I fe.z_bzl [ be' (zZ)J{g / (z ' l}  = [l+2--~Q~+O -if (O)+g'(O) + 0  -~- log3zzn-'dz = 
2hi L* 

! f / . . 2  __ ' 1  

2rri L* 

1 z =_L 1 , g(O)bz 2 : I ol } ' = +  

similarly to (2.5). Now (2.6) yields the required result (2.2). 

LEMMA 2. I f  q~N then ~o(O9, q )=  0 for Reo9>0. I f q ~ N  then for A< 
r(a) 

ao(b, e, q) we hawe IF0(~-b/q, q)l>A for ~ U (h,, h~)c [al, 1] where r(A)< ~, 

,(a) 
h;<:hr+~(r=l .... , r ( A ) - l ) ,  H ( A ) = I - a ~ -  ~ (h;-hr)-~O as A--,O. I f  qEN 

r = l  

then the above assertion holds for ~1 (~ - b/q,) in place of  F; (~ - b/c, q). 

PROOF. If qEN it is sufficient to show that for real o9>0 we have Fo(og, q)=0, 
since for fixed a zPo(o, a) is a regular function of o9 in the half-plane Re co>0. But 
for og~R + we have with w=zco 

o9-~ r(q) sin (q~) 
(2.7) Fo(o~, q) = 2rci f e~w"-l dw = = O. 

7ZO9 ~ L(r~) 
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If q~N then in view of (2.7), /~0(co, q)#0 for coER +. Since Fo(og, q) is a 
regular function for Re co >0 the relation 

b 
(2.8) /~o(~---~-, q) = 0 

holds at most for finitely many ~ ..... ~;:E[~I, 1]. 
Let 

Co(00 = lro (0~- b ,  q/I. 

Now we have clearly for every non-negative continuous real function ~(~) the 

relation r for ~E U (hl, h~)C[~l, 1] where h'r<=h,+l for r = l  ... . .  r (A) - l ,  
r = l  

r(a) 
r(A)<~,  l i m { 1 - e l - ~ '  (h;-hr)}=0, if ~(e) has only finitely many zeros in 

[~zl, 1].If qEN then the same is true for F l [ e - ~ , q J  since then for O ) ~ R  + 

d~ F(q) sin (rcq) } 
d~(co, q) _ t ~ r (q )  cos (~q) 

(2.9) rl(c~ q) = dq d ~ - - - -  - co q # O. 

Now Lemmas 1 and 2 clearly imply 

LEMMA 3. Let mEN*, x = e  "j, 0<~1<=cr l~oo. Then there exists a 
rCa) 

A = A(oq, b, Q, B, g, m) independent of  I such that for ~E U (h,, h~.)c[~, 1] where 
I'=1 

r(A) O~ 1 �9 
r(A)<oo, 1 - ~ 1 -  ~ (h~-h~)~=-~, h,=h~+l for r = l  . . . .  , r ( A ) - l ,  therelations 

b ,  

hold, where j=j(B)=O i f  BqN and j = j ( B ) = I  /f BEN. 

LF.~A 4. I f  

J =  Xo, Xoexp 2r~(l+c) c U(Y~',Y~0 
r = l  

where c>0 is an arbitrary constant then for sufficiently large Y there exist 
xl, x2, xzEJ such that 

(2.11) sgn Re xu # sgn Re xu+l (p = 1, 2), IRe I(xu)l >> x~(log l) k-~n) IQI.jR~n (1<=/~ <= 3). 
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PROOF. In order to prove (2.11) we have only to note. that for x~J  we have 

(2.12) logx  = l o g x 0 + O ( l ) ,  i.e. , = - - -  

Therefore we have for xCJ 

(2.13) 
( -  1)k(-- k)S(logl) k-j  [log xo 

I(x) = o.l~ , g(O)i~ [ 7 7  

which implies (2.11). 

lo x0 
l I-0 . 

3.  Proof of the Theorem 

We are entitled to assume O >0,  since otherwise we work With f ' ( x ) = f ( x )  �9 x c 
with suitably chosen C. Also we can assume that 7 > 0  since otherwise we have 
nothing to prove: 

Since the proof  is in many aspect similar to that of Theorem 1 in part I [5], 
we shall be brief at ~ these places. 

Similarly to [5, Section 3] we define for an arbitrary function h(x) the opera- 
tion 6 by 

(3.1) ah(x) = f ~ a - T  -de, 

and denote by 6,, the n times iterated operation 6. Then we have 

1,, fF(s)@ds. (3.2) 6 , f ( x )  = 2~--7 (~,) 

Let us choose an t / '>0  in such a way that q ' < c  0, t / ,<O/2 and that the 
following region and line, resp. ,  

(3.3) a>O-~l", Itl<--~ and a = O - ~ 1 "  

should contain no singularity except 0+_i7, if y <  o~. 
If y=oo let t/' be defined so that r/'-<c0, *I':.-:0/2 and that the segment 

[ O - t / ,  O] should be free of singularities of F(s). 
We shall choose later on a sufficiently large constant T, so that there should 

be no singularity ~ of F(s) on the broken line L'  defined by 

[ a = a l  i f  ]tI=>T, : 

" <  < if Itl T, (3.4) L '  = ] 0 - t /  = a = o'1 = 
[ ~ = O - r /  if l t l < = Z ,  

but there should be at least one singularity to the right of L'. Let Q~ =/3~+i~ denote 
the lowest singularity above the real axis with fl >O-~ / ' .  If  there are more of them 
then let Us choose that with maximal ft. Let for v =  > 1 o~+~=/~+l+iv~+~ denote 
the singularity with minimal 7>3~, among those with /3=>ft, 7 <T .  If  there are 
more of them then let us choose that with maximal ]3. 

Let us suppose that we obtain exactly m singularities 0~ . . . . .  0,, in such a way. 
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Let us choose t/with O-t/'_-</?~-~/ and so that the domains 

(3.5) {/L-~/<-- ~ < /L,  ~v <= Itl -<- ~v+l} 

should be free of singularities of F(s), for v = 1, 2 . . . .  , m, further let 

(3.6) t/ < min 
l~_v<=m 

where we define 7o=0, ~ + ~ = T .  
Let us choose now with an 

following broken line: 

min (t/v, ]Od/20, Vv V ' - 1 .  ) 

r<t/ ,  defining 7m+l=T+r/,  fl0---O+t/-r/ ' ,  the 

(3.7) t = {o- = 03, T ~ Itt} U {ch ~ cr ~ / ~ -  r/, Itl = T} 

1 

U [{a - - / 3 ~ - q ,  7v+~-~  --> It] => 7v}UL, ( r ,~v)U 
V=m 

U{a  = / L -  rt, 7',~ ~ It l  --> r , - n } U  { ,&,-r l  => o = > / L - ~ - n ,  Itl = 7 , , - r / } ]U  

U { ~ r =  O - r / ,  r~-r,, => lt l}. 

Then F(s) is regular on L and to the right of L, so we obtain with the notation 
L+={s~L:  Re s~0}  

(3.8) ,~.f(x) = f F(s) ds = 2 R e  f F(s)--~ds 
L L + 

since L is symmetric to the real axis and F(g)=F(s). 
Using the notation 

(3.9) Jr(x) f x" = F ( s ) - T d s  
Ln(r,Q,~) 

we have by easy calculation 

I m x ~, x ~ ~ xPv-.  
(3.10) 3 . f ( x ) - - 2 ~  Re Jr(x) << ..-7~-~-~ + ~ +  2," 

V=I 111 - -  t O / Z )  v = l  (Lov[ - 2q)" 
Let 

(3.11) n = [ b l o g Y ] ,  x = Y  ~, 1 / - b < - ~ l .  

If we fix b satisfying 

(3.12) b < bo = boQl') < rain (1/100, @d/10)  ~) 

where bo is chosen sufficiently small (but independently of T) then with a positive 
constant dl = dl (r/', b) 

(3.13) 

Further we have by 
(3.14) 

XPv-~I X#v  
( I L l -  = --Iod" 

x O - q  ' Xfla 
(o /2)"  << ~ y-d1.  

I~,11~-...~I~.1 and (3.6) 

x-~e4nq/Iovl < x 13v = levi" Y-nI/b'(1-a l/'ff/I~ < Xpv Y-'lt/b/e 
I~d" 
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Now we fix T satisfying 

(3.15) T = T0(b, ~, n') 

where To is chosen sufficiently large. Then with a positive constant d 2 =d20/', r/, b, T) 

Xffl X#l 

(3.16) nT ~-~ << 1oil_____ ~ . y-d~. 

So we have by (3.10)--(3.16) with da=min (d~, dz, t/l/b/2)>0 

6.f(x)-,~=1 I xa. (3.17) 2 ReJ , (x )  << max zS---~Y-a,. 
l~=~m Iq~l 

From now on we consider b, r/, r/', T (hence Oa . . . . .  ~,,) as fixed constants. 
Further we restrict ourselves for the sake of convenience for those values of Y for 
which b log Yis an integer. But it is clearly sufficient to show V(Y)~c log Y ( Y ~  Y0) 
for these values of Y, since this implies V(Y)~e log Y+O(1)  for all Y. 

Similarly to [5, (3.12)--(3.17)] there exists a small positive constant d4= 
=d4(b, Ox ..... Ore) such that we have disjoint intervals (e~,e ; )c[ l /b ,  1] (where 
e~=e~ is possible), v = 1 . . . . .  m with total length at least 

(3 .18)  1 - 2 l / b  

so that for 1 <- v ~ m 
~/~,, X k 

(3.19) max ~ < y-a, if ,% ml0.1 xE (ye,,, ye',,). 

Let v be fixed and let us consider from now on always x-((Y% Ye~). Then we 
have with ds=min (dz, d~)>0 

h I (3.20) 6 . f ( x ) -  2 ~ Re J.(x) << ~ g-d.. 
.=1 l~Ovl 

Denoting the integral I(x) in (2.1) of Lemma 1 by I~t(x) in case of  0=0~,  
g=gut, B=B~=a,+I, k=t, we have by the regularity of Fu(s) 

(3.21) Yj,(x) = Z I#t(x). 
t=0  

Taking into account Lemma 3 we obtain 

I [ xP- (log l) k~,-1-j(a,~) (3.22) 6,f  (x)-  2 Re I~kv(x) << iO~vlnlRea-------------- ~ 

where as before 

{10 if ovEN*, 
j(a~) = if a~ r N*. 
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Thus in view of (3.22) and Lemma 3 the oscillatory behaviour of 6, f (x)  is 
completely described by that of Ivkv(X), which is given by Lemma 4 and this clearly 
yields that 6, f (x)  has at least 

(3.23) 2 [ ~ T b-) J =~ 2 �9 

sign changes in the interval [yev, ye'], if Y is large enough. 
This yields in view of (3.18) 

(3.24) V(6,f ,  Y) >= (1 - 51/b ) -~ log Y. 

Since for any real function h(x) we have 

(3.25) V(h, Y) >- V(6h, Y), 

inequality (3.24) clearly proves (1.6) if ~,< ~ since then Y--Y1 and b can be chosen 
arbitrarily small. If y = ~o we have only to note that for every constant C we have 
71>C if we choose r/' so small at the beginning that the domain a>=O-q ", It[<=C 
should be free of singularities of F(s). 

The assertions (1.7) and (1.8) follow completely in the same way as in [5, Sec- 
tion 3]. To show (1.7) we need, apart from (3.22) and Lemma 4, the trivial obser- 
vation that if for any function h(x), 6h has at least k + l  sign changes in [A, B] 
then h has at least k sign changes. 

To show (1.8) we have to work with the functions 

f ! + x ~ > 1, 
f (  = 

x )  = x ) _  , x -~ 
0 ~ x  =1, 

P ( s )  = F ( s ) + _ ( s - O - e )  - 1  

and choose at the beginning r/'<e/2. 

4. Proof of Corollary 1 

li x 
We shall prove Corollary 1 in case At(x)=H(x;  q, l ) - - - ~ j -  only. The other 

proofs are very similar using the fact that the corresponding generating functions 
have non-real singularities in a>=l/2 (see Grosswald [1]) further that Corollary 1 
is true for As(x) and A6(x) if the Generalized Riemann Hypothesis is true which 
follows from the work [2] of lngham (although he treated only the special case 
q--l). Let 

O for O<=x<-2, 
1 ~ du (4.1) f(x) = In (x ;  q, t ) f o r  x >2.  

t 
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Then the corresponding F(s) function is 

F(s) - 1 Z Z(l) log {(s -  1)*~L(s, X)} + h(s) 
sq~(q) z~mod ~) 

(4.2) 

where 

(4.3) ez otherwise 

and h(s) is holomorphic in the whole complex plane. 
In the half-plane a>O F(s) has singularities of the form 

(4.4) k~ s~o (q) log (s -- e) + F~ (s) 

where 0 denotes a zero of L(s, X) for some Z, and k~ is a complex number. More- 
over, ko>0 for at least one zero with Re 0_->1/2 (compare [1]). The results (1.10) 
and (1.11) therefore follow from our Theorem. 

5. Proof of Corollary 2 

Let 
0 for 0<_-x<= 1, 

(5.1) f ( x )  = M ( x ) - T ( x )  for x > 1. 
Then 

(5.2) 1 i f  1 r 
F(s) = --S- ~ (s' M ) - ' 2 - ~  s--z z 

Using (1.5) and (5.2) it is easy to prove that F(s) is regular in the half-plane 
a > l / 2  with the cuts s=a+__iT, 1/2<-a<=fl where 0=fl:q-i~ is a zero of ~n(s).  
At these points F(s) has singularities of the form (1.5) with av=0. At least one of 
these singularities is non-trivial. Indeed, (1.19) implies that in the neighbourhood 
of 00, the simple zero of ~Kn(S) with Re 00>1/2, we have 

R D D--I  
(5.3) F(s) = ~ log ( s -  Q0) + ~ gj(s) logJ(s- 00), 

j = 0  

where g~(s), j=0 ,  1, .... D--1 are regular near ~o and 

1 
(5.4) R d ~ v d  ~ >0"  

dl-b... +dh =D 

This proves Corollary 2. 

Acta Mathematica Hungariea 49, 7987 



OSCILLATORY PROPER'IIES OF ARITHMETICAL FUNCTIONS. II 453 

References 

[1] E. Grosswald, Sur une propri6t6 des racines complexes des fonctions L(s, Z), C. R. Acad. Sci. 
Paris, 260 (1965), 4299--4302. 

[2] A. E. Ingham, A note on the distribution of primes, Acta Arith., 1 (1936), 201--211. 
[3] J. Kaezorowski, On sign-changes in the remainder-term of the prime number formula I--II ,  

Aeta Artth., 44 (1984), 365--377 and to appear ibid. 
[4] J. Kaczorowski, Some remarks on factorization in algebraic number fields, Aeta Arith., 43 

(1983), 53--68. 
[5] J, Kaczorowski and J. Pintz, Oscillatory properties of arithmetical functions, Acta Math. Hungar., 

48 (1986). 
[6] W. Narkiewicz, Elemenatry and analytic theory o f  algebraic numbers (Warszawa, 1974). 
[7] S. Saks and A. Zygmund, Analytic functions (Warszawa--Wroc/aw, 1952). 

(Received May 21, 1985) 

INSTITUTE OF MATHEMATICS 
A. MICKIEWICZ UNIVERSITY 
POZNAN 
POLAND 

MATHEMATICAL INSTITUTE OF THE 
HUNGARIAN ACADEMY OF SCIENCES 
BUDAPEST, RE~LTANODA U. 13--15. 
H--1053 

11" Acta Mathematica Hungarica 49, 1987 


