Oscillatory properties of the remainder term of the prime number formula

by
J. PINTZ (Budapest)

1. The first oscillatory result for the remainder term

$$
\begin{equation*}
\Delta(x) \stackrel{\text { def }}{=} \Psi(x)-x \stackrel{\text { def }}{=} \sum_{n \leqq x} \Lambda(n)-x \stackrel{\text { def }}{=} \sum_{p^{n} \leqq x} \log p-x \tag{1.1}
\end{equation*}
$$

of the prime number formula was proved in the last century by Phragmen [3]. He showed that if $\boldsymbol{\theta}$ denotes the least upper bound of the real parts of the ζ-zeros, then

$$
\begin{equation*}
\Delta(x)=\Omega\left(x^{\theta-\varepsilon}\right)^{1} \tag{1.2}
\end{equation*}
$$

for any $\varepsilon>0$. At the same time the proof could not substitute (1.2) with any explicit inequality.

Littlewood [2] wrote from this problem in 1937 the following lines. ${ }^{2}$
"Those familiar with the theory of the Riemann zeta-function in connection with the distribution of primes may remember that the interference difficulty arises with the function

$$
f(x)=\sum_{\rho} \frac{x^{\rho}}{\rho}=\sum \frac{x^{\beta+i \gamma}}{\beta+i \gamma}
$$

(where the ρ 's are complex zeros of $\zeta(s)$).
There exist proofs that if Θ is the upper bound of the β 's (so that $\Theta=\frac{1}{2}$ if Riemann hypothesis is true) then $f(x)$ is of order at least $x^{\theta-\varepsilon}$ in x. But these proofs are curiously indirect: if $\left(\Theta>\frac{1}{2}\right.$ and $)$ we are given a particular $\rho=\rho_{0}$ for which $\beta=\beta_{0}>\frac{1}{2}$ they

[^0]provide no explicit X depending only upon β_{0}, γ_{0} and ε such that $|f(x)|>X^{\beta_{0}-\varepsilon}$ for some x in $(0, X)$. There are no known ways of showing (for any explicit X) that the single term $\frac{x^{\beta_{0}+i \gamma_{0}}}{\beta_{0}+i \gamma_{0}}$ of f is not interfered with by other therms of the series over the range ($0, X$)."

So Littlewood asked for an explicit Ω-type estimation of $\Delta(x)$ depending on a single zero only. This important theoretical problem was solved by Turán [7] in 1950 who proved the following

Theorem A (Turẫ). If $\rho_{0}=\beta_{0}+i \gamma_{0}$ is a zero of $\zeta(s)$ with $\beta_{0} \geqq \frac{1}{2}$, further

$$
\begin{equation*}
T \geqq \max \left(c_{1}, \exp \left(\left|\rho_{0}\right|^{60}\right)\right) \tag{1.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\max _{1 \leqq x \leqq T}|\Delta(x)|>\frac{T^{\beta_{0}}}{\left|\rho_{0}\right|^{10 \log T \log _{2} T}} \exp \left(-c_{2} \frac{\log T \log _{3} T}{\log _{2} T}\right) \tag{1.4}
\end{equation*}
$$

where c_{1}, c_{2} are explicitly calculable absolute constants.
2. The second problem is the connection between zero-free regions of $\zeta(s)$ and the remainder term of the prime number formula. The usual way is that assuming a zerofree domain we prove an upper estimate for the remainder term. Such a general theorem is due to Ingham [1] (Theorem 22):

Theorem (Іngham). Suppose that $\zeta(s)$ has no zeros in the domain

$$
\begin{equation*}
\sigma>1-\eta(|t|) \tag{2.1}
\end{equation*}
$$

where $\eta(t)$ is, for $t \geqq 0$ a decreasing function having a continuous derivative $\eta^{\prime}(t)$ and satisfying the following conditions

$$
\begin{gather*}
0<\eta(t) \leqq \frac{1}{2} \tag{2.2}\\
\eta^{\prime}(t) \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{2.3}\\
\frac{1}{\eta(t)}=O(\log t) \text { as } t \rightarrow \infty \tag{2.4}
\end{gather*}
$$

Let ε be a fixed number satisfying $0<\varepsilon<1$ and let

$$
\begin{equation*}
\omega(x) \stackrel{\text { def }}{=} \min _{t \geqq 1}(\eta(t) \log x+\log t) \tag{2.5}
\end{equation*}
$$

[^1]Then we have

$$
\begin{equation*}
\Delta(x)=O\left(\frac{x}{e^{1 / 2(1-\varepsilon) \omega(x)}}\right) . \tag{2.6}
\end{equation*}
$$

If we choose here

$$
\begin{equation*}
\eta(t)=\frac{c_{3}}{\log ^{\beta}(t+2)} \tag{2.7}
\end{equation*}
$$

we get the following
Corollary. If $\zeta(s) \neq 0$ in the domain

$$
\begin{equation*}
\sigma>1-\frac{c_{3}}{\log ^{\beta}(t+2)} \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta(x)=O\left(x \exp \left(-c_{4}(\log x)^{\left.\frac{1}{1+\beta}\right)}\right)\right. \tag{2.9}
\end{equation*}
$$

Again a very important theoretical problem is (restricting ourselves for the special case (2.7)) whether it is possible (perhaps with finer analytic methods) to deduce from the zero-free region (2.8) a better estimate for the remainder term than given by (2.9). An equivalent formulation of the problem is whether assuming the upper estimate (2.9) for the remainder term we get a domain of type (2.8) to be zero-free. With other words: assuming there are perhaps infinitely many zeros in the domain (2.8) - is it possible to prove (2.9) with Ω instead of O. These problems (in the special case (2.7)) were affirmatively answered in 1950 by the following theorem of P. Turán [8].

Theorem B (Turán). If for a β with $0<\beta<1$ we have

$$
\begin{equation*}
\Delta(x)=O\left(x \exp \left(-c_{5}(\log x)^{\frac{1}{1+\beta}}\right)\right) \tag{2.10}
\end{equation*}
$$

then $\zeta(s) \neq 0$ in the domain

$$
\begin{equation*}
\sigma>1-\frac{c_{6}}{\log ^{\beta}(|t|+2)}, \quad|t| \geqq c_{7}(\beta) . \tag{2.11}
\end{equation*}
$$

An equivalent formulation of this is:
Theorem B^{\prime} (Turán). If for a β with $0<\beta<1$ there are infinitely many ζ-zeros in the domain

$$
\begin{equation*}
\sigma>1-\frac{c_{8}}{\log ^{\beta}(|t|+2)} \tag{2.12}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta(x)=\Omega\left(x \exp \left(-c_{9}(\log x)^{\frac{1}{1+\beta}}\right)\right) \tag{2.13}
\end{equation*}
$$

Both Theorems A and B of Turán were proved by his powersum method, the main tool being the so-called second main theorem of the powersum theory (this will be formulated explicitly later). The treatment of both theorems were separate but similar. As he mentioned in his book [9] (after Satz XXX) from Theorem A it is possible to deduce a theorem of type Theorem \mathbf{B}^{\prime}, namely under the suppositions of Theorem \mathbf{B}^{\prime} one gets

$$
\begin{equation*}
\Delta(x)=\Omega\left(x \exp \left(-c_{10} \frac{\log x}{\left(\log _{3} x\right)^{\beta}}\right)\right) \tag{2.14}
\end{equation*}
$$

which is however much weaker than (2.13). This is the reason why a separate treatment of Theorem B is needed.
3. As an improvement of Theorem A we shall prove

Theorem 1. If $\rho_{1}=\beta_{1}+i \gamma_{1}$ is a ζ-zero with $\beta_{1} \geqq \frac{1}{2}, \gamma_{1}>0$, then for

$$
\begin{equation*}
T \geqq \max \left(\gamma_{1}^{400}, c_{11}\right) \tag{3.1}
\end{equation*}
$$

there exists an $x \in\left[T^{1 / 4}, T\right]$ for which

$$
\begin{equation*}
|\Delta(x)|>\frac{c_{12} x^{\beta_{1}}}{\gamma_{1}^{50}} \tag{3.2}
\end{equation*}
$$

A comparison with Theorem A shows that assuming a much weaker condition we get a much better lower bound for $|\Delta(x)|$, and even the proof is more simple. A further advantage of Theorem 1 is that applying this instead of Theorem A for the conversion of Ingham's theorem we get Theorem B to be valid even for very general domains and the deduction from Theorem 1 will be very simple. So Theorem 1 makes possible the unique and simple treatment of the two phenomenons dealt in Theorems A and B of Turán.

Theorem 2. Suppose $\zeta(s)$ has an infinity of zeros in

$$
\begin{equation*}
\sigma \geqq 1-\eta(t) \tag{3.3}
\end{equation*}
$$

where $\eta(t)$ is, for $t \geqq 0$ a continuous decreasing function and let

$$
\begin{equation*}
\omega(x) \stackrel{\operatorname{def}}{=} \min _{t \geqq 0}(\eta(t) \log x+\log t) \tag{3.4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\Delta(x)=\Omega\left(\frac{x}{e^{54 \omega(x)}}\right) \tag{3.5}
\end{equation*}
$$

where the constant implied by the Ω-symbol is explicitly calculable (in fact it is equal to the constant c_{12} appearing in Theorem 1).

Theorem 2 shows that the conversion of Ingham's theorem is true in an explicit form for more general domains than dealt in Ingham's theorem. However, we may note that supposing for $\eta(t)$ only that it is a continuous decreasing function, (2.6) is true even with the sharper estimate

$$
\begin{equation*}
\Delta(x)=O\left(\frac{x}{e^{(1-\varepsilon) \omega(x)}}\right) \tag{3.6}
\end{equation*}
$$

and thus the suppositions (2.2)-(2.4) and that $\eta(t)$ has a continuous derivative can be omitted in the formulation of Ingham's theorem (see [5], Theorem 1).

The proof of Theorem 1 is based on Turan's method, more precisely on the second main theorem of the powersum theory which we state here as

Theorem C (T. Sós-Turán). For arbitrary complex numbers z_{j} and $m>0$ the inequality

$$
\begin{equation*}
\max _{m<v \leqq m+n} \frac{\left|\sum_{j=1}^{n} z_{j}^{v}\right|}{\left|z_{1}\right|^{v}} \geqq\left[\frac{1}{8 e\left(\frac{m}{n}+1\right)}\right]^{n} \tag{3.8}
\end{equation*}
$$

holds.
The proof is contained in [6]. If we choose here $m=a \frac{n}{d} ; z_{j}=e^{\alpha_{j} \frac{a}{m}}=e^{\alpha_{j} \frac{d}{n}}$ we get

$$
\begin{equation*}
\max _{\frac{n}{d} a<v \leq(a+\alpha) \frac{n}{d}} \frac{\left|\sum_{j=1}^{n} e^{\alpha_{j}, v}\right|}{\left|z_{1}\right|^{v}} \geqq\left[\frac{1}{8 e\left(\frac{a}{d}+1\right)}\right]^{n} \tag{3.9}
\end{equation*}
$$

From this we get immediately the continuous form of the second main theorem, which we formulate as

Theorem \mathbf{C}^{\prime} (T. Sos-Turín). For arbitrary complex numbers α_{j}, and for $a, d>0$ the inequality

$$
\begin{equation*}
\max _{a<t \leqq a+d} \frac{\left|\sum_{j=1}^{n} e^{\alpha_{j} t}\right|}{\left|e^{\alpha_{1} t}\right|} \geqq\left[\frac{1}{8 e\left(\frac{a}{d}+1\right)}\right]^{n} \tag{3.10}
\end{equation*}
$$

holds.
Finally we note that with far more complicated arguments but based also on Turín's method one can show the following sharper results:

Theorem I. If $\rho_{0}=\beta_{0}+i \gamma_{0}$ is a non-trivial zero of $\zeta(s), \varepsilon>0$ and $T>c\left(\rho_{0}, \varepsilon\right)($ effective lower bound depending on ρ_{0} and ε), then there exist

$$
\begin{equation*}
x_{1}, x_{2} \in\left[T, T^{50 \log \gamma_{0}}\right] \tag{3.11}
\end{equation*}
$$

such that the inequalities

$$
\begin{equation*}
\Delta\left(x_{1}\right)>(1-\varepsilon) \frac{x_{1}^{\beta_{0}}}{\left|\rho_{0}\right|} \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left(x_{2}\right)<-(1-\varepsilon) \frac{x_{2}^{\beta_{0}}}{\left|\rho_{0}\right|} \tag{3.13}
\end{equation*}
$$

hold.
Theorem II. If $\zeta(s)$ has infinitely many zeros in the domain

$$
\begin{equation*}
\sigma>1-g(\log t) \tag{3.14}
\end{equation*}
$$

where $g(u)$ is a continuous decreasing function and $g^{\prime}(u) \not \subset 0,0<\varepsilon<1$, then

$$
\begin{equation*}
\Delta(x)=\Omega \pm\left(\frac{x}{e^{(1+\varepsilon) \omega(x)}}\right) \tag{3.15}
\end{equation*}
$$

with the $\omega(x)$ function defined by (3.4).
Theorem I is essentially optimal concerning the lower estimate, only the localisation in ($\mathbf{3} .11$) is weaker than in Theorem 1. In Theorem II one has to require stronger conditions for the domain, i.e. for the $\eta(t)=g(\log t)$ function, but the Ω-type estimate is again essentially optimal in view of (3.6). A further advantage is that it gives $\Omega_{ \pm}$results, i.e. Theorems I and II assure "big positive" and "big negative" values too for the remainder term. The more elaborated proofs of Theorems I and II will appear in [4] and [5] resp.
4. For the indirect proof of Theorem 1 let μ be a real number, to be chosen later for which

$$
\begin{equation*}
\frac{\log T}{2} \leqq \mu \leqq \frac{2 \log T}{3} \tag{4.1}
\end{equation*}
$$

and let

$$
\begin{equation*}
k \stackrel{\operatorname{def}}{=} \frac{\mu}{20} \tag{4.2}
\end{equation*}
$$

We shall start with the formula

$$
\begin{equation*}
\int_{1}^{\infty} \Delta(x) \frac{d}{d x}\left(x^{-s}\right) d x=\frac{\zeta^{\prime}}{\zeta}(s)+\frac{s}{s-1} \stackrel{\text { def }}{=} H(s) \tag{4.3}
\end{equation*}
$$

which can be proved easily by partial integration. Using the well-known formula

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{(2)} e^{A s^{2}+B s} d s=\frac{1}{2 \sqrt{\pi A}} \exp \left(-\frac{B^{2}}{4 A}\right) \tag{4.4}
\end{equation*}
$$

which is valid for real $A>0$ and arbitrary complex B we get from (4.3)

$$
U \stackrel{\text { def }}{=} \frac{1}{2 \pi i} \int_{(2)} H\left(s+i \gamma_{1}\right) e^{k s^{2}+\mu s} d s=\frac{1}{2 \pi i} \int_{(2)} \int_{1}^{\infty} \Delta(x) \frac{d}{d x}\left(x^{-s-i \gamma_{1}} e^{k s^{2}+\mu s}\right) d x d s=
$$

$$
\begin{equation*}
=\int_{1}^{\infty} \Delta(x) \frac{d}{d x}\left\{x^{-i \gamma_{1}} \frac{1}{2 \pi i} \int_{(2)} e^{k s^{2}+(\mu-\log x) s} d s\right\} d x= \tag{4.5}
\end{equation*}
$$

$$
\begin{gathered}
=\int_{1}^{\infty} \Delta(x) \frac{d}{d x}\left\{x^{-i \gamma_{1}} \frac{1}{2 \sqrt{\pi k}} \exp \left(-\frac{(\mu-\log x)^{2}}{4 k}\right)\right\} d x= \\
=\frac{1}{2 \sqrt{\pi k}} \int_{1}^{\infty} \frac{\Delta(x)}{x} x^{-i \gamma_{1}} \exp \left(-\frac{(\mu-\log x)^{2}}{4 k}\right)\left\{-i \gamma_{1}+\frac{\mu-\log x}{2 k}\right\} d x .
\end{gathered}
$$

We split the integral U in (4.5) into three parts:

$$
\begin{equation*}
U_{1}=\int_{1}^{e^{\mu / 2}}, \quad U_{2}=\int_{e^{\mu / 2}}^{e^{33 / 2}}, \quad U_{3}=\int_{e^{3 * / 2}}^{\infty} \tag{4.6}
\end{equation*}
$$

Using $|\Delta(x)|<x$ (if $x>x_{0}$) for $T>T_{0}$ we get

$$
\left|U_{3}\right|<\gamma_{1} \int_{e^{\mu+10 k}}^{\infty} \exp \left(-\frac{(\mu-\log x)^{2}}{4 k}\right)\left(\frac{\log x-\mu}{2 k}-1\right) d x=
$$

$$
\begin{equation*}
=\gamma_{1} \int_{10 k}^{\infty} \exp \left(-\frac{r^{2}}{4 k}\right)\left(\frac{r}{2 k}-1\right) e^{r+\mu} d r=\gamma_{1} e^{\mu+10 k-\frac{100 k^{2}}{4 k}}=\gamma_{1} e^{\frac{\mu}{4}} \tag{4.7}
\end{equation*}
$$

and analogously for $T>T_{0}$ we get

$$
\begin{equation*}
\left|U_{1}\right|<\gamma_{1} e^{\frac{\mu}{4}} \tag{4.8}
\end{equation*}
$$

Now assuming Theorem 1 to be false we have

$$
\begin{align*}
&\left|U_{2}\right|<\frac{\left(\gamma_{1}+5\right) c_{12}}{2 \sqrt{\pi k} \gamma_{1}^{50}} \int_{e^{\mu-10 k}}^{e^{\mu+10 k}} x^{\beta_{1}} \exp \left(-\frac{(\mu-\log x)^{2}}{4 k}\right) \frac{d x}{x}< \\
&< \frac{c_{12}}{\sqrt{\pi k} \gamma_{1}^{49}} \int_{-10 k}^{10 k} \exp \left((\mu+r) \beta_{1}-\frac{r^{2}}{4 k}\right) d r< \tag{4.9}\\
&<\frac{e^{\mu \beta_{1}+k \beta_{1}^{2}} c_{12}}{\sqrt{\pi k} \gamma_{1}^{49}} \int_{-\infty}^{\infty} \exp \left\{-\left(\frac{r}{2 \sqrt{k}}-\beta_{1} \sqrt{k}\right)^{2}\right\} d r=\frac{2 c_{12}}{\gamma_{1}^{49}} e^{\mu \beta_{1}+k \beta_{1}^{2}}
\end{align*}
$$

Taking in account (3.1), (4.6)-(4.9) imply

$$
\begin{equation*}
|U|<\frac{3 c_{12}}{\gamma_{1}^{49}} e^{k \beta_{1}^{2}+\mu \beta_{1}} \tag{4.10}
\end{equation*}
$$

5. Shifting the line of integration in (4.5) to $\sigma=-\frac{1}{2}$ we get

$$
\begin{equation*}
U=\sum_{\rho} e^{k\left(\rho-i \gamma_{1}\right)^{2}+\mu\left(\rho-i \gamma_{1}\right)}+\frac{1}{2 \pi i} \int_{\left(-\frac{1}{2}\right)} H\left(s+i \gamma_{1}\right) e^{k s^{2}+\mu s} d s \tag{5.1}
\end{equation*}
$$

Estimating here the integral I trivially we have

$$
\begin{equation*}
|I|=O\left(\log \gamma_{1} e^{\frac{k}{4}-\frac{\mu}{2}}\right)=O(1) \tag{5.2}
\end{equation*}
$$

since $\left|H\left(s+i \gamma_{1}\right)\right|=O\left(\log \left(\left|t+\gamma_{1}\right|+2\right)\right)$.
Further the contribution of zeros with $\left|\gamma-\gamma_{1}\right| \geqq 4$ to the infinite powersum is

$$
\begin{equation*}
O\left(\sum_{n=4}^{\infty} \log \left(\gamma_{1}+n\right) e^{k\left(1-n^{2}\right)+\mu}\right)=O\left(\log \gamma_{1} e^{\mu-15 k}\right) \tag{5.3}
\end{equation*}
$$

Applying Jensen's inequality for the circle $\left|s-\left(3+i \gamma_{1}\right)\right| \leqq 10$ we get for the number n of zeros with $\left|\gamma-\gamma_{1}\right|<4$

$$
\begin{equation*}
1 \leqq n \leqq \frac{7.5 \log \gamma_{1}+c_{13}}{\log 2}<10.83 \log \gamma_{1}+c_{14} \tag{5.4}
\end{equation*}
$$

Thus we get from Theorem C^{\prime} the existence of a μ, satisfying (4.1) for which

$$
\begin{equation*}
\left\lvert\, \sum_{\left|\gamma-\gamma_{1}\right|<4}\left\{e^{\left.\frac{1}{20}\left(\rho-i \gamma_{1}\right)^{2}+\left(\rho-i \gamma_{1}\right)\right)^{\mu}} \left\lvert\, \geqq \frac{e^{k \beta_{1}^{2}+\mu \beta_{1}}}{(32 e)^{10.83 \log \gamma_{1}+c_{14}}}>c_{15} \frac{e^{k \beta_{1}^{2}+\mu \beta_{1}}}{\gamma_{1}^{48.4}}\right.\right.\right. \tag{5.5}
\end{equation*}
$$

Owing to (3.1) the formulae (5.2), (5.3), (5.5) imply

$$
\begin{equation*}
|U|>c_{15} \frac{e^{k \beta_{1}^{2}+\mu \beta_{1}}}{\gamma_{1}^{49}} \tag{5.6}
\end{equation*}
$$

which contradicts to (4.10) if we choose $c_{12}=\frac{c_{15}}{3}$.
6. We note that Theorem 2 trivially follows from Theorem 1 (applied with the zero ρ_{0} of minimal imaginary part, $\left.\rho_{0}=\frac{1}{2}+i \gamma_{0} \approx \frac{1}{2}+14.13 i\right)$ if $\lim _{t \rightarrow \infty} \eta(t) \geqq 0.01$ since in this case $\omega(x) \geqq 0.01 \log x$ and thus $x e^{-54 \omega(x)} \leqq x^{0.46}$.

If $\lim \eta(t)<0.01$, let $\rho_{n}=\beta_{n}+i \gamma_{n}\left(0<\gamma_{1}<\gamma_{2}<\ldots\right)$ be an infinite sequence of zeros with

$$
\begin{equation*}
\beta_{n}>1-\eta\left(\gamma_{n}\right) \tag{6.1}
\end{equation*}
$$

and let T_{n} be the unique real number defined by

$$
\begin{equation*}
\eta\left(\gamma_{n}\right) \log \sqrt[4]{T_{n}}=\log \gamma_{n} \tag{6.2}
\end{equation*}
$$

Then for $n>n_{0}(\eta)$ (3.1) is satisfied for ρ_{n} and T_{n} and therefore we have an $x_{n} \in\left[\sqrt[4]{T_{n}}, T_{n}\right]$ for which by Theorem 1

$$
\begin{equation*}
\frac{\left|\Delta\left(x_{n}\right)\right|}{x_{n}}>\frac{c_{12}}{x_{n}^{1-\beta_{n}} \cdot \gamma_{n}^{50}} \geqq \frac{c_{12}}{e^{n\left(\gamma_{n}\right) \log x_{n}+50 \log \gamma_{n}}} \geqq \tag{6.3}
\end{equation*}
$$

$$
\geqq \frac{c_{12}}{e^{4 \pi\left(y_{n}\right) \log \sqrt[4]{T_{n}}+50 \log T_{n}}} \geqq \frac{c_{12}}{e^{\omega\left(\sqrt[4]{4} / \sqrt{T_{n}}\right) \cdot 54}} \geqq \frac{c_{12}}{e^{\omega\left(x_{n}\right) \cdot 54}},
$$

since $\omega(x)$ is trivially monotonically increasing, further by (6.2)

$$
\begin{gather*}
\omega\left(\sqrt[4]{T_{n}}\right) \geqq \min _{t \geqq 0}\left\{\max \left(\eta(t) \log \sqrt[4]{T_{n}}, \log t\right)\right\} \geqq \tag{6.4}\\
\geqq \eta\left(\gamma_{n}\right) \log \sqrt[4]{T_{n}}=\log \gamma_{n} .
\end{gather*}
$$

(6.3) obviously proves Theorem 2.

References

[1] A. E. Ingham, The distribution of prime numbers, University Press, Cambridge, 1932.
[2] J. E. Littlewood, Mathematical notes (12). An inequality for a sum of cosines, Journ. Lond. Math. Soc., 12 (1937), 217-222.
[3] E. Phragmen, Sur le logarithme intégral et la fonction $\zeta(x)$ de Riemann, Offersigt of Kongl. Vetenskaps Akademiens Förhandlingar, 48 (1891), 599-616.
[4] J. Pintz, On the remainder term of the prime number formula I, On a problem of Littlewood, Acta Arith., 36 (1979), 27-51.
[5] J. Pintz, On the remainder term of the prime number formula II, On a theorem of Ingham, Acta Arith., 37 (1980), 209-220.
[6] Vera T. Sós and P. Turán, On some new theorems in the theory of diophantine approximations, Acta Math. Acad. Sci. Hung., 6 (1955), 241-255.
[7] P. Turân, On the remainder-term of the prime-number formula, I., Acta Math. Acad. Sci. Hung., 1 (1950), 48-63.
[8] P. Turan, On the remainder term of the prime-number formula II, Acta Math. Acad. Sci. Hung., 1 (1950), 155-166.
[9] P. Turấ, Eine neue Methode in der Analysis und deren Anwendungen, Akadémiai Kiadó, Budapest, 1953.

[^0]: ${ }^{1}$ The notation $f(x)=\Omega(g(x))$ means $\limsup _{x \rightarrow \infty} \frac{|f(x)|}{g(x)}>0$.
 ${ }^{2}$ His $f(x)$ is essentially $-\Delta(x)$.

[^1]: ${ }^{3} \log _{v}(x)$ denotes the v-times iterated logarithm function.

