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O S C I L L A T O R Y  PROPERTIES OF A R I T H M E T I C A L  
F U N C T I O N S .  I 

J. KACZOROWSKI (Poznan) and J. PINTZ (Budapest) 

1. Introduction 

The first general theorem concerning sign changes of partial sums of arithmetical 
functions has been proved by E. Landau [8] in 1905 and sounds slightly reformulated 
as follows (we shall use the notation s=a +it throughout this paper): 

THEOREM (Landau). Let f(x) be real for x >-xo; suppose F(s) = f f(x) x -  s- 1 dx 
x o 

is regular for a>O but not regular in any half-plane a>O-e  with e>0. l f  F(s) 
is regular at s=O then f(x) changes sign infinitely often as x ~ o .  

Unfortunately, this very beautiful and general theorem does not yield any infor- 
mation about the frequency of sign changes. For any real function f(x) defined for 
x > 0  we may define the number V(f, Y) of sign changes in the interval (0, Y] as 
follows: 
(1.1) V(f, Y) = sup}N; 3{Xl}~v=s, 0 < xl < . . . <  xN <-- Y, 

f ( x i )  ~ 0, sgnf(x i )  7 ~ sgnf(x i+l  ), 1 ~ i < N} .  

We shall say, that V(f, Y)>h(Y) with combined oscillation of  size g(x) if there 
exists a series "- /h~r) with sgnf(xi)#sgnf(xi+a) and If(x~)l>g(x.). IJ~ilt=l 

Imposing more conditions on the function f,  P61ya [11] was able to deduce 
another general theorem concerning the behaviour of the function V(~, Y). 

T~OREM (P61ya). Let f(x) and F( s) satisfy the conditions of Landau's theorem, 
further let F(s) be meromorphic in some half-plane agO-co, c0>0. Let 7=inf  {Ill; 
F(s) is not regular at s=O+it} and let 7= ~ If F(s) is regular on a=O. Then 

(1.2) lim V(f, Y) > Z 
- -  o 

r-o. logY -- ~r 

Finally, Grosswald [3] succeeded in generalizing the theorem of P61ya, for the 
case when logarithmic singularities with principal part P,( s-s , )  log (s-s , )  are 
allowed in the strip O--co<=a<-_O too, where P,(u) are polynomials with 
sup deg Pn (u) < co. 

/ I  

The aim of this work is to show that the ideas of the first named author [5] 
which led to the proof of 

(1.3) lira Z(O(x)-x ,  Y) > 0 ,  ~ V(rl(x)-l ix,  Y) 
r--"~ log Y - r.o. log Y > 0 
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can be extended as to show Grosswald's theorem with lirn instead of ~ .  This will 
be our Theorem 1. The corresponding sharpening of Prlya's theorem will be formula- 
ted as Corollary 1. Corollary 1 enables us to prove at least c log Y sign changes for 
the partial sums of many number theoretic functions, including 

(1.4) ~/(x, q,/1)-~/(x, q, 12), (/1, q) = (/~, q) : 1, l~ ~ /2(q), 

(1.5) M(x) = Z #(n), 
/I~X 

X X 
= - Z • # ( d ) - - -  (1.6) Rk(x) Qk(x) ~(k) ,,<=:,a"f,, ((k)'  

in case of (1.4) using the hypothesis that there are no real positive zeros of L- 
functions rood q. This condition is necessary in some sense, due to the explicit for- 
m u l a  

X 0 
(1.7) O(x, q, ll)-~b(x, q, Iz) = Z (Z(/~)-Z(/1)) Z --~-+O(logx). 

zCq) o=ex  

In the case of(1.4) Knapowski and Turin proved [7] a very weak lower bound for 
the number of sign changes under the same condition as Our Corollary 2 (in part V). 
Further they showed (in part VI) V(f, Y) >c  log log Y under the additional condition 

that the domain a > + ,  ]tl<-_cq !~ is free of zeros of L(s, Z, q) functions. In case of 
t 

(1.5) and (1.6) the best known lower bounds for V(f, Y) were c log Y/log~/ZY (Pintz 
[10]) and cloglog Y (Kfitai [6]), resp. 

The only general theorem, existing in the literature, which yields concrete lower 
estimate of V(f, Y) for every value of Y, seems to be Theorem 2 of Kfitai [6] which 
ensures the inequality V(f, Y)>>log log Y for a wide class of functions. It is too long 
to quote exactly his theorem; however, we may remark that this class includes the 
functions (1.5) and (1.6) (but not (1.4), for general q). His theorem, although it 
refers to a smaller class of functions and it gives a weaker lower bound for V(f, Y) 
has two advantages over our Theorem: 

(i) it usually yields effective lower bounds for V(f, Y); 
(ii) it ensures a larger (in some cases, apart from a constant factor, optimal) 

size of oscillation. 
Due to some theoretic reasons the method presented does not allow to obtain 

optimal oscillation. However, it is possible to prove a restricted version of it, Theorem 
2, which leads to V(f, Y) >c log Y; as an effective estimate for a rather wide class 
of functions. The conditions imposed for F(s) are similar to that of Kfitai's Theorem 
2 [6]. 

Unfortunately the type of singularities, as required in (3) of our Theorem 1 are 
not general enough to cover the most important applications with logarithmic singu- 
larities as 7z(x)-li x, e.g. (which was dealt with in Kaczorowski [5] using more 
complicated arguments). Thus, we have to remark that it is stated erroneously in 
Grosswald [3] that his Theorem 6 follows from Theorem 2. (Similarly Theorem D of 
his paper [4] does not imply Theorems 3, 5a, 18, 20, 22, 24.) Another extension of 
P61ya's theorem for the case of functions having logarithmic singularities is due to 
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Levinson [9], although his theorem needs also some modifications to yield the needed 
applications. 

In the 2 "a part of this work, we shall extend Theorem 1 for a larger class of func- 
tions (including ~z(x)-li x, n(x, q,/1)-~z(x, q, l~) and some other important arith- 
metical functions). 

Aeknowleflgement. The first named author wishes to thank the J~nos Bolyai 
Mathematical Society for the invitation to Budapest in 1983 and providing the excel- 
lent conditions to joint work. 

2. Statement of results 

We shall prove first a general theorem which, however, yields in most cases inef- 
fective results. 

THEOREM 1. Let f ( x )  be real for x >0 and suppose that the integral f f ( x ) x - ~ -  Idx 
o 

converges absolutely for a>=crl and represents in that half plane a function F(s) 
having the following properties: 

(1) F(s) is regular for a>O but not in any half plane ~ > 0 - ~  with e>O; 

(2) there exists a denumerable (finite or infinite) set S =  {O~=fl~+__iy~} (y~_->0) 
without finite limit point satisfying 0 eo_fi,=O for some c0>0 and such that 
F( s) can be continued as a meromorphic function in the open set D Obtained by making 
the cuts s = a •  (a<=fi,) in the half-plane a>O-co;  

(3) for s--*O, (sED) F ( s ) = P ~ ( s - s ~ ) l o g ( s - s , ) + F , ( s )  where F,(s) is mero- 
morphie at s=o, ,  and P, is a polynomial (P,=--O is possible too). Let  v=min 7v 

I1~=0 
and 7 = ~o i f  fl~< 0 for all v = 1, 2, .... 

Under these conditions we have 

(2.1) l~m v( f ,  Y) >_ Z 
r~= logY -- zc' 

and every interval of  the form 

(2.2) [yl-~, y], y > Yo(~) 

contains at least one sign change off(s).  The sign changes in (2.1) and(2.2) are combined 
with an oscillation of  size (c f  the definition following (1.1)) 

(2.3) x ~ 

for arbitrary e>0. 

Theorem 1 yields the following sharpening of P61ya's theorem. 

COROLLARY 1. I f  f ( x )  is real for x>0,  F(s )=  f f(x)x- -ldx converges ab- 
0 

solutely for a>=al and 
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(1') F(s) is regular for a>O but not in any half-plane 

(2') F(s) is meromorphic for a>=O-co with some c0>0. 

Then relations (2.1) to (2.3) holds. 
We remark that Grosswald [3] needs additionally 

sup deg P~< ~. His result is with the additional condition 
l ~ v < o o  

(2.4) 11~ V(f, Y) Y 
r ~  log Y Ir 

a>O--e with 8>0; 

the condition that 

The example f ( x ) = 0  for x < l ,  f(x)=xa+i~+xa-~r(x>-l) (with the corres- 
ponding F(s)=(s-fl-iT)-l+(s-[3+iT) -1) shows that inequality (2.1) (unlike 

is best possible, since in this case V(f, Y),-~@ log Y. 

Since in the proof of Theorem 1 many singularities of F(s) may occur and in 
concrete applications we do not have enough information about the distribution of 
them (this being the case in the most important number theoretic problems when 
singularities of F(s) are zeros of the Riemann zeta or Dirichlet's L-functions) we shall 
prove a second theorem which yields effective results as well. Here only one singula- 
rity of F(s) occurs and therefore the conditions might be checked in concrete cases 
(although they are stronger in some sense than in Theorem 1). 

For the aim of concrete applications we give the formulation of Theorem 2 only 
for meromorphic functions but this can be extended in the same way for the ease of 
logarithmic singularity as Theorem 1. 

oa 

THEOREM 2. Iff(x) is real for x>0,  F(s )=  f f (x )x- ' - ldx  is absolutely con- 
0 

vergent for tr>trl and 

(1) F(s) has a pole at Oo=flo+iT0, yo>0, flo>0 with principal part 
g + l  

Z hj(s-Qo)-J; 
j = l  

(2) apart from the poles Qo and ~ ,  F( s) is regular on and to the right of the broken 
line L defined by 

[ Itl => r ,  a = r  

| f l o + a x  <- a <= o ' l + a o ,  Itl = r 

(2.5) L = ~ H  <- - It[ <--F, a = f l o + a l  

/ / ~o -a~  <-a  _-</~o+a~, l t l = H  
[ ltl <= H, a = /~o -a~ ,  

where ao>0, 0<a~<flo, -a2<=al<=al + ao- flo, -r'->H>yo further 

[ crl+ao-flo at ] a~ 
.(2.6) dl = max lal+ao+i_rl, IBoT-a~+iH[ < [Col = d2; 

log tQol log laol ) log Bo-a~ 

O) IF(s)I~M for sEL. 
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Then for every e>O and Y>Yo=Yo(e ,  ao, al, a2, trl, flo, 7o, H , M , F ,  hl . . . .  
.... h~+~), effective constant, we have 

(2.7) 

We remark that if the singularities of F(s) are the zeros of ~(s) then by the 
calculations of Brent, van de Lune, te Riele and Winter [1] (see also the remark in 
Zbl. 486 10027), the first 300 million zeros are on the critical line and therefore we 
may choose 

1 
(2.8) a l =  1, f lo=~- ,  7 o :  14.13 .... H : 2 1 ,  F =  108, 

1 1 
and arbitrary values ai with a0>0, 0 < a l < ~ - ,  0<a~<~- .  

The most important applications of Theorem 1 (more precisely of Corollary 1), 
apart from those discussed in [5] (of. (1.3)) are the following. 

COROLLARY 2. I f  (11, q)=(l~, q )= l ,  11~12(q) and the L-functions mod q have 
f ~ " l  

no realzeros i n / 1 ,  11 then for 
t Z  J 

(2.9) A3(x, q, ll, Iz) = As(x) = Z A ( n ) -  Z A(n) 
n-~ll (q) n~ l z (q )  

n~_x n~_x 

(where A(n) is yon Mangoldt's function) we have 

(2.10) lim V (A3, Y_______~) > O, 
r ~  log Y 

with combined oscillation o f  size x ~/2-~. 

COROLLARY 3. If (/1, q)=(lz, q )= l ,  ll~12(q), both ll and l~ are quadratic non- 
residues or both are quadratic residues and the L-functions rood q have no real zeros in 

q , e. or 
(2.11) A,(x, q, 11,12) = A~(x) = ~ '  logp--  Z logp 

.P=--I l (q) p-~l z (q) 
we have 

(2.12) lim V(A,, ) > O, 
~,~'---2 log Y 

with combined oscillation o f  size x 1/2-~. 

We remark that the condition concerning the absence of real zeros of L-functions 
was verified by Spira [12] for all q<  25. So for these moduli (2.9)---(2.12) hold without 
any unproved hypotheses. 
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COROLLARY 4. Let It(n) denote the M6bius-function, 0= sup Re O, 
~(e)=o 

~x= min Im 0=14.13 .... a arbitrary real number and 
I m e > O  

(2.13) 

Then we have 

(2.14) 

{.~=z for X < ~ a  

M a  (X) = I ~ (n) n -  a ) for x>l .=  

lim V(Ma, Y)  ~1 
r ~  log Y -- 

with combined oscillation of  size 

(2.15) x o . . . .  . 

Hence in case of a<O the constant 1/((a) can be deleted from the definition 
of Ma(x) or can be substituted by an arbitrary other constant. 

By the aid of Theorem 2 we are able to prove a similar but effective theorem for 
a restricted range of a, however. It is possible to prove e.g., the following version: 

COROLLARY 5. I f  -- 1 O- 8< a< 1/4 and 

(2.16) Maa (x) --- Z It (n) n-  a 
n~X 

then for Y>c~(a), effective constant, we have 

(2.17) V(M, ,  Y) > l l o g  Y. 

Further, Theorem 2 yields 

COROLLARY 6. Let Qk(X) denote the number of  k-free numbers not exceeding x, 
where k>=2 is a natural number and let Rk(x)=0 for x < l  and 

X X 
(2.18) Rk(X) = Qk(X)--~-~ = ,~_xX 1 --r---~v~ for X => 1. 

pln~pkXn 

Then we have for Y>cz(k),  effective constant, 

(2.19) V(Rk, Y) > 5 log Y. 

3. Proof  of  Theorem 1 

We are entitled to assume 0>0 since otherwise we can work with f ( x ) . x L  
Let us define the operation ~ by 

(3.1) 6f(x) = f f(O de, o-T- 
A cta Mathematica Hungarica 48, 1986 
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and let ak be the k times iterated operation, i.e. 6~ =6, 5,, =55,_x. It is easy to see that 

i ! / s(.) i 
(3.2) 5z(f(x)) = du dt = log x du = 

* '  Id Zl g t g ~  o 

u " 2~i ds - -  2 ~ i  f F(s) 7 ds 
o (%) @ 0  

and we obtain by induction according to n that 

1 x s 
(3.3) 5,,f(x) -- 2rci f F(s) 7 ds. 

Let us consider first the case when F(s) is meromorphic for ~>-O-co (or at 
least for a>=O-rl, It]<=F with some ~/>0 and with a sufficiently large F). 

We may suppose 7 > 0  otherwise we have nothing to prove. Let us choose 
0 

t/>O in such a way that ~l<co, ~<-~  and that the following region and line, 

(3.4) a > 0 - q ,  It I<-~ and c r = 0 - ~ / ,  - o o <  [t[ <co, 

resp., Should contain no singularity of  F(s) except O+_i7, if 7<: oo. If  ?,= ~,  let r/ 
0 

be defined so that t/<c0, t / < ~  and that the segment [0-r/ ,  0] should be free of  

singularities of  F(s). 
Later on we shall choose a sufficiently large constant F so that there should be 

no singularity p of  F(s) on the broken line L defined by 

[ Itl => r ,  ~ = 0" 1 

(3.5) L = / O - .  <= ~ <_- ~ ,  Itl = r 
/ 

[ Itl <= r ,  o = 0 - n  

but there should be at least one singularity to the right of L. Then we have 

m X s 

(3.6) 6,f(x) = 2 ~__~= Re {Res (F(s) ~)s=0 } + O  ((0/2, , )+O( x~ ,(  nF,_ 1 x~l 1"~ = 

=:  2 Re A~(x) +RI+Rz,  
V=I  

where 01 . . . . .  q,~ (m=>l) are the singularities of  F(s) above the real axis and right 
of  L, numerated according to 0 71 . . . .  <--Tin. 

Let 

(3.7) n = [ b l o g Y ] ,  x = Y %  ~ < _ - - a ~ l .  

If  we fix b satisfying 
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where b0 is chosen sufficiently small (but independently of  F) then with a positive dl 

(3.9) 

Now we fix F satisfying 

(3.10) 

R1 << r---= y-a~. 

F :> Fo(b, tl) 

where F o is chosen sufficiently large. Then with a positive d~ we have 

(3.11) R~ << ~ y-a, .  

Later on we shall choose A sufficiently small with 

(3.12) A < b min [logl  l-logl .ll = do, 
l_~v</ t  ~_n i 

Then it is easy to see that the inequality 

(3.13) [(fl~c~-b log [ e ~ l ) - ( f l . a - b  log le.I)l > A 

holds for all v,/~ with l<-v<-#<-m and for all aE[0, 1] apart from finitely many 
intervals of  total length at most 

1 
(3.14) AD, D = D(F,  rt) = 21~_~.<t,~_mZ [fl _fl~,[ �9 

#',, ~ # t., 
Let us choose 

In such a way we obtain disjoint intervals of  the form (e~, e~)c[I /b ,  1] (e,=e,~ is 
possible) of  total length at least 

(3.16) 1 - A D - I / b  => 1 - 2  I/b 

such that for 1 _-< v <_- m 

xt~,, xCv y - a  if xC(Yev, ye~'). (3.17) max ~ < 

Taking into account that with the notation in (3.16) 

(3.18) 

. ( - , ) . . . ( - , -  

we obtain by (3.9), (3.11) and (3.17) with a positive d3 

(3.19) h , f ( x ) = 2 R e  if 
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If the principal part of F(s) at 

then we have by (3.18) 

k + l  

s=~v has the form (k_->0, hk+~r .~ hi(s-or)  j 
j = l  

A~(x ) -  h~+l ~ gkh k l 
k! ,=o [ I J  l~ - x ' ( - ~ ) ( - ~ - l + 0 ~ 1 7 6 1 7 6  = 

(3.20) hk+l ~ , ( k ~  k ,  - k! ,=o lJ l~176 

n k = hk+ 1 n k 

owing to (3.7)--(3.8). If v=log x runs over an interval 

(3.21) 

then by (3.7)-(3.8) 

(3.22) 

2z~ ) , 
vEI= Vo, v 0 + - - ( l + b )  c (Y% Y"-) 

( V - - ~ ) k = l v o - - n ) t ' { l + O ( ~ ) } .  

Therefore we have for J=[X0,  Xo exp 2(~.~ (i +b ) ) ) c (Y% Y') 

(3.23) xl, x2, xzEd, xl < xz < x3 

such that for j = l ,  2 and j = 1 , 2 , 3 ,  resp. 
x]v x]l 

(3.24) sgn 6.f(xj) # sgn 6,f(xj+a), 16.f(xj)l >> levi" -~ ]~xl n" 

This implies that the number of sign changes of 6,f(x) in the interval (Y% Y~') 
is at least 

(2~/~0 (1 + b) (2~/~1) (1 + b) 

Taking into account (3.16) we obtain for Y sufficiently large. 

(3.26) V(6,f, Y) > ( 1 -  3 I/b)-~!log Y. 

Now we have only to note that if T< co then by (3.4) we have TI=~. If  ~= =, 
then for every constant C we have ~,1>C if we choose ~/so small that the domain 
a =>0-~, It l _<- C is free of singularities of F(s). Remarking further that for an arbi- 
trary function g 
(3.27) V (g, Y) >= V (6g, Y) 
we see that 

(3.28) lim V(f, Y) > 
l'~'---~ log Y rc 
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We remark further that if for an arbitrary g the function 6g has a t  least k + 1 
sign changes in an interval [A, B] then g has at least k sign changes in [A, B]. Since 
owing to (3.16) and (3.23)--(3.24) the interval 

(3.29) [ yl-Z l/b" exp ( - - n  ~1~), Ylc[Yl-M/'ff-(2~bl~,O,y] 

contains at least n + 1 sign changes of 6,f, the functionf(x) has at least one sign change 
in the interval 

(3.30) [r1- ,r  y],  y > y0 

if b was chosen sufficiently small. 
What concerns the order of  magnitude of the oscillation of f (x)  we obtain the 

assertion of our Theorem if we can show the same assertion with f (x )  replaced by 

(3.31) 
I f (x) ,  O < : x < l  

y (x )  = I f (x )  + x  ~ x >-_ 1. 

But we have obviously for the corresponding function 

(3.32) F(s) 1 = F(s)-t-s_O+ ~ 

and since we do not use in the proof any properties of F(s) in the halfplane a < 0 - q ;  
everything remains actually unchanged if at the beginning we choose 

(3.33) q <- 8/2. 

If F(s)has logarithmic singularities too, then we proceed similarly with the 
choice of the parameters and broken line L. But, using the idea of Grosswald [3] we 
consider now the functions 

(3.34) = f (--1)XlogKx.f(x)x-sdx, K =  m a~, (degPv+l)  l_rg_m �9 0 

instead of f (s )  and F(s). Thus, similarly to [3, p. 215] we obtain that F(K)(s) is mero- 
morphic on L and to the right of L and therefore the argumentation (3.1)--(3.33) 
can be applied to F(K)(s). So we have the same conclusions for the function f ( x ) =  
= ( - 1 )  r logKx,f(x) in place o f f .  Since we have obviously 

(3.35) IVCf, Y)-V(Z r ) l  -< 1 

and 

(3.36) f (x)  >> log-~x . f(x),  

all assertions of Theorem 1 hold for f (x)  in this case too. 
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4. Proof of Theorem 2 

Since the proof of Theorem 2 is very similar to that of Theorem 1, we shaU be 
brief. We obtain similarly to (3.1)--(3.6) 

{ X'O0} [ fXf lo--a '  
(4.1) 6nf(X) : 2 R e  Ao(x)--~ +0 mI~h+ao+ir I t- 

X•0+al X61+ao ))  

+ Iflo+ax+iH[. + [ a l+a0+ iF [ .  

with absolute constants in the 0 symbols. 
If we choose now 

(4.2) n = [d~ log Y+ I/]-~], xC [y,,Id, exp (log3/4Y), Y] 

then easy calculation shows that the three error terms in (4.1) are all 

X#o 
(4.3) << exp (-logalsY) ~ if Y > Y(fl0, o'~, a~, d x, M, F). 

Further we obtain, similarly to (3.18)--(3.24), at least two sign changes of 6.fin 
every interval of the form (5 >0 is arbitrary) 

if Y>Yo. This gives the desired inequality (2.7) similarly to (3.25)--(3.28). 

5. Proofs of  Corollaries 2 to 6 

In case of Corollary 2 the corresponding function F(s) is, as well known, 

(5.1) F(s) = 1  ,~ A(n) A(n) 1 L_T/. 

which is meromorphic in the whole plane and has singularities in the half-plane a ->+  

(see Grosswald [2]). This proves Corollary 2. If/1 and 12 are both quadratic non-resi- 
dues then we have 
(5.2) A, (x) = A3 (x) + O (x 1/3) 

whilst the oscillation of As(x), ensured by Corollary 2 is at least x 1/2-~ and therefore 
Corollary 3 is true in this case. If 11 and 12 are both quadratic residues then let 

�9 " and " " denote the solutions of the congruences x~-l~ (mod q) g l ,  " "'~ g N  g l ,  " " ~  g N  
and x2--12 (rood q). (The number of solutions of the two congruences is equal.) 
If we define 

N 

(5.3) z~,(x)---- z~ A(n)- Z A ( n ) - • {  ~,, A(n~)- Z a(n2)} 
n-~ l 1 (q) n.~l z (q) j = 1 n-~o~j (q) n~_~ (q) 

n~x lt~_x n ~ x  na~x 
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then we have clearly 

(5.4) A,  (x)  = A ,  (x)  -~ O (xl[8). 

On the other hand, the function 

(5.5) ? •  d x  - 1 L" 
o z- (s, z ) -  

N t 

~- (2s, Z) 

is also meromorphic in the whole plane and has also singularities in the half plane 
1 > 1  

a ~ - ,  since the second summand is regular for cr=~-. Therefore Corollary 1, ap- 

plied to 3~(x)  and (5.4)prove Corollary 3. 
To prove Corollary 4 we have only to note that the function 

(5.6) dF M. (x ) .  1 .~, /t (n) n-" 1 1 1 
a x  = nS = o s , = l  s~(a) s~ ( s+a)  s~(a) 

is regular for real s >  - a - 2 ,  meromorphic in the whole plane and has its "lowest" 
1 

non-real singularity at s = - ~ - a + i 7 1  , y1=14.13.., so Corollary 4 follows from 

Corollary 1. 
In the proof of Corollary 5 we have the identity 

; M~ (x) _ 1 
(5.7) oj ~ a x -  s~(s+a)" 

Thus, in view of (2.8) we may choose 

1 
(5.8) a l = l - a ,  f l 0 = y - a ,  y0=14.13 . . . ,  H = 2 1 ,  / ' = 1 0 8  , 

a o = 1 0  .3 , a 1 = 1 0  .20 , a 2 = m i n  ~- -ao  ,2  

and with some calculations this leads to dJd~<0.9.  Hence we obtain (2.17) by Theo- 
rem 2. 

In case of Corollary 6 we have 

(5.9) : Rk(X) dx  - r 1 
. I  x~+l s~(ks) ( s -  1)~(k) ' 0 

which is regular for real s>O, meromorphic in the whole plane and has simple poles 

Acta ~athematica Hungartca 48, 1986 



OSCILLATORY PROPERTIES OF ARITHMETICAL FUNCTIONS. I 185 

at ~- -~+_i7o , 70=14.13 .. . .  Further, in view of  (2.8) we can choose 

1 21 10 s 10 - s  2 
(5.10) a l = ~ - ,  H - -  k '  F -  k ' a 0 = a l -  k ' a s -  5k 

which leads to dl/d~<2/5. Thus Theorem 2 implies Corollary 6. 
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