Irregularities in the distribution of primes in arithmetic progressions II.

By

J. Pintz and S. Salerno

1. In the present work we shall continue our investigations of the oscillatory properties of the functions (p always runs through the primes)

$$
\begin{align*}
& \Delta_{1}\left(x, q, l_{1}, l_{2}\right)=\sum_{p \leqq x} \varepsilon\left(p, q, l_{1}, l_{2}\right) \\
& \Delta_{2}\left(x, q, l_{1}, l_{2}\right)=\sum_{n \leqq x} \varepsilon\left(n, q, l_{1}, l_{2}\right) \frac{\Lambda(n)}{\log n} \\
& \Delta_{3}\left(x, q, l_{1}, l_{2}\right)=\sum_{p \leqq x} \varepsilon\left(p, q, l_{1}, l_{2}\right) \log p \tag{1.1}\\
& \Delta_{4}\left(x, q, l_{1}, l_{2}\right)=\sum_{n \leqq x} \varepsilon\left(n, q, l_{1}, l_{2}\right) \Lambda(n)
\end{align*}
$$

where we define

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{m} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\varepsilon\left(n, q, l_{1}, l_{2}\right)=\varepsilon(n)=\varepsilon_{1}(n)-\varepsilon_{2}(n), \quad \varepsilon_{i}(n)= \begin{cases}1 & \text { if } n \equiv l_{i}(\bmod q) \tag{1.2}\\ 0 & \text { otherwise }\end{cases}
$$

and we assume the trivial condition

$$
\begin{equation*}
\left(l_{1}, q\right)=\left(l_{2}, q\right)=1, \quad l_{1} \equiv l_{2}(\bmod q) \tag{1.3}
\end{equation*}
$$

Knapowski showed the inequality [1]

$$
\begin{equation*}
\frac{1}{Y} \int_{Y \exp \left(-\log ^{3 / 4} Y\right)}^{Y}\left|A_{i}\left(x, q, l_{1}, l_{2}\right)\right| \mathrm{d} x>Y^{1 / 2} \exp \left(-7 \frac{\log Y}{\log _{2} Y}\right) \tag{1.4}
\end{equation*}
$$

for $Y>\max \left(c_{1}, e^{e q}\right)$ in case of $i=1$ and for $Y>\max \left(c_{2}, \exp \left(q^{40}\right)\right)$ in case of $i=2$ and 4 , under the assumption that

$$
\begin{equation*}
L(s, \chi, q) \neq 0 \quad \text { for } \sigma>\frac{1}{2},|t| \leqq \max \left(c_{3}, q^{7}\right) \tag{1.5}
\end{equation*}
$$

Extending the results of part I [2] we shall now prove

Theorem. Assume

$$
\begin{equation*}
L(s, \chi, q) \neq 0 \quad \text { for } \quad \sigma>\frac{1}{2},|t| \leqq D=c_{4} q^{2} \log ^{6} q \tag{1.6}
\end{equation*}
$$

Let (with the notation $\log _{2} Y=\log \log Y$)

$$
\begin{equation*}
Y>\exp \left(c_{5} q^{10}\right), \quad \frac{\sqrt{\log Y}}{\sqrt{q} \log _{2} Y}<\lambda<\frac{c_{6} \log Y}{q \log _{2}^{2} Y} \tag{1.7}
\end{equation*}
$$

Then for $1 \leqq i \leqq 4$ we have

$$
\begin{equation*}
\frac{1}{Y_{Y^{1}}} \int_{-7 / \lambda}^{Y}\left|\Delta_{i}(x)\right| \mathrm{d} x \geqq \sqrt{Y} \exp \left(-\frac{9 \log Y}{\lambda}-c_{7} q \lambda \log _{2}^{2} Y\right) . \tag{1.8}
\end{equation*}
$$

Choosing $\lambda=7 q^{-1 / 2} \log ^{1 / 2} Y \log _{2}^{-1} Y$ and $\lambda=7 \log Y \log _{2}^{-3} Y$, resp., we obtain the following corollaries.

Corollary 1. If (1.6) holds and if $Y>\exp \left(c_{5} q^{10}\right)$ then for $1 \leqq i \leqq 4$ we have

$$
\begin{equation*}
\frac{1}{Y} \int_{A(Y)}^{Y}\left|\Delta_{i}(x)\right| \mathrm{d} x \geqq \sqrt{Y} \exp \left(-c_{8} \sqrt{q} \sqrt{\log Y} \log _{2} Y\right) \tag{1.9}
\end{equation*}
$$

with $A(Y)=Y \exp \left(-\sqrt{q} \sqrt{\log Y} \log _{2} Y\right)$.
Corollary 2. If (1.6) holds and $Y>\exp \left(\exp \left(c_{9} q\right)\right)$ then for $1 \leqq i \leqq 4$ we have the inequality

$$
\begin{equation*}
\frac{1}{Y} \int_{A^{\prime}(Y)}^{Y}\left|\Delta_{i}(x)\right| \mathrm{d} x \geqq \sqrt{Y} \exp \left(-c_{10} q \frac{\log Y}{\log _{2} Y}\right) \tag{1.10}
\end{equation*}
$$

where

$$
A^{\prime}(Y)=Y \exp \left(-\log _{2}^{3} Y\right)
$$

2. Since in part I [2] we proved the theorem for $i=2,4$ and in case of quadratic non-residues l_{1}, l_{2} also for $i=1,3$ we can assume now $i=1$ or 3 . First we shall treat the case when both l_{1} and l_{2} are quadratic residues. As the proof is similar to the case l_{1}, l_{2} being quadratic non-residues dealt with in [2], a sketch of the proof will suffice and we shall point out only the necessary changes. (What concerns the case l_{1} is a quadratic residue and l_{2} a non-residue, we shall be even more brief.)

Let us denote the solutions of the congruences

$$
\begin{equation*}
x^{2} \equiv l_{1}(\bmod q), \quad x^{2} \equiv l_{2}(\bmod q) \tag{2.1}
\end{equation*}
$$

by $\alpha_{1}^{(1)}, \ldots, \alpha_{N}^{(1)}$ and $\alpha_{1}^{(2)}, \ldots, \alpha_{N}^{(2)}$ resp. (their number being equal, $N=N(q)$) and let $(j=1,2)$

$$
\begin{align*}
& F(s)=\sum_{n} \frac{\varepsilon(n) \Lambda(n)}{n^{s}}=\frac{1}{\varphi(q)} \sum_{\chi}\left(\bar{\chi}\left(l_{2}\right)-\bar{\chi}\left(l_{1}\right)\right) \frac{L^{\prime}}{L}(s, \chi), \tag{2.2}\\
& F_{j}(s)=-\sum_{n} \frac{\varepsilon_{j}\left(N^{2}\right) \Lambda\left(n^{2}\right)}{n^{2 s}}=\frac{1}{\varphi(q)} \sum_{i=1}^{N} \sum_{\chi} \bar{\chi}\left(\alpha_{i}^{(j)}\right) \frac{L^{\prime}}{L}(2 s, \chi) . \tag{2.3}
\end{align*}
$$

Then using the integral formula $\left(A \in \mathbb{R}^{+}, B \in \mathbb{C}\right)$

$$
\begin{equation*}
\frac{1}{2 \sqrt{\pi A}} \exp \left(-\frac{B^{2}}{4 A}\right)=\frac{1}{2 \pi i} \int_{(2)} e^{A s^{2}+B s} \mathrm{ds} \tag{2.4}
\end{equation*}
$$

we can show similarly to Section 3 of [22] that with $k \geqq \lambda^{-1},\left|\mu-k \lambda^{2}\right| \leqq 1$ we have

$$
\begin{align*}
S \stackrel{\text { def }}{=} & \frac{1}{2 \sqrt{\pi K}}\left\{\sum_{n} \varepsilon(n) \Lambda(n) \exp \left(-\frac{(\mu-\log n)^{2}}{4 K}\right)\right. \\
& \left.-\sum_{n} \varepsilon\left(n^{2}\right) \Lambda\left(n^{2}\right) \exp \left(-\frac{\left(\mu-\log n^{2}\right)^{2}}{4 K}\right)\right\} \\
= & \frac{1}{2 \pi i} \int_{(2)}\left(F(s)+F_{1}(s)-F_{2}(s)\right) e^{K s^{2}+\mu s} \mathrm{~d} s=\sum_{\varrho} \alpha_{e} e^{K e^{2}+\mu e} \\
& +\sum_{e} a_{e}^{*} e^{K\left(\frac{\varrho}{2}\right)^{2}+\mu\left(\frac{\varrho}{2}\right)}+O(1) \stackrel{\text { def }}{=} \Sigma+\Sigma^{*}+O(1) \tag{2.5}
\end{align*}
$$

where, denoting the multiplicity of ϱ as a zero of $L(s, \chi)$ by $m_{\chi}(\varrho)$,

$$
\begin{align*}
& a_{\varrho}=\frac{1}{\varphi(q)} \sum_{\substack{\chi \\
L(\varrho, \chi)=0}}\left(\bar{\chi}\left(l_{2}\right)-\bar{\chi}\left(l_{1}\right)\right) m_{\chi}(\varrho) \tag{2.6}\\
& a_{\varrho}^{*}=\frac{1}{2 \varphi(q)} \sum_{\substack{x \\
L(\varrho, x)=0}} \sum_{i=1}^{N}\left(\bar{\chi}\left(\alpha_{i}^{(1)}\right)-\bar{\chi}\left(\alpha_{i}^{(2)}\right)\right) m_{\chi}(\varrho) \tag{2.7}
\end{align*}
$$

and in the summation in (2.5) ϱ runs through all zero of $L(s, \chi, q)$ with $\operatorname{Re} \varrho \geqq 0$.
In view of (1.6) the contribution of zeros $\varrho=\beta+i \gamma$ with $|\gamma|<D$ to Σ^{*} is

$$
\begin{equation*}
\ll N \sum_{1 \leqq m \leqq D} e^{K\left(\frac{1}{16}-\frac{(m-1)^{2}}{4}\right)+\frac{\mu}{4}} \log (q m) \ll e^{\mu / 3} . \tag{2.8}
\end{equation*}
$$

Further we have

$$
\begin{equation*}
\sum_{|e| \geqq 2 \lambda} a_{e} e^{K e^{2}+\mu e} \ll \sum_{n \geqq[2 \lambda]-1} e^{\mu+K\left(1-n^{2}\right)} \log (q n) \ll 1 \tag{2.9}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\sum_{|\varrho| \geqq 2 \lambda} a_{e}^{*} e^{K\left(\frac{Q}{2}\right)^{2}+\mu\left(\frac{e}{2}\right)} \ll \sum_{n \geqq[2 \lambda]-1} e^{\frac{\mu}{2}+\frac{K}{4}\left(1-n^{2}\right)} \log (q n) \ll 1 . \tag{2.10}
\end{equation*}
$$

So we are led to consider the finite power-sum

$$
\begin{equation*}
\Sigma_{1}=\sum_{|Q| \geqq 2 \lambda} a_{e} e^{K \varrho^{2}+\mu e}+\sum_{D<|\varrho|<2 \lambda} a_{e}^{*} e^{K\left(\frac{\varrho}{2}\right)^{2}+\mu \frac{\varrho}{2}} \tag{2.11}
\end{equation*}
$$

We quote Lemma 5 of [2] as

Lemma 1. There exist real numbers

$$
\begin{equation*}
K_{0}=\frac{1}{P^{2} \log ^{2} P}, \quad \mu_{0}=\log P, \quad \frac{D}{2}<P \log ^{2} P<D \tag{2.12}
\end{equation*}
$$

and an absolute constant $c_{11}>0$ (independent of c_{4}) such that

$$
\begin{equation*}
\left|\sum_{Q} a_{e} e^{K_{0} e^{2}+\mu_{0} \varrho}\right| \geqq c_{11} D \tag{2.13}
\end{equation*}
$$

Let

$$
\begin{equation*}
L=\left(1+\frac{3}{\lambda}\right)^{-1} \log Y, \quad B=\frac{1}{L^{2}} \tag{2.14}
\end{equation*}
$$

Further let v be an integer to be chosen later with

$$
\begin{equation*}
v \in\left[\frac{L-\mu_{0}}{B}-c_{12} q \lambda \log \lambda, \frac{L-\mu_{0}}{B}\right] \tag{2.15}
\end{equation*}
$$

and

$$
\begin{align*}
& w=\frac{L / \lambda^{2}-K_{0}}{L-\mu_{0}} \tag{2.16}\\
& K=K_{0}+B w v, \quad \mu=\mu_{0}+B v \tag{2.17}
\end{align*}
$$

The above choice of parameters assures similarly to (4.2) of [2]

$$
\begin{equation*}
K \in\left[\frac{L}{\lambda^{2}}\left(1-\frac{1}{L}\right), \frac{L}{\lambda^{2}}\right], \quad \mu \in[L-1, L] . \tag{2.18}
\end{equation*}
$$

Now Σ_{1} can be written as

$$
\begin{equation*}
\Sigma_{1}=\sum_{|e|<2 \lambda} b_{e} z_{e}^{v}+\sum_{D<|e|<2 \lambda} b_{e}^{*}\left(z_{e}^{*}\right)^{v} \tag{2.19}
\end{equation*}
$$

where

$$
\begin{array}{ll}
b_{\varrho}=a_{\varrho} e^{K_{0} e^{2}+\mu_{0} \varrho} & b_{\varrho}^{*}=a_{\varrho}^{*} e^{K\left(\frac{\varrho}{2}\right)^{2}+\mu_{0} \frac{\varrho}{2}} \\
z_{\varrho}=e^{B w \varrho^{2}+B_{\varrho}} & z_{\varrho}^{*}=e^{B w\left(\frac{\varrho}{2}\right)^{2}+B \frac{\varrho}{2}} \tag{2.20}
\end{array}
$$

In the lower estimation of Σ_{1}, Lemma 1 of [2], essentially due to Knapowski [1], plays a crucial role. We formulate this power-sum theorem as

Lemma 2. Let $b_{j}, z_{j}(j=1,2, \ldots, n)$ be complex numbers with

$$
\begin{equation*}
\left|z_{1}\right| \geqq\left|z_{2}\right| \geqq \ldots \geqq\left|z_{n}\right| \tag{2.21}
\end{equation*}
$$

and let $m>0,1 \leqq h \leqq n$. Then there exists a $v \in[m, m+n]$ such that

$$
\begin{equation*}
\left|\sum_{j=1}^{n} b_{j} z_{j}^{v}\right| \geqq\left(\operatorname{Min}_{l \geqq h}\left|\sum_{j=1}^{l} b_{j}\right|\right)\left|z_{h}\right|^{p}\left|\frac{z_{h}}{z_{1}}\right|^{n}\left(\frac{n}{16 e^{2}(m+n)}\right)^{n} . \tag{2.22}
\end{equation*}
$$

First we note that by (2.12)

$$
\begin{equation*}
\sum_{|e|>D}\left|b_{e}\right|+\sum_{|e|>D}\left|b_{e}^{*}\right| \leqq c_{13} \sum_{n \geqq[D]-1} \log (q n) \cdot D e^{-K_{0} n^{2} / 4} \leqq c_{14} \tag{2.23}
\end{equation*}
$$

(where the constants c_{13} and c_{14} are independent of c_{4}),
and so we have by Lemma 1

$$
\begin{equation*}
\operatorname{Min}_{l \geqq h}\left(\left|\sum_{j=1}^{l} b_{j}\right|\right)>c_{11} D-c_{14}>1 \tag{2.24}
\end{equation*}
$$

if we choose h as the maximal index which corresponds to a zero z_{ϱ} with $|\varrho| \leqq D$. Inequality (2.24) settles the most critical estimation in (2.22). Since (1.6) and (1.7) imply $\lambda \geqq D^{2}$ (if c_{5} is chosen sufficiently large compared to c_{4}) we obtain

$$
\begin{align*}
& \left|z_{h}\right|>e^{B / 2-B|w| D^{2}}>e^{B / 2-B|w| \lambda} \\
& \left|z_{1}\right|<e^{B+B|w| D^{2}}<e^{B+B|w| \lambda} . \tag{2.25}
\end{align*}
$$

Further we choose $m=\frac{L-\mu_{0}}{B}$ and note that by Jensen's inequality we have

$$
\begin{equation*}
n<c_{12} q \lambda \log \lambda . \tag{2.26}
\end{equation*}
$$

So we obtain by Lemma 2 a v with (2.15) such that, similarly to Section 3 of [2]

$$
\begin{align*}
\left|\Sigma_{1}\right|>\exp & \left\{\frac{B v}{2}-L \lambda|w|-c_{12} q \lambda \log \lambda\left(\frac{B}{2}+2 B \lambda|w|\right.\right. \\
& \left.\left.+c_{15}+\log \frac{L}{B q \lambda \log \lambda}\right)\right\}>\exp \left\{\frac{L}{2}-c_{16} q \lambda \log ^{2} L\right\} \tag{2.27}
\end{align*}
$$

The assertion of the Theorem follows now with an application of Lemma 3 of [2] which we state in a slightly more general form (which can be proved similarly) as Lemma 3.

Lemma 3. Let $d(n)$ be an arithmetical function satisfying $\sum_{n \leqq x} d(n) \ll x$ and let

$$
\begin{equation*}
D_{3}(x) \stackrel{\text { def }}{=} \sum_{n \leqq x} d(n), \quad D_{1}(x) \stackrel{\text { def }}{=} \sum_{n \leqq x} \frac{d(n)}{\log n} . \tag{2.28}
\end{equation*}
$$

Then for positive K, μ with $\mu^{-1} \leqq K \leqq \mu / 9$ we have

$$
\begin{align*}
& \left|\sum_{n} d(n) \exp \left(-\frac{(\mu-\log n)^{2}}{4 K}\right)\right| \ll \sqrt{\frac{\mu}{K}} \int_{e^{\mu-3} \sqrt{\mu+3}}^{e^{\mu+3 / \bar{K}}} \frac{\left|D_{3}(x)\right|}{x} \mathrm{~d} x+O(1), \\
& \left|\sum_{n} d(n) \exp \left(-\frac{(\mu-\log n)^{2}}{4 K}\right)\right| \ll \sqrt{\frac{\mu}{K}} \int_{e^{\mu-3}}^{e^{\mu+3} \sqrt{\mu \bar{K}}} \frac{\left|D_{1}(x)\right|}{x} \mathrm{~d} x+O(1) . \tag{2.29}
\end{align*}
$$

Choosing

$$
d(n)= \begin{cases}\varepsilon(n) \Lambda(n) & \text { if } n=p^{2 j+1}, j=0,1, \ldots \tag{2.30}\\ 0 & \text { otherwise }\end{cases}
$$

we obtain by (2.5)-(2.11), (2.27) and Lemma 3, for $i=1,3$

$$
\begin{equation*}
\int_{e^{\mu-3} \sqrt{\mu} \sqrt{\mu \mathrm{~K}}}^{e^{\mu} \overline{\mu \bar{K}}} \frac{\left|D_{i}(x)\right|}{x} \mathrm{~d} x>\exp \left(\frac{L}{2}-c_{17} q \lambda \log ^{2} L\right) . \tag{2.31}
\end{equation*}
$$

This implies by (1.7), (2.14) and (2.18)

$$
\begin{align*}
\frac{1}{Y} \int_{Y^{1}}^{Y}\left|D_{i}(x)\right| \mathrm{d} x & >\exp \left(\frac{L}{2}-\frac{7 \log Y}{\lambda}-c_{17} q \lambda \log ^{2} L\right) \\
& >\sqrt{Y} \exp \left(-\frac{9 \log Y}{\lambda}-c_{17} q \lambda^{2} \log ^{2} Y\right) \tag{2.32}
\end{align*}
$$

Since

$$
\begin{align*}
& D_{1}(x)=\sum_{p \leqq x} \varepsilon(p)+O\left(x^{1 / 3}\right)=A_{1}(x)+O\left(x^{1 / 3}\right) \\
& D_{3}(x)=\sum_{p \leqq x} \varepsilon(p) \log p+O\left(x^{1 / 3}\right)=A_{3}(x)+O\left(x^{1 / 3}\right) \tag{2.33}
\end{align*}
$$

(2.32) proves our Theorem for $i=1,3$ if l_{1} and l_{2} are both quadratic residues.
3. Let us now consider the case when l_{1} is a quadratic residue, l_{2} a non-residue ($i=1$ or 3). In this case we have no squares in the second progression and therefore the pole of $L\left(2 s, \chi_{0}, q\right)$ at $s=1 / 2$ gives an extra term in our power-sum. So we obtain (cf. (2.5))

$$
\begin{align*}
S^{\prime}= & \frac{1}{2 \sqrt{\pi K}}\left\{\sum_{n} \varepsilon(n) \Lambda(n) \exp \left(-\frac{(\mu-\log n)^{2}}{4 K}\right)\right. \\
& \left.-\sum_{n} \varepsilon_{1}\left(n^{2}\right) \Lambda\left(n^{2}\right) \exp \left(-\frac{\left(\mu-\log n^{2}\right)^{2}}{4 K}\right)\right\} \\
= & \frac{1}{2 \pi i} \int_{(2)}\left\{F(s)+F_{1}(s)\right\} e^{K s^{2}+\mu s} \mathrm{~d} s \\
= & -\frac{N}{2 \varphi(q)} e^{\frac{K}{4}+\frac{\mu}{2}}+\sum_{e} a_{e} e^{K Q^{2}+\mu \ell}+\sum_{e} a_{\varrho}^{\prime} e^{K\left(\frac{\varrho}{2}\right)^{2}+\mu\left(\frac{e}{2}\right)}+O(1) \tag{3.1}
\end{align*}
$$

where (cf. (2.6)-(2.7))

$$
\begin{equation*}
a_{e}^{\prime}=\frac{1}{2 \varphi(q)} \sum_{\substack{\chi \\ L(e, x)=0}} \sum_{i=1}^{N} \bar{\chi}\left(\alpha_{i}^{(1)}\right) m_{\chi}(\varrho) . \tag{3.2}
\end{equation*}
$$

Since the only property of a_{e}^{*} used in Section 2 was $(\varrho=\beta+i \gamma)$

$$
\begin{equation*}
\sum_{n \leqq y \leqq n+1}\left|a_{\varrho}^{*}\right| \ll \log (q(n+2)), \tag{3.3}
\end{equation*}
$$

which holds also for a_{e}^{\prime}, writing always a_{e}^{\prime} in place of a_{o}^{*} all formulas of Section 2 remain valid. Thus the only change is the appearance of the new term $b^{\prime}\left(z^{\prime}\right)^{v}$, where

$$
\begin{equation*}
b^{\prime}=\frac{N}{2 \varphi(q)} e^{\frac{K_{0}}{4}+\frac{\mu_{0}}{2}}, \quad z^{\prime}=e^{\frac{B w}{4}+\frac{B}{2}} . \tag{3.4}
\end{equation*}
$$

Now the inequality (2.26) remains true if we include one term more and (2.25) is also true for z^{\prime}. So we have only to control (2.24) where we have by

$$
\begin{equation*}
\left|b^{\prime}\right|<\frac{1}{2} e^{\frac{K_{0}}{4}+\frac{\mu_{0}}{2}}<\sqrt{P}<\sqrt{D} \tag{3.5}
\end{equation*}
$$

the inequality

$$
\begin{equation*}
\operatorname{Min}_{l \geqq h}\left(\left|\sum_{J=1}^{h} b_{j}\right|\right)>c_{11} D-\sqrt{D}-c_{14}>1 \tag{3.6}
\end{equation*}
$$

Thus we have (2.24) unchanged valid and so all formulas (2.25)-(2.33) remain valid without any change. This proves our Theorem in the remaining case when l_{1} is a quadratic non-residue, l_{2} a residue.

References

[1] S. KNAPOWSki, Contributions to the theory of distribution of prime numbers in arithmetical progressions I-III. Acta Arith. 6, 415-434 (1961); 7, 325-335 (1962); 8, 97-105 (1962).
[2] J. Pintz and S. Salerno, Irregularities in the distribution of primes in arithmetic progressions, I. Arch. Math. 42, 439-447 (1984).

Eingegangen am 22.11. 1983
Anschrift der Autoren:

János Pintz
Mathematical Institute of the
Hungarian Academy of Sciences

Budapest

Reáltanoda u. 13-15.
H-1053 Hungary

Saverio Salerno
Istituto di Matematica
Facolta di Scienze
Universita di Salerno
84100 Salerno
Italy

