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Irregularities in the distribution of primes 
in arithmetic progressions, I. 

By 

J~,NOS PINTZ and SAVERIO SALERNO *) 

Summary. Supposing that all the Dirichlet L-functions mod q have no zeros in the 
region (s = a + it) o- > 1/2, I tl < cq 2 log 6 q, various lower estimations are proved for the 
mean value of [Ai(x)] (i = 2,4), where 

A4(x)= Z A ( n ) -  • A(n) 
n<=x n ~ x  

n=--ll(q) n=-12(q) 

(and A2(x) is a similar difference, see (1.1)) for arbitrary pairs ll , l  2 satisfying 
(ll,q) = (/2,q) = 1, l 1 ~ /2(q). 

1. In a series of papers [1, 2, 3] written in 1961-62, Knapowski investigated the 
oscillation of the functions (in case of i = 1, 2, 4) 

(1.1) 

Al(x,q, ll,12) = ~. e(P,q, ll,12), 
p<x  

A(n) 
Az(x,q, ll,12) = Y" e(n,q, l l , 1 2 ) - - ,  

,_<x logn 

A3(x,q, ll,lz) = ~, ~(p,q, la,lz) logp, 
p<x  

where 

and 

A4(x,q, Ii,12) = Y~ ~(n,q, ll,12) A(n), 
n<x 

A ( n ) = { ~  gp if n = p m  
otherwise 

(1.2) (11, q) = (12, q) =- 1, 1 l ~g /2(rood q), 

(1.3) 
~(n, q,  1 1 , 1 9  = ~(n)  = e l ( n )  - e2(n), 
el(n) = { ;  i f n - l i ( m o d q )  

otherwise. 

*) This work was written whilst the first named author has been visiting professor at the Univer- 
sity of Salerno with the grant of Consiglio Nazionale delle Ricerche. 

The authors would like to express their gratitude to C.N.R. to make possible this collaboration. 
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In these papers he proved lower hounds for 

1 Y 
(1.4) ~ A~y)IA,(x,q, IDI2)I dx. 

More detailed, Knapowski  showed for i = 2, 4, Y > m a x ( q ,  exp(qr the lower estimate 

1 r 
=y 4f)lAi(x,q, dx > y1/,* (1.5) 

with 

(1.6) A(Y) = Y e x p ( -  log ~ Y) 

where c~, as always in the following, denotes an explicitly calculable positive absolute 
constant. 

Further, supposing the "Finite Riemann-Piltz conjecture", 

(1.7) L(s,x,q) 4 = 0 for cr > 1/2, Itl ~ max(ca,q7), 

he showed the stronger inequality 

1 Y 

(1.8) ~ A!r)lAi(x,q, ll,12)l dx 
( log Y 

> y1/2 exp \ -  7 ~ ]  

for i = 1, 2, 4, Y > Y~ where 

(1.9) A'(Y) = Y e x p ( -  log 3/4 Y), 

(1.10) I"1 = max(c4, eeq), Y2 = I14 = max(cs ,  exp(q4~ 

Our  purpose here is to show theorems similar to (1.7)-(1.10) with better localisation 
and with better lower estimates. In this first part  we shall be concerned with the cases 
i = 2, 4 only. If 11,12 are both  quadratic non-residues, the cases i = 1, 3 are immediate 
consequences of the previous ones, but for general 11,12 they present additional complica- 
tions, and this will be the object of the second part. 

We also point out that our requirements concerning the Finite Riemann-Piltz conjec- 
ture and the starting point are weaker than Knapowski 's  corresponding assumptions. 

2. In our results, we shall always assume the truth of the finite Riemann-Piltz conjec- 
ture (FR-P) until a level 

(2.1) D = c 2 q2 log6 q 

where c o is a sufficiently large, fixed positive absolute constant. 
Moreover,  without special mention we shall always assume the trivial condition (1.2). 
Our  results are the following ( log /Y = loglog Y): 



(2.3) 

with 
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Theorem 1. Assume FR-P until D. Then, for every Y with 

(2.2) Y > exp (e 6 q 10) 

we have, for i = 2, 4 

r [Ai(X)ldx ( 21ogY y) >> ~ exp c7q2 log 2 
A(r) x )~ 

(2.4) A(Y)= Yexp(  712g Y) 

for every 2 satisfying 

c 8 log Y (2.5) x/~-gY < 2 < - -  
log2 Y q l~ 2 Y" 

441 

The following corollaries are obtained by Theorem 1 choosing the parameter 2 as 

(2.6) 2 -  7,e/logY and 2 -  7 log Y 

x//q log2 Y log23 g 
resp. 

Corollary 1. Subject to the hypotheses of the Theorem, for every 

Y > exp (C 6 q 10) 

we have, for i = 2, 4 

(2.7) i I Az(x)l dx >> ~/r  exp(-- C 9 N/q l N ~  Y log2 Y) 
A(Y) X 

with 

(2.8) A(Y) -- Yexp( -  ~fq 1 ~  Y log 2 Y). 

Corollary 2. Assuming the hypotheses of the Theorem, for every 

Y > exp (exp (c 1 o q)) 

for i = 2, 4 the following estimation holds: 

( (2.9) A(r)i IAi(x)~l dx >> xflY - cl lq lo-O~z Y J 

where 
A(Y) = Yexp( -  log23 Y). 

Corollaries 1 and 2 improve Knapowski's results (1.8)-(1.9) both with respect to A (Y) 
and the lower estimate, whilst other choices of 2 lead essentially to Knapowski's lower 
estimate, but with a much stronger localisation. In the course of the proof c denotes a 
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generic (explicitly calculable positive) constant whose value might be different in various 
appearances. The constants implied by ~ and 0 symbols are also explicitly calculable 
positive absolute constants. 

3. The main tool in the proof  of the results stated in Section 2 is a two-sided powersum 
theorem of Knapowski  [1]. 

We need it in the following slightly modified form: 

Lemma  1. For j = 1 . . . . .  n, let b j, zj be complex numbers with 

Izll ~ Iz=l ~ . . .  ~ Iz.I. 

Then, for every h with 1 < h < n and for every m > O, we have 

j=~b~zj ( ~=: ) ( ?m i)" (3.1) max ~ > min bj [Zhl v zh" i6e2  . 
m < v < m + n  \ l>>_h j Z 1 -~ n 

P r o o f. The proof  of the Theorem of Knapowski  [t, Lemma I] quoted above implies 
the following inequality, after normalising with [z:l = 1 

(3.2) max ~ > rain ~tbj  (IZh[--4ee) m 
m < v < m + n  \ l>=h J 

for every e < [Zh[/4e. NOW choosing 

(3.3) e - Izhl 
4e(m + n) 

instead of Knapowski 's  choice e = n/6e(2n + m) we obtain inequality (3.1) by an easy 
calculation. 

We introduce the following series of Dirichlet: 

e (n) A (n) 
(3.4) F(s) = Y: - -  

n n s 

Then 

1 E 
(3.5) F(s) = ~ ~2 ()~(12) - ;~(ll)) ~-(s, Z) 

x 

where ~ always denotes summation over all the characters mod  q. 
Z 

Lemma 2. Let d (n) be an aritmetical function such that 

(3.6) D(x) = E d(n) ~ x. 
n<x  
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Then, for positive k,/2, (5 with 6 > 4k, we have 

Y,. d(n) e x p (  (/2 -~l~ 

(3.7) 
. . . .  D(x) e x p (  (/2 ---l~ - - l o g x  dx + O(e u+a-~2/4k) 

= -  "[ x \ 4k J 2k eg-~ 

where the constant implied by the O-symbol only depends on the constant implied by the 
symbol in (3.6). 

P r o o f. After performing partial summation, we are clearly left with the problem of 
estimating the remainder terms. Now, since 6 > 4 k, we have 

j .  exp (/2 - log x)2~ log x - / 2  dx 
e 4k / 2k 

U2 co tt---- U 
= e# I e 

4k a " ~ d u  

(3.8) 
< 2eU ! e u-a~ u _ 1  du 

32 
= 2eU+a-~ 

e~t - 6 
and similarly we can estimate ~ too. 

1 

Lemma 3. Let d(n), D(x) be defined as in Lemma 2. 
Then, for positive k, p with 1//2 < k < #/9 we have 

(3.9) ~ d ( n )  e x p (  ( / 2 - - 1 ~  ~/~ eU+iV'~[D(X)ldx 
4k ]1 ~ + 0(l). eu- 3 g'~- X 

P r o o f. This is an immediate consequence of Lemma 2, choosing ~ = 3 x / ~ .  The 
assumption/2 > 9 k assures 6 > 4 k. 

(3.10) 

with 

(3.11) 

Lemma 4. For 1/# < k </2/9,/2 > log q we have 

1 ( (/2 -- log n)2"~ 
2 x / ~  ~e(n) A(n) exp 4k J = Ea~176176 + 0(1) 

1 
(2(12) - )~(11) ) mz(o), 

a~ - (,o (q) z 
L(~o, Z) = 0 

where the sum is performed over all zeros of all Dirichlet L-functions (mod q) in ~ > 0 and 
rex(Q) denotes the multiplicity of Q as a zero of L(s,)O. 
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(3.12) 

we obtain 

P r o o f. Using the integral formula 

2rci (2) ~ ek~2+A~ds-- 2 X / / ~  exp - - ~  ' 

1 ~e(n) A(n)exp(  (# - l~  
2 x / ~  4k 

1 = EF.(n) A ( n ) . ~  I eksZ+(la-l~ ds 
n (2) 

(3.13) 

1 ( e(n) A(n!~ekS2+,Sd s 

1 
- F(s) e k~2+"~ ds. 

2~zi (!) 

The well-known estimate (see e.g. Prachar [6], Satz 4.1, p. 225) 

E(s ,  Z) 1 (3.14) ~ log(q(I tl + 2)) for s = - ~ + it 

and our bounds on k and # imply 

(3.15) 5 F(s) ek*2+"*ds~(l~ ek/4-€ S e-k'2l~ 2) dt ~ l" 
( -  1/2) - m 

Taking into account (3.15), we obtain by Cauchy's residue theorem 

1 
F(s) e k~2+~ ds = Y'.aQe ko~§ + 0(1). 

(3.16) 27zi (2) 0 

Now, (3.10) follows from (3.13), (3.16). 

Lemma 5. Assume FR-P until D. Then there exists a prime P =- ll(mOd q) with 

D 
(3.17) -- < P logEp < D, 

2 

such that for 

1 
(3.18) ko - p2 logEp, /t o = logP  

we have 

(3.19) ~_,aee k~176176 > P log 2 P, 
9 

where the constant implied in the >> symbol is independent of the constant c o appearing in 
the definition (2.1) of D. 
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P r o o f. For  the proof  of this Lemma,  due essentially to Knapowski  and Turfin [4], 
we refer for instance to [5]. Now, we shall choose the parameters  as follows: 

1 
(3.20) L > c q (log 2 D) D 4, B = i f ,  

L 
_< 2 < - -  hence 2 > D 2 > q, 

(3.21) ~ l o g L -  = log 2L = 

C (3.22) v ~ ~ c q 2  log2, and so B v  ~ [L -- #o - 1, L - #o], 

L / 2  2 - -  k o q log2L 
(3.23) w -  therefore w [ < - - ,  

L --/~o L 

(3.24) k = k o + Bwv, P = Po + Bv. 

The main problem we will be concerned with in the sequel of the proof, is to estimate 
the modulus of the critical power sum 

~ ae eke2 + ,o 
# 

from below, after cutting it at the suitable level [Q [ > 2 2. The localization of the result for 

the mean value of Ihi(x)l will depend essentially on the choice 6 = 3 x / ~  ~ ~ ( c f .  

Lemma 3). The improvement  of the localization (cf. Corollary 2) will require to choose 
2 as large as possible (at the condition of not completely destroying the lower bound given 
by Lemma 1) and this forces k to be very small. On the other hand, the starting point of 
Lemma 5, required for having coefficients with sum far from zero, implies k o having 
definite positive size. So, we are led to choose negative w, and, in this respect, to an 
unusual choice of the parameters.  

Lemma  6. Let  us assume (3.20) to (3.24) hold. Then, there exists an integer 

(3.25) v ~ ~ c q 2 log 2, 

such that with k = k o + B w v ,  # = #o + By,  we have 

(3.26) [Y~aoe~e2+uQI > e L/2-cqzl~ 
Q 

P r o o f. First of all, we have 

(3.27) [ Z aoek~ ,~ ~ e u+k~l-"2) log(qn) "~ 1. 
Jol > 2~, n = [ 2 2 1  1 

Moreover  
1 - n 2 

(3.28) I ~ aoeg~176 ~ ~, log(qn)- P e  e21~ ~ 1. 
Iol >o n=[Plog2p] - 1 
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In view of Lemma 5, this implies that 

(3.29) I ~ aoek~176176 ~> P log 2P 
~oeS 

for every set S of zeros containing all zeros with 1O[ _-< D. (We remark that the constants 
implied by the ~ symbols in (3.28)-(3.29) are independent from Co. ) 

Now we define 

(3.30) b o = a~e k~176176176 z o = e ~wQ2+~a 

and after numerating them according to Lemma 1 we choose the index h corresponding 
to the last term z o with [01 < D. 

By Lemma 1, we get the existence of a v in the interval (3.25) such that, recalling (3.29), 

(3.31) I E a e e k ~ 1 7 6  
101<22 

In our case we choose 

L - #o 
(3.32) m - 

B 

By Jensen's inequality we have 

(3.33) n < c q 2  log2. 

Recalling (3.22), (3.23), we have by FR-P 

(3.34) IZhl > e B/2-BD21wl ~ e T M ,  

(3.35) [zl[ < e B+uD21wl < e ~+nxlwl. 

Then we obtain by (3.20)-(3.24) and (3.31)-(3.35) 

(3.36) 

F_, boz~ [ >= [zh[ ~ zh 16e 2 
101<22 z 1 + n 

P r o o f  o f  t h e  T h e o r e m .  W e t a k e  

(4.1) Y = e L(1 § 3/2); 

we notice that (3.20) to (3.24) assure 

l (4.2) tee ~ 1 -  , ~ , ~ e [ L -  1, L]. 

lal<2Z 
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Hence 3 , ~  < 3L/2 .  By Lemrnas 3.4 and 6 we obtain, choosing d(n) = e(n) A(n), 

. . . .  vT~ id4(x) ] u I&(x) l 
d x  > ~ - d x  

X eU.- r  X A(Y) -3 

(4.3) > c2 -1 ~ d ( n )  e x p (  (#-l~ - ,  = ] l  + 0(1) 

> e x p  ~ - - c q 2 1 o g  2 > ~ e x p  -31~ Y 

with 

(4.4) A (Y) = Ye - (7 log r)/a < e L- 1 - 3L/a 

from which the conclusion of the theorem is clear for i = 4. 
For  the proof  in the case i = 2, we observe that, using partial summation 

S = Z e(n) A(n)  e x p (  (# --4k l~ 

(4.5) 

= ~ \ 2k logx  exp ] ~  

and, similarly to 

(4.6) S < 

Now, still using Lemmas  4 and 6, we get our theorem. 

- -  -- c q 2 log  2 L )  

Lemma 3, we obtain 

dx  + 0(1). 
r ]A2(x)[ 
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