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1. The aim of the present paper is to treat further developments

compared with the author's earlier contribution [lOJ concerning irre-

gularities in the distribution of primes. First we shall consider the

oscillation of 16(x)1 where we define (p always runs through the

primes)

(1.1) 6(X) = L A(n)-x L: logp-x.
pm:S,x

(1.2)

Supposing the existence of an arbi t:r:ary zeta-zero Po = B0 + i Yo'

Littlewood (1937) raised the problem of explicit Q-estimation of

6(x) in terms of Po At that time the only existing relation, due

to Phragmen, was ineffective, asserting for any £>0

13 - e
6(x) = Q(x 0 )

More generally one may ask for lower bounds for

(1. 3)

and

(1.4)

Sex) = max 16(u)1
o:s'u:S,x

1 x
D(X) =-flf1(u)ldu

x
o
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Littlewood's problem was solved in 1950 by Turan C15, part IJ

who showed

(1. 5) s (x) x

for x > max(c2, e 2 ( l p o l ) where logvx and (x) denote the

v-times iterated logarithmic function and exponential function, resp.,

and, as in the sequel, the C
v

denote explicitly calculable positive

constants (eventually depending on some parameters indicated in

brackets). The same inequality was proved by S.Knapowski C5J for D(x)

in place of sex).

The explicit prime number formula,

(1. 6) !J.(x)
x P-2::- + o(logx)

p P

(where p = always runs through the non-trivial zeta-zeros)

suggests, however, a larger oscillation for !J.(x) than that furnished

by Turan's result (1.5). Using also Turan's power-sum theory it is

possible to show (slightly improving the result of CIO, part IJ) the

following.

THEOREM 1. If sepoY = 0, s > 0 and

(1. 7) Y > max(c 3 ,

then there exists a value

(1. 8)
6logly 1+60

x E CY, Y 0 J

such that

(1.9) I!J. (x) I >

This yields

However, using an

Sex).

then

Po

A(x) = lO-4x/logx ,

THEOREM 2.
2

x > e yo / 2 0
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(1.10)

and a fortiori we have the same inequality for SeX) and

max I !l (u) I I too.
A (x):::;;u:::;;x

Choosing Po 1/2+i·I4.l3 .. "J the first zero of 1;,(s) over

the real axis, with some extra trouble we can show

(loll)

COROLLARY 1. For every

D(x) > J](
- 400

x ;::: 1 we have

We remark that every improvement of (1.11) with a non-constant

factor would already disprove the Riemann Hypothesis (RH) since Cra-

mer [2J showed in 1922 that RH implies

(1.12)

(and with some numerical computation one can choose even c 6 1).
Thus we have

COROLLARY 2. Assume RH. Then for

(1.13) JX4Q"i) s D ( x ) :s JX"

If RH is true then one can easily infer from (1.11) and (1.12)

a good lower bound for l!l(x) I for a positive proportion of all

positive numbers.

COROLLARY 3. Assume RH and let IAI denote the measure of the

set A. Then for x>c7

(1.14) I {a :::;; u :::;; XI l!l(u)l > JT}I >_x_
BOO 2

800

If RH does not hold but there is a zero Po 8+iyo where

(1.15) 8 lim sup (Re p)
1; (p)

then we have a phenomenon similar to (1.14) in the stronger form. This



(1.16)
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is expressed by

COROLLARY 4. Under the above conditions we have

80 8
0c 8(po)x D(x) < sex) c

9(po)x

Finally we mention another result, seemingly weaker than Theorem

2, which, however, has important applications in the problems discussed

in the following section.

R(X)

THEOREM 3. If
2xexp(-4olog2 x )

o , x > max(cl O'

( 1.17)
1 x B0 2

D(x) >- f 16(u) Idu > x eXp(-601og2 x )
x R(x)

2. Our further investigations deal with the assertion of Riemann [llJ

(2.1) def def
6
1
(x) 1! (x) - lix L: 1

x dt
; logt < 0 (x > 2)

stated without proof in 1859. Although generally believed to be true

for more than 50 years (and checked up to x 10 7) this was dis-

proved by Littlewood [9J in 1914: he showed that n1(x) infinitely

often changes sign. His theorem was completely ineffective and it took

more than 40 years to give the explicit upper bound e 4(7.705) for

the first sign change of 6
l
( x ) (Skewes [12J).

S.Knapowski was the first who succeeded in furnishing a lower

estimate for the number Vl(Y) of sign changes of Al(X) in the

interval [2, yJ Applying TurAn's one-sided power-sum method he

proved in 1961-62 [6, 7J

(2.2) for

and the weaker ineffective inequality

(2.3) for
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where the Y. denote ineffective absolute constants. These results
i:

were improved in 1974-76 by Knapowski and TurAn [8J. They showed by

TurAn's power-sum method that (2.2) and (2.3) remain true with the

functions 310g Y and c 410gl/4Y/1og;y. The author was able
3 1 1/2

to replace the above functions by clog Y/log2y and
3 15

c 1 610gY/log2 y [10, parts III - IVJ using also TurAn's method.

Making use of (1.17) (better to say, its analogoue where

is replaced by (u) we can now show the ineffective

THEOREM 4. changes sign in the interval

(2.4) [Yexp( 50010g;y), yJ if

This implies trivially the ineffective lower bound

for Vl(Y) But this can also be shown effectively

THEOREM 5. Vl(Y) > log Y 3 for Y > 8
50010g

2y

We remark that Theorems 4 and 5, unlike all the earlier effective

results of this kind, were proved independently from TurAn's method.

A suitable effective result of type (2.4) needs, however, Turan's

method.

THEOREM 6. (x) changes sign in the interval

(2.5) [Y 9, yJ if

Finally we remark that in a recent work J.Kaczorowski [4J

announced the ineffective inequality Vl(Y) > C
2 l

10 g y for Y > Y3
We also remark that Riemann's assertion (2.1) had not only empirical

background but was supported also by some theoretical arguments. The

assertion

(2.6)
x
f
1

(u)du < 0 for x > x o

is e.g. equivalent with RH. But it is interesting to note that there

is a relatively simple averaging procedure such that the statement

''It(x) - li x is negative on the average" is true without any con-

ditions.

THEOREM 7. f
1

as Y .... 00
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3. All results of Sections 1 and 2 are based on the investigation of

the zeros of s(s) (although in the formulations of Theorems 1-3 only

one zero and in Theorems 4-7 no zero appears). The aim of the present

section is to examine the connection of the order of magnitude of

lb(x)l with the distribution of zeros of s(s).

A general theorem of this type was obtained by Ingham C3,

Theorem 22J:

Suppose (5 afi t)

(3.1) s( s) f 0 for a > I-T)(t)

where E c1 C2,00 T) , (t) lim -1T)(t) ) s 0 , T) , (t) 0, T)(t) »log t.
t+oo

Let 0 < E: < 1 be fixed and

(3.2)

Then

inf (T)(t)logx+logt)

(3.3)

This implies e.g. that in case of

(3.4)

one has

t t s ) f 0 for a > 1 t > t o

(3.5) 1
l/(l+a)

/!,(x) «xexp( c
2 3(a)

og x)

TurAn [15, part IIJ was the first to show that the inverse implication

13.5) (3.4) is also true (with a c;2 < c 2 2/40 , however). His result

was later extended to more general domains by C14J . The author

CIO, part IIJ succeeded in showing that the factor 1/2 can be deleted

in (3.3) and that the slightly stronger assumption

(3.5) /!,( x) «xexp t : (1 +E:) W (T)) (x) )

already implies (3.1) (for t > t ) if
o

T)(tJ g(logt) , where

(3.7) as

The above results suggest that perhaps there is a real function

w(x! depending in a simple way on the distribution of zeta-zeros
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(without using a hypothetical zero-free region in the formulation of

the results) which describes the largest possible order of magnitude

of Ib(x)1 . In the favourite case we may hope that such a function

w(x) determines the functions sex) or D(x) (see (1. 3) (1.4»

with considerable accuracy. It turns out that this is really possible

by choosing

(3.8)

where

w(x) min
o

x
logZ7X7

(3.9) z(x)
Sxmax-I--Io y

is, up to an insignificant factor lol/Iyl the modulus of the largest

error term in the explicit formula (1.6).

TEHOREM 8. Using the notations (1.3) - (1.4), (3.8) we have

(3.10)

and

log _x_ ''\, log _x_ '" w(x)
sex) D(x)

Theorem 8 ·includes

THEOREM 9. b t x ) « xexp t : (1 c) w (x) )

as x + 00 ..

THEOREM 10. Sex) > vex) » xexp(-(l+c) w(x))

Consequently b(x) Q(xeXp(-(l+c) w(x))) •

Taking into account that in case of (3.1) we have trivially

w(x) :2: wen) (x) (cL (3.2», Theorem 9 implies

COROLLARY 5. If net) is an arbitrary real function and (3.1)

is true then

(3.11) b ( x) « xexp ( - ( 1 - c) W ( n ) ( x ) )

We remark that Theorem 8 also implies

COROLLARY 6. Using the notation (1.15) we have

(3.12) logs(x) '\, lOgD(x) 'V logz(x) 'Velogx .

(3.12) is a sharpening of the well-known relation

(3.13) e inf{% b i x )

Although (3.12) is equivalent with Theorem 8 if e < 1, it is much

weaker in the sense that the crucial case in proving Theorem 8 is just
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e 1. corollary 6 already follows from (1.5) and from the corres�

ponding result for D(x). In case of e 1 Corollary 6 yields only

log(x/S(x)) o(logx) whilst Theorem 8 gives an asymptotic relation

for this quantity, the function w(x) . Theorem 8 can be considered

also as a far­reaching extension of Wiener's result [16J interpreted

in this context as

(3.14 ) Sex) o(x) lim w(x)
x­>­oo

(although the main point there was the method used) .

Furthermore we remark that the fact that w(x) itself describes

the asymptotic beh.aviour of both functions sex) and D(x) implies

that the maximal value Sex) cannot be much larger than the mean value

D(x) , a phenomenon not discovered before. Namely, Theorem 8 yields

THEOREM 11. s t x ):«: D(X)(X/D(X)) .

The interesting feature of the above result is that, unlike in Theorems

8­10, no zeta­zeros occur in the formulation (however, a direct proof

seems to be hopeless).

4. In what follows we shall sketch the proof of Theorem 8. (The details

of proof, as well as the proofs of the other theorems will appear in a

series of papers entitled "Irregularities of prime distributions".)

According to the remark following corollary 6 we shall restrict our�

selves to the case e = 1 .

Concerning the upper estimate of 6(x) we obtain by Carlson's

density theorem [lJ

(4.1) N(l- , T) I: 1 «
S:?l­
lylST

4
T

and so we have for every natural number n

(4.2) I:
S>l­

en<lylsen +1

« 4n
e max

n I 1< n+1e < y _e

x
e((1- S) logx+log I y IJ

S max

en<lylsen +1

x
( (1­ S) iogx+ log I y I ) (1­5 e ) •

e
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This implies by w(x) o (logx) 1 )

(4.3) Sex) «: s X
1 - S/2 + I:

n=1

-ns
e x «

(1-5s)w(x) s
e

x
(l-5S/w(X)

e

The lower estimate in Theorem 8 is the consequence of the follow-

ing Lemma, which can be proved by TurAn's power-sum method.

6 o

LEMMA. Let

Then for

o < s

x > we have

I x
1

So
(4.4) lJ (x) f 1t.(u)ldu ::::

__x__
x 1-/5

6 YoI:> _£x Yo (x o )s
Yo

It is really easy to check that if e 1 w(x) = o(logx) and

w(x) 6o l o gx + logyo then the conditions of our Lemma are satisfied
and so we obtain

xx1Vex) :::: _(4.5)

ew(x)(l+s)

tions
In order to sketch the proof of the Lemma we introduce the nota-

( e 1 = £/24)

(4.6) Ctlogx, k
2

5s 1Ct1J

where the real number ].I will be chosen later so as to satisfy

(4. 7) ].I E [logx - 6 e1 ql r logx - 5 s 1 ql ]

Using the well-known relations

(4.8) d -s 1;'f 6(u) au (u )dy. = -I;-(S)
1

s def
+ s:T H(s) (0 > 1)

(4.9)
2

(2ni)-1 f eAS +Bs a s
(2)
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we obtain our basic identity

(4.10)
2

U(lJ) def (21Ei)-1 f H(s+p ) e k s +lJS d s
(2) 0

1/2 00 (1)2(41Ek)- f exp( ogu )(_
1 l+po 4k

u

du

Since the weight function gives small weights if we are far from

e lJ , it is relatively easy to show that the simple estimate

implies

(4.11) U(lJ)

lJ+5 E 1 CIJ

e
f

lJ-5£lq>
e

+ o(e-q>/5) .

Further we obtain from (4.7) and from (4.10)

lJ+S£l CIJ 11£1'1' 1+13e x
(4.12) f ::; (e )

0 f
lJ-5£l CIJ

£1 x
-ll£l CIJ

e xe

::; -1
22E

1q> D(x)£1 e
0x

In order to obtain a lower estimation for IU(lJ)! by a suit-

able choice of lJ we shift the line of integration in (4.10) to

cr -1-13
0

, thereby obtaining

(4.13)
k(p-p )2+lJ(p_p )

Leo 0

p

-1
+ O(x ) .

Further we can trivially estimate the total contribution of all zeros

which do not belong to the set

(4.14) M {p;
-1

::; E
1

13 <': S -cx}
o

Thus we get (cf. (4.6»
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(4.15) def
E(ll) e U(l1) +O(e - CIi/2 )

Now IE(l1) I can be estimated from below (under a suitable

choice of 11) by the continuous form of the second main theorem of

Turan's power-sum theory [13J, which asserts for arbitrary complex

numbers aI' .•. an with and for any real positive b,

d the inequality

(4.16) max
b5v5b+d

n

"w
i=1

a,v
e .l I d n

( 8e(b+d)J

(t > 2)(,(I-h+it) «

(For this form see e.g. [10, part IJ, Theorem A of the Appendix).

In any application of this theorem a crucial role is played by the

value of n. In our case the estimate of Korobov-Vinogradov

4/3c
2 5

h c
2 6

t log t(4.17)

and Jensen's inequality leads to

(4.18) I 5 n

-1 1/3From (4.18) we can infer n 5 c
2 8c 1 a C1I and applying (4.16) we

obtain a value 11 satisfying (4.7) such that

(4.19) 1 -1 1/3
IE(l1) I axp (-c2 9 1og cIa· £1 a CIi)

Consequently, by (4.15) we have

(4.20)

Combining this with (4.11) - (4.12) we obtain the assertion of the

Lemma.
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