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1. The first oscillatory result for the remainder term 

(1.1) 
def def def 

.1(x) = "(x)-x = L A(n)-x = L logp-x 

of the prime number formula was proved in the last century by PHRAGMEN [3]. He 
showed that if 8 denotes the least upper bound of the real parts of the C -zeros, then 

(1.2) 

for any £>0. At the same time the proof could not substitute (1.2) with any explicit 
inequality. 

LI1TLEWOOD [2] wrote from this problem in 1937 the following lines.2 

"Those familiar with the theory of the Riemann zeta-function in connection with the 
distribution of primes may remember that the interference difficulty arises with the 
function 

x p X /Hiy 
f(x)=L-=L-. 

p P P+IY 

(where the p's are complex zeros of C(s». 

There exist proofs that if 8 is the upper bound of the {fs (so that 8 = ! if Riemann 
2 

hypothesis is true) then f(x) is of order at least x6 - s in x. But these proofs are curiously 

indirect: if ( 8 > ú =and) we are given a particular p = Po for which P = Po > ú =they 

. . If(x)1 
1 The notation Ñ E ñ F Z ú ñ Ÿ = means lim sup- > O. 

B ú K I = g(x) 
2 His f(x) is essentially - ..:I(x). 
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provide no explicit X depending only upon Po, Yo and e such that If(x)1 > Xilo-. for 
some x in (0, X). There are no known ways of showing (for any explicit X) that the single 

xllo+iyo 

term . of f is not interfered with by other therms of the series over the range 
Po + Iyo 

(0, X)." 
So LIlTLEWOOD asked for an explicit Ootype estimation of A(x) depending on a single 

zero only. This important theoretical problem was solved by bURAN [7] in 1950 who 
proved the following 

1 
Theorem A (TURAN). If Po = Po + iyo is a zero of (s) with Po ú =2' further 

(1.3) 

then 

(1.4) max IA(x)1 > ---:-::-7----=-0---= 
ä ú ñ ú q = Ipo IIOlog T/lOg2 T 

( log T log3 T) exp -C2-----
log2 T 

where c 1, C2 are explicitly calculable absolute constants. 
1. The second problem is the connection between zero-free regions of (s) and the 

remainder term of the prime number formula. The usual way is that assuming a zero-
free domain we prove an upper estimate for the remainder term. Such a general 
theorem is due to INGHAM [1] (Theorem 22): 

Theorem (INGHAM). Suppose that '(s) has no zeros in the domain 

(2.1) (1 > 1 - 11(ltO 

where '1<t) is, for t ú ç =a decreasing function having a continuous derivative 11'(t) and 
satiifying the following conditions 

(2.2) 

(2.3) 

(2.4) 

11'(t)-+O as t -+ 00 

1 
- = o (log t) as t-+oo. 
'1<t) 

Let e be a fixed number satiifying 0 < e < 1 and let 

(2.5) w(x) ú Ñ =min ('1<t) log x + log t) . 
í ú N =

3 log. (x) denotes the v-times iterated logarithm function. 
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Then we have 

(2.6) A(x) = 0 Cl/2(1X .)"'(X)) . 

If we choose here 

(2.7) 
C3 

'1(t) = logfl (t + 2) 

we get the following 

Corollary. If C(s) =1=0 in the domain 

(2.8) 

then 

(2.9) 
1 

A(x) = O(x exp ( - C4 (log x) 1 + fl» . 
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Again a very important tl;1eoretical problem is (restricting oursefves for the special 
case (2.7» whether it is possible (perhaps with finer analytic methods) to deduce from 
the zero-free region (2.8) a better estimate for the remainder term than given by (2.9). An 
equivalent formulation of the problem is whether assuming the upper estimate (2.9) for 
the remainder term we get a domain of type (2.8) to' be zero-free. With other words: 
assuming there are perhaps infinitely many zeros in the domain (2.8) - is it possible to 
prove (2.9) with a instead of O. These problems (in the special case (2.7» were 
affirmatively answered in 1950 by the following theorem of P. TURAN [8]. 

'I1leorelD B (TURAN). If for a p with 0 < p < 1 we have 

(2.10) 
1 

A(x) = 0 (x exp (-cs(log x)1 +fl» 
then C(s)=1=O in the domain 

(2.11) 
C6 

(1 > 1 - logfl (It I + 2) , It I ú =C7(P) . 

An equivalent formulation of this is: 

TIteore. B' (TURAN). If for a p with 0 < p < 1 there are infinitely many C -zeros in the 
domain 

(2.12) 

then 

(2-13) 

Cs 
E N F N J J ú J J

logfl (It I + 2) 

1 
A(x) = O(x exp (-C9 (log X)l +fl». 
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Both Theorems A and B of TURAN were proved by his powersum method, the main 
tool being the so-called second main theorem of the powersum theory (this will be 
formulated explicitly later). The treatment of both theorems were separate but similar. 
As he mentioned in his book [9] (after Satz XXX) from Theorem A it is possible to 
deduce a theorem of type Theorem B', namely under the suppositions of Theorem B' 
one gets 

(2.14) Lf(X)=rlxexP(-clo log x /I)) U\ (log;3..x) 

which is however much weaker than (2.13). This is the reason why a separate treatment 
of Theorem B is needed. 

3. As an improvement of Theorem A we shall prove 

1 
11Ieore. 1. If PI =PI +iYI is a '-zero with PI ú =2' YI >0, then for 

(3.1) 

there exists an x E [TI/4, T] for which 

(3.2) 

A comparison with Theorem A shows that assuming a much weaker condition we 
get a much better lower bound for ILf(x)l, and even the proof is more simple. A further 
advantage of Theorem 1 is that applying this instead of Theorem A for the conversion 
OflNGHAMS theorem we get Theorem B to be valid even for very general domains and 
the deduction from Theorem 1 will be very simple. So Theorem 1 makes possible the 
unique and simple treatment of the two phenomenons dealt in Theort"ms A and B of 
TURAN. 

11teorem 2. Suppose '(s) has an infinity of zeros in 

(3.3) 

where PJ(t) is, for t ú =0 a continuous decreasing function and let 

(3.4) 

Then we have 

(3.5) 

ro(x) ú =min (PJ(t) log x + log t). 
te;O 

i Ñ E u F Z ú É R WB F =) 
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where the constant implied by the a-symbol is explicitly calculable (in fact it is equal to 
the constant Cl2 appearing in Theorem 1). 

Theorem 2 shows that the conversion of INGHAM'S theorem is true in an explicit form 
for more general domains than dealt in INGHAM'S theorem. However, we may note that 
supposing for 'f(t) only that it is a continuous decreasing function, (2.6) is true even with 
the sharper estimate 

(3.6) 

and thus the suppositions (2.2)-(2.4) and that ,,(t) has a continuous derivative can be 
omitted in the formulation of INGHAM'S theorem (see [5], Theorem 1). 

The proof of Theorem 1 is based on TURAN'S method, more precisely on the second 
main theorem of the powersum theory which we state here as 

'I"IIeornI C (1;. Sos--TURAN). For arbitrary complex numbers Zj and m > 0 the 
inequality 

(3.8) 

holds. 
" d 

The proof is contained in [6]. If we choose here m = a ú =; Z j = /J";;' = e"J ú = we get 
d 

(3.9) 

From this we get immediately the continuous form of the second main theorem, which 
we formulate as 
ú =C' (T. SOS--TURAN). For arbitrary complex numbers (l,j, andfor a, d>O the 

inequality 

(3.10) 

holds. 
Finally we note that with far more complicated arguments but based also on 

TURAN's method one can show the following sharper results: 
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'I1leoreIn L If Po = Po + iyo is a non-trivial zero of '(s), 6> 0 and T > c(Po, 6)(effective 
lower bound depending on Po and 6), then there exist 

(3.11) 

such that the inequalities 

(3.12) 

and 

(3.13) 

hold. 

x X E [T. TSilIoBYo] 10 2 , 

'I1Ieo1'elB D. If '(s) has infinitely many zeros in the domain 

(3.14) (1) 1-g(log t) 

where g(u) is a continuous decreasing function and g'(u) , 0, 0 < 6 < 1, then 

(3.1S) 

with the ro(x) function defined by (3.4). 
Theorem I is essentially optimal concerning the lower estimate, only the localisation 

in (3.11) is weaker than in Theorem 1. In Theorem II one has to require stronger 
conditions for the domain, i.e. for the '1<t) = g (log t) function, but the a-type estimate is 
again essentially optimal in view of(3.6). A further advantage is that it gives a ± results, 
i.e. Theorems I and II assure "big positive" and "big negative" values too for the 
remainder term. The more elaborated proofs of Theorems I and II will appear in [4] 
and [S] resp. 

4. For the indirect proof of Theorem 1 let II- be a real number, to be chosen later for 
which 

(4.1) 

and let 

(4.2) 

log T 2 log T 
--<,,<---

2 = r = 3 

We shall start with the formula 

(4.3) 
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which can be proved easily by partial integration. Using the well-known formula 

(4.4) - eAs'+Bsds = --exp --1 f 1 (B2) 
2ni O ú = 4A ' 

(2) 

which is valid for real A >0 and arbitrary complex B we get from (4.3) 

00 

def 1 f ks2 1 f f d . k 2 U = -. H{s+iYI)e +/lSds = -. A{x)-{x-s-'Y'e S +,ts)dxds= 
2m 2m dx 

(2) (2) I 

00 

=f ̂ ô u F > ¡ ô u J á v D ú = f ekS2 +(I'-IOgX)SdS}dX= 
dx 2m 

(2) 

(4.5) 
00 

f d { . 1 ({J.L-IOgX)2)} 
= A{x) dx X -'y, 2j';k exp - 4k dx = 

I 

00 

1 f A{x) -i ({J.L-IOgX)2){. J.L-IOgx}d =-- --x Y'exp - -IYI + X. 
2j';k x 4k 2k 

I 

We split the integral U in (4.5) into three parts: 

(4.6) 
eJAf2 eltJ'2 

Using IA{x)1 < x (if x> xo) for T> To we get 

00 

lUI f ( {J.L-IOgX)2)(IOgX-J.L ) 
3 <YI exp - -1 dx= 

4k 2k 
eIA+ 10. 

(4.7) 

and analogously for T> To we get 

(4.8) 
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Now assuming Theorem 1 to be false we have 

e'+1011: 

(Yl + 5)c12 f P ({J,t-IOg X)2) dx IU2 1 < G x 'exp - - < 
2v 1tkyiO 4k x 

e'-IOl 

10k 

(4.9) C12 f ( r2) < j;k exp (J1.+r)Pl - - dr < 
1tk yt9 4k 

-10k 

co f exp { J Å ú =-PIJkY}dr = O ú N V O = ePP,+kPl 

-co 

Taking in account (3.1), (4.6H4.9) imply 

(4.10) 

1 
5. Shifting the line of integration in (4.5) to (T = - - we get 

2 

(5.1) U = L eld,p-iy.j2+l'I.p-iy.j + ú = f H(s+iYl)eks2+psds. 
p 2m 1 

(- 2) 

Estimating here the integrall trivially we have 

(5.2) 

since IH(s + iYl)1 = O(log (It + Yll + 2)) . 

Further the contribution of zeros with Iy - Yll ú =4 to the infinite powersum is 

(5.3) 

Applying Jensen's inequality for the circle Is-(3 +iYl)1 ú =10 we get for the number n 
of zeros with IY-Yll <4 

(5.4) 7.5 log Yl + Cl3 
ä ú å ú = log 2 < 10.83 log Yl + C14' 
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Thus we get from Theorem C' the existence of a J.I., satisfying (4.1) for which 

(5.5) 

Owing to (3.1) the formulae (5.2), (5.3), (5.5) imply 

(5.6) 
ekfJf+,,..fJ, 

lUI> C15--4Q-
Yl 

which contradicts to (4.10) if we choose C12 = C15 • 
3 
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6. We note that Theorem 2 trivially follows from Theorem 1 (applied with the zero 

Po of minim ali magi nary part, Po = ú =+ iyo ú =ú =+ 14.13i) if lim I I E í F ú l K l ä =since in this 
2, 2 ' .... 00 

case w(x) ú =0.0 1 log x and thus xe - 54ro(x) ú =XO.46• 

H lim ,,(t)<0.01, let Pn= Pn +iYn (O<Yl <Y2 < ... ) be an infinite sequence of zeros 
, .... 00 

with 

(6.1) 

and let Tn be the unique real number defined by 

(6.2) ,,(Yn) log iT.. = log Yn . 

Then for n > no(,,)(3.1) is satisfied for Pn and T" and therefore we have an Xn E [iT.., T,,] 
for which by Theorem 1 

1..1(x,,)1 C12 C12 
--> ú = ú =

XII x!-fJ •. y;O - el!(y.)logx.+50logy. -

(6.3) 

since ú ñ F =is trivially monotonically increasing, further by (6.2) 

(6.4) m(iT..) ú =min {max (,,(t) log ú =,log t)} ú =
t;;:O 

ú ="(1,,) log iT.. = log y" . 

(6.3) obviously proves Theorem 2. 
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References 

[1] A. E. INGHAM, The distribution of prime numbers, University Press, Cambridge, 1932. 
[2] J. E. LITTLEWOOD, Mathematical notes (12). An inequality for a sum of cosines, Journ. Lond. Math. Soc .. 

11 (1937), 217-%22. 
[3] E. PHRAGMEN, Sur Ie logarithme integral et la fonction (x) de Riemann, ()Jversigt of Kongl. Vetenskaps 

AkatJemiens Forhandlingar, .. (1891), 599-616. 
[4] J. PINTZ, On the remainder term of the prime number formula I, On a problem of Littlewood, Acta 

Arith., J6 (1979), 27-51. 
[5] J. PINTZ, On the remainder term of the prime number formula II, On a theorem of Ingham, Acta Arith., 

Y7 (1980), 200--220. 
[6] VERA T. SOs and P. TUI.AN, On some new theorems in the theory of diophantine approximations, Acta 

Math. Acad. Sci. Hung., , (1955), 241-255. 
[7] P. TUI.AN, On the remainder-term ofthe prime-numberformula, I., Acta Math. Acad. Sci. Hung., 1(1950), 

48-{j3. 
[8] P. TUI.AN, On the remainder term of the prime-number formula II, Acta Math. Acad. Sci. Hung., I (1950), 

155-166. 
[9] P. TUI.AN, Eine neue Methode in der Analysis und deren Anwendungen, Akademiai Kiad6, Budapest, 1953. 

MATHEMATICAL INSTITUTE OF THE 
HUNGARIAN ACADEMY OF SCIENCES 
e ú N MR P I = BUDAPEST, REALTANODA U. 13-15. 
HUNGARY 


