OSCILLATORY PROPERTIES OF ARITHMETICAL FUNCTIONS. II

J. KACZOROWSKI (Poznan) and J. PINTZ (Budapest)

1. Introduction and statement of results

In the first paper of this series, [5], we have proved that the real-valued function $f(x)$ has at least $c(f) \log Y$ sign-changes in the interval ($0, Y]$ provided the analytic continuation of its Mellin transform

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} f(x) x^{-s-1} d x \tag{1.1}
\end{equation*}
$$

has all singularities of the form

$$
\begin{equation*}
P_{v}\left(s-\varrho_{v}\right) \log \left(s-\varrho_{v}\right)+F_{v}(s) \tag{1.2}
\end{equation*}
$$

where $F_{v}(s)$ is meromorphic at $s=\varrho_{v}$, and P_{v} is a polynomial (or $P_{v} \equiv 0$).
Using the method of [3] it is possible to generalize it for a much wider class of functions $f(x)$. Before we state our theorem let us recall that for any real function $f(x), x>0$ we define the number $V(f, Y)$ of sign-changes in the interval $(0, Y]$ as follows:

$$
\begin{align*}
V(f, Y)= & \sup \left\{N: \exists\left\{x_{i}\right\}_{i=1}^{N}, 0<x_{1}<\ldots<x_{N} \leqq Y,\right. \tag{1.3}\\
& \left.f\left(x_{i}\right) \neq 0, \operatorname{sgn} f\left(x_{i}\right) \neq \operatorname{sgn} f\left(x_{i+1}\right), 1 \leqq i<N\right\} .
\end{align*}
$$

Moreover, we shall say that $V(f, Y)>h(Y)$ with combined oscillation of size $g(x)$ if there exists a series $\left\{x_{i}\right\}_{i=1}^{h(\gamma)}$ with $\operatorname{sgn} f\left(x_{i}\right) \neq \operatorname{sgn} f\left(x_{i+1}\right)$ and

$$
\begin{equation*}
\left|f\left(x_{i}\right)\right| \geqq g\left(x_{i}\right) . \tag{1.4}
\end{equation*}
$$

Under these notations our theorem may be formulated as follows:
Theorem. Let $f(x)$ be real for $x>0$ and suppose that $\int_{0}^{\infty} f(x) x^{-s-1} d x$ converges absolutely for $\sigma \geqq \sigma_{1}$ and represents in that half-plane a function $F(s)$ having the following properties:
(1) $F(s)$ is regular for $\sigma>\Theta$ but not in any half-plane $\sigma>\Theta-\varepsilon$ with $\varepsilon>0$,
(2) there exists a denumerable (finite or infinite) set of singularities of $F(s)$, $S=\left\{\varrho_{v}=\beta_{v} \pm \dot{\gamma}_{v}\right\}, \quad \gamma_{v}>0$, without finite limit point satisfying $\Theta-c_{0} \leqq \beta_{v} \leqq \Theta$ for some $c_{0}>0$ and such that $F(s)$ can be continued as a meromorphic function in the open set D obtained by making cuts $s=\sigma \pm \dot{\gamma}_{n}, \sigma \leqq \beta_{n}$, in the half-plane $\sigma>\Theta-c_{0}$.
(3) For $\left|s-\varrho_{v}\right| \leqq \eta_{v}, \eta_{v}>0, \quad s \in D$:

$$
\begin{equation*}
F(s)=\left(s-\varrho_{v}\right)^{a_{v}} \sum_{t=0}^{k_{v}} g_{v t}\left(s-\varrho_{v}\right) \log ^{t}\left(s-\varrho_{v}\right)+F_{v}\left(s-\varrho_{v}\right) \tag{1.5}
\end{equation*}
$$

where $g_{v t}$ and F_{v} are regular for $|z|<\eta_{v}, k_{v}$ is a nonnegative integer, a_{v} an arbitrary complex number and $g_{v k_{v}}(0) \neq 0$.

Let $\gamma=\min _{\beta_{\nu}=\Theta} \gamma_{v}$ and $\gamma=\infty$ if $\beta_{v}<\Theta$ for all $v=1,2, \ldots$. Under these conditions we have

$$
\begin{equation*}
\varliminf_{Y \rightarrow \infty} \frac{V(f, Y)}{\log Y} \geqq \frac{\gamma}{\pi}, \tag{1.6}
\end{equation*}
$$

and every interval of the form

$$
\begin{equation*}
\left[Y^{1-\varepsilon}, Y\right], \quad Y>Y_{0}(\varepsilon) \tag{1.7}
\end{equation*}
$$

contains at least one sign-change of $f(x)$. The sign-changes in (1.6) and (1.7) are combined with an oscillation of size

$$
\begin{equation*}
x^{\theta-\varepsilon} \tag{1.8}
\end{equation*}
$$

for arbitrary $\varepsilon>0$.
Our theorem has immediate applications to the theory of distribution of prime numbers. Oscillatory properties of the difference $\pi(x)-\mathrm{li} x$ has been discussed in details in [3]. Further applications are the following.

Corollary 1. If $(l, q)=1$ and all L-functions $(\bmod q)$ have no real zeros in $[1 / 2,1)$ then for the difference

$$
\begin{equation*}
\Delta_{1}(x)=\Pi(x, q, l)-\frac{1}{\varphi(q)} \mathrm{i} x=\sum_{n \equiv l(\bmod q)} \frac{\Lambda(n)}{\log n}-\frac{1 \mathrm{i} x}{\varphi(q)} \tag{1.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\varliminf_{Y \rightarrow \infty} \frac{V\left(\Lambda_{1}, Y\right)}{\log Y}>0 \tag{1.10}
\end{equation*}
$$

with combined oscillation of the size $x^{1 / 2-\varepsilon}, \varepsilon>0$. Moreover, every interval of the form

$$
\begin{equation*}
\left[Y^{1-\varepsilon}, Y\right], \quad Y \geqq Y(\varepsilon) \tag{1.11}
\end{equation*}
$$

contains at least one sign-change of $\Delta_{1}(x)$.
The same assertions are true for the functions

$$
\begin{equation*}
\Delta_{2}(x)=\Pi\left(x ; q, l_{1}\right)-\Pi\left(x ; q, l_{2}\right) \tag{1.12}
\end{equation*}
$$

where $l_{1} \neq l_{2}(\bmod q)$,

$$
\begin{equation*}
\Delta_{3}(x)=\pi(x ; q, l)-\frac{1 \mathrm{i} x}{\varphi(q)} \tag{1.13}
\end{equation*}
$$

where l is a quadratic nonresidue,

$$
\begin{equation*}
\Delta_{4}(x)=\pi\left(x ; q, l_{1}\right)-\pi\left(x ; q, l_{2}\right) \tag{1.14}
\end{equation*}
$$

where l_{1} and l_{2} are both quadratic residues or they are both nonresidues $(\bmod q)$,

$$
\begin{equation*}
\Delta_{5}(x)=\pi(x ; q, 1)-\frac{\operatorname{li} x}{\varphi(q)} \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{6}(x)=\pi(x ; q, 1)-\pi(x ; q, l) \tag{1.16}
\end{equation*}
$$

for any $l \neq 1(\bmod q)$.
Still another field of applications of the Theorem is offered by the theory of factorization in algebraic number fields. Let K denote an arbitrary algebraic number field, R_{K} its ring of integers and $H(K)=\left\{X_{1}=E, X_{2}, \ldots, X_{h}\right\}$ its classgroup (E denotes the unit class). Let further M denote the set of all irreducible algebraic integers in K and let $M(x)$ and $\zeta(s, M)$ denote the counting function of M and the associated zeta-function respectively, i.e.

$$
\begin{equation*}
M(x)=\sum_{\substack{N\left(a R_{R}\right) \leq x \\ a \in M}} 1 \tag{1.17}
\end{equation*}
$$

where from each set of associated integers only one is counted,

$$
\begin{equation*}
\zeta(s, M)=\sum_{\substack{a R_{\mathcal{K}} \\ a \in M}}|N(a)|^{-s} \tag{1.18}
\end{equation*}
$$

and $N=N_{K / Q}$ denotes the norm-function.
If V denotes the set of all sequences $\left[d_{1}, \ldots, d_{h}\right], d_{i} \in N \cup\{0\}$ such that $X_{1}^{d_{1}} \ldots X_{h}^{d_{h}}$ equals E; moreover, the product $X_{1}^{e_{1}} \ldots X_{h}^{e_{h}}, 0 \leqq e_{i} \leqq d_{i}$ is equal to E if and only if either all e_{i} 's are zero or $e_{i}=d_{i}$ holds for $i=1,2, \ldots, h$, then

$$
\begin{equation*}
\zeta(s, M)=\sum_{\left[d_{1}, \ldots, d_{h}\right] \in V} \prod_{i=1}^{h} \sum_{k=1}^{\infty} \frac{1}{k!} \sum_{m_{1} \geqq 1} \ldots \sum_{m_{k} \geqq 1} \frac{P_{i}\left(m_{1} s\right) \ldots P_{i}\left(m_{k} s\right)}{m_{1} \ldots m_{k}} \tag{1.19}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{i}(s)=\sum_{\mathfrak{p} \in X_{i}} N \mathfrak{p}^{-s} \tag{1.20}
\end{equation*}
$$

(compare [4]). The summation in (1.20) is taken over all prime ideals from the class X_{i}. We define

$$
\begin{equation*}
T(x)=\frac{1}{2 \pi i} \int_{\mathscr{C}} \zeta(s, M) \frac{x^{s}}{s} d s \tag{1.21}
\end{equation*}
$$

\mathscr{C} denotes the curve of integration consisting of the segment $\left[1 / 4,1-\varepsilon_{0}\right]$ of the lower side of the real axis, the circumference $C\left(1, \varepsilon_{0}\right)$ and the segment $\left[1-\varepsilon_{0}, 1 / 4\right]$ of the upper side of real axis, where

$$
\begin{equation*}
\varepsilon_{0}=1 / 2 \min _{x \in \overline{H(K)}} \min _{\zeta_{K}\left(o, \alpha_{0}\right)=0}|1-\varrho| . \tag{1.22}
\end{equation*}
$$

$T(x)$ attains real values only and it was proved in [4] that it is the main term in the asymptotic formula for $M(x) . T(x)$ is a rather complicated function of x but for large x its behaviour is described by

$$
\begin{equation*}
T(x) \sim x \sum_{r=1}^{\infty} \frac{W_{r}(\log \log x)}{(\log x)^{r}} \tag{1.23}
\end{equation*}
$$

(compare [4, Theorem 1]) where W_{r} are polynomials, deg $W_{1}=D-1$ and deg $W_{r} \leqq D$ for $r \geqq 2$; here D is the Davenport's constant of K (see [6]).

Now we can say more about the difference

$$
\begin{equation*}
\Delta_{7}(x)=M(x)-T(x) . \tag{1.24}
\end{equation*}
$$

Corollary 2. If the Dedekind zeta function of the Hilbert class field K_{H} of K does not vanish in the segment $[1 / 2,1)$ and has at least one simple zero in the half-plane $\sigma>1 / 2$, then

$$
\begin{equation*}
\varliminf_{X \rightarrow \infty} \frac{V\left(A_{7}, Y\right)}{\log Y}>0 \tag{1.25}
\end{equation*}
$$

with combined oscillations of size $x^{1 / 2}$. Moreover, every interval of the form $\left[Y^{1-\varepsilon}, Y\right]$, $Y \geqq Y(\varepsilon)$ contains a sign-change of $\Delta_{7}(x)$.

In the same way as in the proof of Corollary 2 we can treat analogous remainder terms in the asymptotic formulae for the counting functions of certain subsets of R_{K} (compare [4]). There are some examples of such subsets: the sets $F_{k}, k=1,2, \ldots$ of all algebraic integers from K which have at most k factorization into irreducibles, the sets $G_{k}, k=1,2, \ldots$ of all algebraic integers from K which have at most k such factorizations of distinct lengths, $F_{k}^{\prime}=F_{k} \cap Z, G_{k}^{\prime}=G_{k} \cap Z$, and many others.

Oscillatory properties of the associated remainders depend of course on the analytic properties of the involved zeta-functions. These zeta-functions belong to the ring Ω (see [1]) which is the smallest ring containing all Dirichlet series with abscissas of absolute convergence <1 and also functions of the form $\zeta_{K}^{w}(s, \chi), \log ^{k} \zeta_{K}(a . \chi)$, where K denotes a certain number field, χ is a Hecke character, $w \in C, \operatorname{Re} w \geqq 0$ if $\chi=\chi_{0}$ (principal character) and k is a natural number. Hence such zeta functions have analytic continuation into the half-plane $\sigma>\sigma_{0}, \sigma_{0}<1$ and a slightly extended version of our theorem is applicable in all these cases.

It would be interesting to prove a stronger form of Corollary 2 assuming only that $\zeta_{\mathrm{K}_{H}}(s)$ does not vanish in the segment $[1 / 2,1]$.

The authors hope to return to this problem on another occasion.

2. Some auxiliary results

Let us introduce the following notations:

$$
\begin{aligned}
\mathrm{N} & =\{1,2,3, \ldots\} \\
l & =\log Y \\
x & =e^{\alpha l}=e^{v}, \quad \alpha_{1} \leqq \alpha \leqq 1 \\
n & =b l \text { (n an integer) }, \quad 0<b<\frac{\alpha_{1}|\varrho|}{10}, \quad \varrho=\beta+i \gamma, \quad \gamma>0
\end{aligned}
$$

$0<\eta<\varrho \varrho / / 10$,
$g(z)$ a regular function for $|z| \leqq \eta$ with $g(0) \neq 0, k \in \mathbf{N}^{*}=\{0,1,2, \ldots\}$, B an arbitrary complex number, but $B \notin \mathbf{N}$ if $k=0$.

Let $L_{a}(r)$ consist of the segment $[-a,-r]$ on the lower side of the real axis, the circumference $C(0, r)$ and the segment $[-r,-a]$ on the upper side of the real axis, $0<r \leqq a, r, a$ real; $L(r)=L_{\infty}(r)$.

Let $L_{a}(r ; \varrho)=\left\{s: s-\varrho \in L_{a}(r)\right\}$. Let

$$
\tilde{\Gamma}(\omega, B)=\frac{1}{2 \pi i} \int_{L(r)} e^{z \omega} z^{B-1} d z
$$

which is convergent for every B and every $\omega \in C$ with $\operatorname{Re} \omega>0$, the value of $\tilde{\Gamma}(\omega, B)$ being independent of r by Cauchy's theorem.

Let

$$
\tilde{\Gamma}_{j}(\omega, B)=\frac{d^{j} \tilde{\Gamma}(\omega, B)}{d B^{j}}=\frac{1}{2 \pi i} \int_{L(r)} e^{z \omega} z^{B-1} \log ^{j} z d z, \quad j \in N^{*}
$$

and let $\tilde{\Gamma}(B)=\tilde{\Gamma}(1, B)=\pi^{-1}(\sin \pi B) \Gamma(B)$, according to Hankel's formula (see [7]).
Lemma 1. For $l \rightarrow \infty$ we have

$$
\begin{gather*}
I(x)=\frac{1}{2 \pi i} \int_{L_{n}(r ; \varrho)} \frac{x^{s} g(s-\varrho) \log ^{k}(s-\varrho)(s-\varrho)^{B-1}}{s^{n}} d s= \tag{2.1}\\
=\frac{x^{\varrho}}{\varrho^{n} l^{B}} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j}(\log l)^{k-j} A_{j}(\alpha)
\end{gather*}
$$

with

$$
\begin{gather*}
A_{j}(\alpha)=g(0) \tilde{\Gamma}_{j}\left(\alpha-\frac{b}{\varrho}, B\right)+ \tag{2.2}\\
+\frac{1}{l}\left\{g^{\prime}(0) \tilde{\Gamma}_{j}\left(\alpha-\frac{b}{\varrho}, B+1\right)+g(0) \frac{b}{2 \varrho^{2}} \tilde{\Gamma}_{j}\left(\alpha-\frac{b}{\varrho}, B+2\right)\right\}+O\left(l^{-2}\right)
\end{gather*}
$$

where the constant in the O-symbol may depend on all parameters $\alpha_{1}, b, \eta, B, k, j, \varrho$ and on the function g.

Proof. Writing $\omega=s-\varrho$ and $z=l \omega$ we have

$$
\begin{gather*}
I(x)=\frac{x^{\varrho}}{\varrho^{n}} \frac{1}{2 \pi i} \int_{L_{n}(r)} \frac{e^{v \omega} g(\omega) \log ^{k} \omega \omega^{B-1}}{\left(1+\frac{\omega}{\varrho}\right)^{n}} d \omega= \tag{2.3}\\
=\frac{x^{\varrho}}{\varrho^{n} l^{B}} \frac{1}{2 \pi i} \int_{L_{n l}(r)} \frac{e^{\alpha z} g(z / l)\left(\log z-\log l^{k} z^{B-1}\right.}{\left(1+\frac{z}{l \varrho}\right)^{n}} d z= \\
\frac{x}{U^{n} l^{B}} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j}(\log l)^{k-j} \frac{1}{2 \pi i} \int_{L_{n l}(r)} \frac{e^{\alpha z} g(z / l) \log ^{j} z z^{B-1}}{\left(1+\frac{z}{l \varrho}\right)^{n}} d z
\end{gather*}
$$

where we denote the integral by $A(\alpha)$.

To evaluate $A(\alpha)$ we note that for $h \in C,|h| \leqq 1 / 10$:

$$
\begin{equation*}
(1+h)^{-1}=e^{-h+h^{2} / 2+O\left(h^{3}\right)},(1+h)^{-1} \leqq e^{2|h|}, \tag{2.4}
\end{equation*}
$$

further $\left|z / l_{\varrho}\right| \leqq|\eta / \varrho| \leqq 1 / 10$ for $z \in L_{\eta l}(r)$. Since we can choose r arbitrary with $0<r \leqq \eta l$ we choose $r=1$ and consider the shortened integral $A^{*}(\alpha)$ on $L^{*}=$ $=L_{\log ^{2} l}(1)$.

Then by (2.4), $b<\alpha_{1}|\varrho| / 10$, and the regularity of g we have

$$
\begin{gather*}
\left|A(\alpha)-\frac{1}{2 \pi i} \int_{L^{*}} \frac{e^{\alpha z} g(z / l) \log ^{j} z Z^{B-1}}{\left(1+\frac{z}{l \varrho}\right)^{n}} d z\right|= \tag{2.5}\\
=O\left(\int_{\log ^{2} l}^{\eta^{l}} e^{-\alpha x+2 b x x / l|\varrho|} \log ^{j} x x^{B-1} d x\right)=O\left(e^{-\left(\alpha_{1} \log ^{2} l\right) / 2}\right) .
\end{gather*}
$$

Further again by (2.4) we have

$$
\begin{align*}
& A^{*}(\alpha)=\frac{1}{2 \pi i} \int_{L^{*}} \exp \left(\alpha z-\frac{b z}{\varrho}+\frac{b z^{2}}{2 l \varrho^{2}}+O\left(\frac{z^{3}}{l^{2}}\right)\right) g(z / l) \log ^{j} z z^{B-1} d z= \tag{2.6}\\
= & \frac{1}{2 \pi i} \int_{L^{*}} e^{\alpha z-b z / \varrho}\left(1+\frac{b z^{2}}{2 l \varrho^{2}}+O\left(\frac{z^{3}}{l^{2}}\right)\right)\left(g(0)+g^{\prime}(0) \frac{z}{l}+O\left(\frac{z^{2}}{l^{2}}\right)\right) \log ^{j} z z^{B-1} d z= \\
= & \frac{1}{2 \pi i} \int_{L^{*}} e^{z(\alpha-b / \varrho)}\left\{g(0)+g(0) \frac{b z^{2}}{2 l \varrho^{2}}+g^{\prime}(0) \frac{z}{l}\right\} \log ^{j} z z^{B-1} d z+O\left(1 / l^{2}\right)= \\
= & \frac{1}{2 \pi i} \int_{L(1)} e^{z\left(\alpha-\frac{b}{\varrho}\right)}\left\{g(0)+\frac{1}{l}\left(g^{\prime}(0) z+\frac{g(0) b z^{2}}{2 \varrho^{2}}\right)\right\} \log ^{j} z z^{B-1} d z+O\left(1 / l^{2}\right),
\end{align*}
$$

similarly to (2.5). Now (2.6) yields the required result (2.2).
Lemma 2. If $q \in \mathbf{N}$ then $\tilde{\Gamma}_{0}(\omega, q)=0$ for $\operatorname{Re} \omega>0$. If $q \notin \mathbf{N}$ then for $\Delta<$ $\Delta_{0}(b, \varrho, q)$ we hawe $\left|\tilde{\Gamma}_{0}(\alpha-b / \varrho, q)\right|>\Delta$ for $\alpha \in \bigcup_{r=1}^{r(4)}\left(h_{r}, h_{r}^{\prime}\right) \subset\left[\alpha_{1}, 1\right]$ where $r(\Delta)<\infty$, $h_{r}^{\prime} \leqq h_{r+1}(r=1, \ldots, r(\Delta)-1), \quad H(\Delta)=1-\alpha_{1}-\sum_{r=1}^{r(4)}\left(h_{r}^{\prime}-h_{r}\right) \rightarrow 0 \quad$ as $\quad \Delta \rightarrow 0$. If $\quad q \in \mathbf{N}$ then the above assertion holds for $\tilde{\Gamma}_{1}(\alpha-b / \varrho$,$) in place of \tilde{\Gamma}_{0}^{:}(\alpha-b / \varrho, q)$.

Proof. If $q \in \mathbf{N}$ it is sufficient to show that for real $\omega>0$ we have $\tilde{\Gamma}_{0}(\omega, q)=0$, since for fixed $a \widetilde{\Gamma}_{0}(\omega, a)$ is a regular function of ω in the half-plane $\operatorname{Re} \omega>0$. But for $\omega \in R^{+}$we have with $w=z \omega$

$$
\begin{equation*}
\tilde{\Gamma}_{0}(\omega, q)=\frac{\omega^{-q}}{2 \pi i} \int_{L(\mathrm{r} \omega)} e^{w} w^{q-1} d w=\frac{\Gamma(q) \sin (q \pi)}{\pi \omega^{q}}=0 . \tag{2.7}
\end{equation*}
$$

If $q \notin \mathbf{N}$ then in view of (2.7), $\tilde{\Gamma}_{0}(\omega, q) \neq 0$ for $\omega \in R^{+}$. Since $\tilde{\Gamma}_{0}(\omega, q)$ is a regular function for $\operatorname{Re} \omega>0$ the relation

$$
\begin{equation*}
\tilde{\Gamma}_{0}\left(\alpha-\frac{b}{\varrho}, q\right)=0 \tag{2.8}
\end{equation*}
$$

holds at most for finitely many $\alpha_{1}^{\prime}, \ldots, \alpha_{k}^{\prime} \in\left[\alpha_{1}, 1\right]$.
Let

$$
\xi_{0}(\alpha)=\left|\tilde{\Gamma}_{0}\left(\alpha-\frac{b}{\varrho}, q\right)\right| .
$$

Now we have clearly for every non-negative continuous real function $\xi(\alpha)$ the relation $\xi(\alpha) \geqq \Delta$ for $\alpha \in \bigcup_{r=1}^{r(4)}\left(h_{1}, h_{r}^{\prime}\right) \subset\left[\alpha_{1}, 1\right]$ where $h_{r}^{\prime} \leqq h_{r+1}$ for $r=1, \ldots, r(\Delta)-1$, $r(\Delta)<\infty, \lim _{\Delta \rightarrow 0}\left\{1-\alpha_{1}-\sum_{r=1}^{\substack{r(\Delta)}}\left(h_{r}^{\prime}-h_{r}\right)\right\}=0$, if $\xi(\alpha)$ has only finitely many zeros in [$\left.\alpha_{1}, 1\right]$. If $q \in \mathbf{N}$ then the same is true for $\Gamma_{1}\left(\alpha-\frac{b}{\varrho}, q\right)$ since then for $\omega \in R^{+}$

$$
\begin{equation*}
\tilde{\Gamma}_{1}(\omega, q)=\frac{d \tilde{\Gamma}(\omega, q)}{d q}=\frac{d\left\{\frac{\Gamma(q) \sin (\pi q)}{\pi \omega^{q}}\right\}}{d q}=\frac{\Gamma(q) \cos (\pi q)}{\omega^{q}} \neq 0 . \tag{2.9}
\end{equation*}
$$

Now Lemmas 1 and 2 clearly imply
Lemma 3. Let $m \in \mathbf{N}^{*}, x=e^{\alpha l}, 0<\alpha_{1} \leqq \alpha \leqq 1, l \rightarrow \infty$. Then there exists a $\Delta=\Delta\left(\alpha_{1}, b, \varrho, B, g, m\right)$ independent of l such that for $\alpha \in \bigcup_{r=1}^{(d)}\left(h_{r}, h_{r}^{\prime}\right) \subset\left[\alpha_{1}, 1\right]$ where $r(\Delta)<\infty, 1-\alpha_{1}-\sum_{r=1}^{r(\Delta)}\left(h_{r}^{\prime}-h_{r}\right) \leqq \frac{\alpha_{1}}{m}, h_{r}^{\prime} \leqq h_{r+1}$ for $r=1, \ldots, r(\Delta)-1$, the relations

$$
\begin{gather*}
I(x)=\frac{(-1)^{k}(-k)^{j} x^{\varrho}(\log l)^{k-j}}{\varrho^{n} l^{B}}\left(g(0) \tilde{\Gamma}_{j}\left(\alpha-\frac{b}{\varrho}, B\right)+O\left(\frac{1}{l}\right)\right), \tag{2.10}\\
\left|g(0) \tilde{\Gamma}_{j}\left(\alpha-\frac{b}{\varrho}, B\right)\right| \geqq \Delta
\end{gather*}
$$

hold, where $j=j(B)=0$ if $B \notin \mathbf{N}$ and $j=j(B)=1$ if $B \in \mathbf{N}$.
Lemma 4. If

$$
J=\left(x_{0}, x_{0} \exp \left(\frac{2 \pi}{\gamma}(1+c)\right)\right) \subset \bigcup_{r=1}^{r(\Delta)}\left(Y^{h_{r}}, Y^{h_{r}^{\prime}}\right)
$$

where $c>0$ is an arbitrary constant then for sufficiently large Y there exist $x_{1}, x_{2}, x_{3} \in J$ such that
(2.11) $\operatorname{sgn} \operatorname{Re} x_{\mu} \nRightarrow \operatorname{sgn} \operatorname{Re} x_{\mu+1}(\mu=1,2), \quad\left|\operatorname{Re} I\left(x_{\mu}\right)\right| \gg \frac{x_{\mu}^{\beta}(\log l)^{k-j(B)}}{|\varrho|^{n} j^{\operatorname{ReB}}}(1 \leqq \mu \leqq 3)$.

Proof. In order to prove (2.11) we have only to note that for $x \in J$ we have

$$
\begin{equation*}
\log x=\log x_{0}+O(1), \quad \text { i.e. } \quad \alpha=\frac{\log x_{0}}{l}+O\left(\frac{1}{l}\right) \tag{2.12}
\end{equation*}
$$

Therefore we have for $x \in J$

$$
\begin{equation*}
I(x)=\frac{(-1)^{k}(-k)^{j}(\log l)^{k-j}}{\varrho^{n} l^{B}} g(0) \tilde{\Gamma}_{j}\left(\frac{\log x_{0}}{l}-\frac{b}{\varrho}, B\right) x^{\beta+i \gamma}\left(1+O\left(\frac{1}{l}\right)\right), \tag{2.13}
\end{equation*}
$$

which implies (2.11).

3. Proof of the Theorem

We are entitled to assume $\Theta>0$, since otherwise we work with $f^{\prime}(x)=f(x) \cdot x^{C}$ with suitably chosen C. Also we can assume that $\gamma>0$ since otherwise we have nothing to prove.

Since the proof is in many aspect similar to that of Theorem 1 in part I [5], we shall be brief at these places.

Similarly to [5, Section 3] we define for an arbitrary function $h(x)$ the operation δ by

$$
\begin{equation*}
\delta h(x)=\int_{0}^{x} \frac{h(\xi)}{\xi} d \xi \tag{3.1}
\end{equation*}
$$

and denote by δ_{n} the n times iterated operation δ. Then we have

$$
\begin{equation*}
\delta_{n} f(x)=\frac{1}{2 \pi i} \int_{\left(\sigma_{1}\right)} F(s) \frac{x^{s}}{s^{n}} \mathrm{ds} \tag{3.2}
\end{equation*}
$$

Let us choose an $\eta^{\prime}>0$ in such a way that $\eta^{\prime}<c_{0}, \quad \eta^{\prime}<\Theta / 2$ and that the following region and line, resp.,

$$
\begin{equation*}
\sigma>\Theta-\eta^{\prime}, \quad|t| \leqq \gamma \quad \text { and } \quad \sigma=\Theta-\eta^{\prime} \tag{3.3}
\end{equation*}
$$

should contain no singularity except $\Theta \pm i \gamma$, if $\gamma<\infty$.
If $\gamma=\infty$ let η^{\prime} be defined so that $\eta^{\prime}<c_{0}, \quad \eta^{\prime}<\Theta / 2$ and that the segment [$\left.\Theta-\eta^{\prime}, \Theta\right]$ should be free of singularities of $F(s)$.

We shall choose later on a sufficiently large constant T, so that there should be no singularity ϱ of $F(s)$ on the broken line L^{\prime} defined by

$$
L^{\prime}=\left\{\begin{array}{l}
\sigma=\sigma_{1} \text { if } \quad|t| \geqq T, \tag{3.4}\\
\theta-\eta^{\prime} \leqq \sigma \leqq \sigma_{1} \quad \text { if }|t|=T, \\
\sigma=\Theta-\eta^{\prime} \quad \text { if } \quad|t| \leqq T
\end{array}\right.
$$

but there should be at least one singularity to the right of L^{\prime}. Let $\varrho_{1}=\beta_{1}+i \gamma_{1}$ denote the lowest singularity above the real axis with $\beta>\Theta-\eta^{\prime}$. If there are more of them then let is choose that with maximal β. Let for $v \geqq 1 \quad \varrho_{v+1}=\beta_{v+1}+i \gamma_{v+1}$ denote the singularity with minimal $\gamma>\gamma_{v}$, among those with $\beta \geqq \beta_{v}, \gamma<T$. If there are more of them then let us choose that with maximal β.

Let us suppose that we obtain exactly m singularities $\varrho_{1}, \ldots, \varrho_{m}$ in such a way.

Let us choose η with $\Theta-\eta^{\prime} \leqq \beta_{1}-\eta$ and so that the domains

$$
\begin{equation*}
\left\{\beta_{v}-\eta \leqq \sigma<\beta_{v}, \gamma_{v} \leqq|t| \leqq \gamma_{v+1}\right\} \tag{3.5}
\end{equation*}
$$

should be free of singularities of $F(s)$, for $v=1,2, \ldots, m$, further let

$$
\begin{equation*}
\eta<\min _{1 \leqq v \leqq m} \min \left(\eta_{v}, \mid \varrho_{v} / / 20, \frac{\gamma_{v}-\gamma_{v-1}}{2}\right) \tag{3.6}
\end{equation*}
$$

where we define $\gamma_{0}=0, \gamma_{m+1}=T$.
Let us choose now with an $r<\eta$, defining $\gamma_{m+1}=T+\eta, \beta_{0}=\Theta+\eta-\eta^{\prime}$, the following broken line:

$$
\begin{gather*}
L=\left\{\sigma=\sigma_{1}, T \leqq|t|\right\} \cup\left\{\sigma_{1} \geqq \sigma \geqq \beta_{m}-\eta,|t|=T\right\} \tag{3.7}\\
\bigcup_{v=m}^{1}\left[\left\{\sigma=\beta_{v}-\eta, \gamma_{v+1}-\eta \geqq|t| \geqq \gamma_{v}\right\} \cup L_{\eta}\left(r, \varrho_{v}\right) \cup\right. \\
\left.\cup\left\{\sigma=\beta_{v}-\eta, \gamma_{v} \geqq|t| \geqq \gamma_{v}-\eta\right\} \cup\left\{\beta_{v}-\eta \geqq \sigma \geqq \beta_{v-1}-\eta,|t|=\gamma_{v}-\eta\right\}\right] \cup \\
\cup\left\{\sigma=\Theta-\eta^{\prime}, \gamma_{1}-\eta \geqq|t|\right\} .
\end{gather*}
$$

Then $F(s)$ is regular on L and to the right of L, so we obtain with the notation $L^{+}=\{s \in L: \operatorname{Re} s \geqq 0\}$

$$
\begin{equation*}
\delta_{n} f(x)=\int_{L} F(s) \frac{x^{s}}{s^{n}} d s=2 \operatorname{Re} \int_{L^{+}} F(s) \frac{x^{s}}{s^{n}} d s \tag{3.8}
\end{equation*}
$$

since L is symmetric to the real axis and $F(\bar{s})=\overline{F(s)}$.
Using the notation we have by easy calculation

$$
\begin{equation*}
\left|\delta_{n} f(x)-2 \sum_{v=1}^{m} \operatorname{Re} J_{v}(x)\right| \ll \frac{x^{\sigma_{1}}}{n T^{n-1}}+\frac{x^{\Theta-\eta^{\prime}}}{(\Theta / 2)^{n}}+\sum_{v=1}^{m} \frac{x^{\beta_{v}-\eta}}{\left(\left|\varrho_{v}\right|-2 \eta\right)^{n}} . \tag{3.10}
\end{equation*}
$$

Let

$$
\begin{equation*}
n=[b \log Y], \quad x=Y^{\alpha}, \quad \sqrt{b} \leqq \alpha \leqq 1 \tag{3.11}
\end{equation*}
$$

If we fix b satisfying

$$
\begin{equation*}
b<b_{0}=b_{0}\left(\eta^{\prime}\right)<\min \left(1 / 100,\left(\varrho_{1} \mid / 10\right)^{2}\right) \tag{3.12}
\end{equation*}
$$

where b_{0} is chosen sufficiently small (but independently of T) then with a positive constant $d_{1}=d_{1}\left(\eta^{\prime}, b\right)$

$$
\begin{equation*}
\frac{x^{\Theta-\eta^{\prime}}}{(\Theta / 2)^{\beta}} \ll \frac{x^{\beta_{1}}}{\left|\varrho_{1}\right|^{n}} Y^{-d_{1}} \tag{3.13}
\end{equation*}
$$

Further we have by $\left|\varrho_{1}\right| \leqq \ldots \leqq\left|\varrho_{n}\right|$ and (3.6)

$$
\begin{equation*}
\left.\frac{x^{\beta_{v}-\eta}}{\left(\left|\varrho_{v}\right|-2 \eta\right)^{n}} \leqq \frac{x^{\beta_{v}}}{\left|\varrho_{v}\right|^{n}} x^{-\eta} e^{4 n \eta /\left|\varrho_{\nu}\right|} \leqq \frac{x^{\beta_{v}}}{\left|\varrho_{v}\right|^{n}} Y^{-\eta \sqrt{b}(1-4} \sqrt{\bar{b}} /\left|\varrho_{1}\right|\right)<\frac{x^{\beta_{v}}}{\left|\varrho_{v}\right|^{n}} Y^{-\eta \sqrt{b} / 2} \tag{3.14}
\end{equation*}
$$

Now we fix T satisfying

$$
\begin{equation*}
T=T_{0}\left(b, \eta, \eta^{\prime}\right) \tag{3.15}
\end{equation*}
$$

where T_{0} is chosen sufficiently large. Then with a positive constant $d_{2}=d_{2}\left(\eta^{\prime}, \eta, b, T\right)$

$$
\begin{equation*}
\frac{x^{\sigma_{1}}}{n T^{n-1}} \ll \frac{x^{\beta_{1}}}{\left|\varrho_{1}\right|^{n}} \cdot Y^{-d_{2}} \tag{3.16}
\end{equation*}
$$

So we have by (3.10)-(3.16) with $d_{3}=\min \left(d_{1}, d_{2}, \eta \sqrt{b} / 2\right)>0$

$$
\begin{equation*}
\left|\delta_{n} f(x)-2 \sum_{v=1}^{m} \operatorname{Re} J_{v}(x)\right| \ll \max _{1 \equiv v \leqq m} \frac{x^{\beta_{v}}}{\left\lfloor\left.\varrho_{v}\right|^{n}\right.} Y^{-d_{3}} . \tag{3.17}
\end{equation*}
$$

From now on we consider $b, \eta, \eta^{\prime}, T$ (hence $\varrho_{1}, \ldots, \varrho_{m}$) as fixed constants. Further we restrict ourselves for the sake of convenience for those values of Y for which $b \log Y$ is an integer. But it is clearly sufficient to show $V(Y) \geqq c \log Y\left(Y \geqq Y_{0}\right)$ for these values of Y, since this implies $V(Y) \geqq c \log Y+O(1)$ for all Y.

Similarly to $[5,(3.12)-(3.17)]$ there exists a small positive constant $d_{4}=$ $=d_{4}\left(b, \varrho_{1}, \ldots, \varrho_{m}\right)$ such that we have disjoint intervals $\left(e_{v}, e_{v}^{\prime}\right) \subset[\sqrt{b}, 1]$ (where $e_{v}=e_{v}^{\prime}$ is possible), $v=1, \ldots, m$ with total length at least

$$
\begin{equation*}
1-2 \sqrt{b} \tag{3.18}
\end{equation*}
$$

so that for $1 \leqq v \leqq m$

$$
\begin{equation*}
\max _{\substack{1 \leqq \mu \leq m \\ \mu \neq v}} \frac{x^{\beta_{\mu}}}{\left|\varrho_{\mu}\right|^{n}}<\frac{x^{k}}{\left|\varrho_{v}\right|^{n}} Y^{\sim d_{4}} \quad \text { if } \quad x \in\left(Y^{e_{v}}, Y Y_{v}^{\prime}\right) \tag{3.19}
\end{equation*}
$$

Let v be fixed and let us consider from now on always $x \in\left(Y^{e_{v}}, Y^{e_{v}^{\prime}}\right)$. Then we have with $d_{5}=\min \left(d_{3}, d_{4}\right)>0$

$$
\begin{equation*}
\left|\delta_{n} f(x)-2 \sum_{\mu=1}^{m} \operatorname{Re} J_{\mu}(x)\right| \ll \frac{x^{\beta_{v}}}{\left|\varrho_{v}\right|^{n}} Y^{-d_{5}} . \tag{3.20}
\end{equation*}
$$

Denoting the integral $I(x)$ in (2.1) of Lemma 1 by $I_{\mu t}(x)$ in case of $\varrho=\varrho_{\mu}$, $g=g_{\mu t}, B=B_{\mu}=a_{\mu}+1, k=t$, we have by the regularity of $F_{\mu}(s)$

$$
\begin{equation*}
J_{\mu}(x)=\sum_{t=0}^{k_{\mu}} I_{\mu t}(x) \tag{3.21}
\end{equation*}
$$

Taking into account Lemma 3 we obtain

$$
\begin{equation*}
\left|\delta_{n} f(x)-2 \operatorname{Re} I_{v k_{v}}(x)\right| \ll \frac{x^{\beta_{v}}}{\left.\left|\varrho_{v}\right|^{n}\right|^{\operatorname{Re} a_{v}}}(\log l)^{k_{v}-1-j\left(a_{v}\right)} \tag{3.22}
\end{equation*}
$$

where as before

$$
j\left(a_{v}\right)=\left\{\begin{array}{lll}
1 & \text { if } & a_{v} \in \mathbf{N}^{*} \\
0 & \text { if } & a_{v} \notin \mathbf{N}^{*} .
\end{array}\right.
$$

Thus in view of (3.22) and Lemma 3 the oscillatory behaviour of $\delta_{n} f(x)$ is completely described by that of $I_{v k_{v}}(x)$, which is given by Lemma 4 and this clearly yields that $\delta_{n} f(x)$ has at least

$$
\begin{equation*}
2\left[\frac{\left(e_{v}^{\prime}-e_{v}-\frac{2 \sqrt{b}}{m}\right) \log Y}{\left(2 \pi / \gamma_{v}\right)(1+b)}\right] \geqq 2\left[\frac{\left(e_{v}^{\prime}-e_{v}-\frac{2 \sqrt{b}}{m}\right) \log Y}{\left(2 \pi / \gamma_{1}\right)(1+b)}\right] \tag{3.23}
\end{equation*}
$$

sign changes in the interval [$\left.Y^{e_{v}}, Y^{e_{v}^{\prime}}\right]$, if Y is large enough.
This yields in view of (3.18)

$$
\begin{equation*}
V\left(\delta_{n} f, Y\right) \supseteqq(1-5 \sqrt{b}) \frac{\gamma_{1}}{\pi} \log Y \tag{3.24}
\end{equation*}
$$

Since for any real function $h(x)$ we have

$$
\begin{equation*}
V(h, Y) \geqq V(\delta h, Y), \tag{3.25}
\end{equation*}
$$

inequality (3.24) clearly proves (1.6) if $\gamma<\infty$ since then $\gamma=\gamma_{1}$ and b can be chosen arbitrarily small. If $\gamma=\infty$ we have only to note that for every constant C we have $\gamma_{1}>C$ if we choose η^{\prime} so small at the beginning that the domain $\sigma \geqq \Theta-\eta^{\prime},|t| \leqq C$ should be free of singularities of $F(s)$.

The assertions (1.7) and (1.8) follow completely in the same way as in [5, Section 3]. To show (1.7) we need, apart from (3.22) and Lemma 4, the trivial observation that if for any function $h(x), \delta h$ has at least $k+1$ sign changes in $[A, B]$ then h has at least k sign changes.

To show (1.8) we have to work with the functions

$$
\begin{gathered}
\bar{f}(x)= \begin{cases}f(x) \pm x^{\Theta-\varepsilon}, & x \geqq 1, \\
0, & 0 \leqq x \leqq 1\end{cases} \\
\bar{F}(s)=F(s) \pm(s-\Theta-\varepsilon)^{-1}
\end{gathered}
$$

and choose at the beginning $\eta^{\prime}<\varepsilon / 2$.

4. Proof of Corollary 1

We shall prove Corollary 1 in case $\Delta_{1}(x)=\Pi(x ; q, l)-\frac{\mathrm{li} x}{\varphi(q)}$ only. The other proofs are very similar using the fact that the corresponding generating functions have non-real singularities in $\sigma \geqq 1 / 2$ (see Grosswald [1]) further that Corollary 1 is true for $\Delta_{5}(x)$ and $\Delta_{6}(x)$ if the Generalized Riemann Hypothesis is true which follows from the work [2] of Ingham (although he treated only the special case $q=1$). Let

$$
f(x)=\left\{\begin{array}{l}
0 \text { for } 0 \leqq x \leqq 2 \tag{4.1}\\
\Pi(x ; q, l)-\frac{1}{\varphi(q)} \int_{2}^{x} \frac{d u}{\log u} \text { for } x>2
\end{array}\right.
$$

Then the corresponding $F(s)$ function is

$$
\begin{equation*}
F(s)=\frac{1}{s \varphi(q)} \sum_{\chi(\bmod q)} \chi(l) \log \left\{(s-1)^{\varepsilon_{x}} L(s, \chi)\right\}+h(s) \tag{4.2}
\end{equation*}
$$

where

$$
\varepsilon_{\chi}= \begin{cases}1 & \text { for } \chi=\chi_{0} \tag{4.3}\\ 0 & \text { otherwise }\end{cases}
$$

and $h(s)$ is holomorphic in the whole complex plane.
In the half-plane $\sigma>0 F(s)$ has singularities of the form

$$
\begin{equation*}
\frac{k_{Q}}{s \varphi(q)} \log (s-\varrho)+F_{\varrho}(s) \tag{4.4}
\end{equation*}
$$

where ϱ denotes a zero of $L(s, \chi)$ for some χ, and k_{ϱ} is a complex number. Moreover, $k_{e}>0$ for at least one zero with $\operatorname{Re} \varrho \supseteq 1 / 2$ (compare [1]). The results (1.10) and (1.11) therefore follow from our Theorem.

5. Proof of Corollary 2

Let

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & 0 \leqq x \leqq 1, \tag{5.1}\\
M(x)-T(x) & \text { for } & x>1
\end{array}\right.
$$

Then

$$
\begin{equation*}
F(s)=\frac{1}{s} \zeta(s, M)-\frac{1}{2 \pi i} \int_{\mathscr{E}} \frac{1}{s-z} \frac{\zeta(z, M)}{z} d z \tag{5.2}
\end{equation*}
$$

Using (1.5) and (5.2) it is easy to prove that $F(s)$ is regular in the half-plane $\sigma>1 / 2$ with the cuts $s=\sigma \pm i \gamma, 1 / 2 \leqq \sigma \leqq \beta$ where $\varrho=\beta \pm i \gamma$ is a zero of $\zeta_{K_{H}}(s)$. At these points $F(s)$ has singularities of the form (1.5) with $a_{v}=0$. At least one of these singularities is non-trivial. Indeed, (1.19) implies that in the neighbourhood of ϱ_{0}, the simple zero of $\zeta_{K_{H}}(s)$ with $\operatorname{Re} \varrho_{0}>1 / 2$, we have

$$
\begin{equation*}
F(s)=\frac{R}{h^{D} s} \log ^{D}\left(s-\varrho_{0}\right)+\sum_{j=0}^{D-1} g_{j}(s) \log ^{j}\left(s-\varrho_{0}\right), \tag{5.3}
\end{equation*}
$$

where $g_{j}(s), j=0,1, \ldots, D-1$ are regular near ϱ_{0} and

$$
\begin{equation*}
R=\sum_{\substack{\left[d_{1}, \ldots, d_{h}\right] \in V \\ d_{1}+\ldots+d_{h}=D}} \frac{1}{d_{1}!\ldots d_{h}!}>0 \tag{5.4}
\end{equation*}
$$

This proves Corollary 2.

References

[1] E. Grosswald, Sur une propriété des racines complexes des fonctions $L(s, \chi), C . R$. Acad. Sci. Paris, 260 (1965), 4299-4302.
[2] A. E. Ingham, A note on the distribution of primes, Acta Arith., 1 (1936), 201-211.
[3] J. Kaczorowski, On sign-changes in the remainder-term of the prime number formula $\mathbf{I}-I I$, Acta Arıth., 44 (1984), 365-377 and to appear ibid.
[4] J. Kaczorowski, Some remarks on factorization in algebraic number fields, Acta Arith., 43 (1983), 53-68.
[5] J. Kaczorowski and J. Pintz, Oscillatory properties of arithmetical functions, Acta Math. Hungar., 48 (1986).
[6] W. Narkiewicz, Elemenatry and analytic theory of algebraic numbers (Warszawa, 1974).
[7] S. Saks and A. Zygmund, Analytic functions (Warszawa-Wrocław, 1952).
(Received May 21, 1985)
INSTITUTE OF MATHEMATICS
A. MICKIEWICZ UNIVERSITY
POZNAN
POLAND
MATHEMATICAL INSTITUTE OF THE
HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST, REALTANODA U. 13-15.
H-1053

