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Chebyshev has noticed a certain predominance of primes of the form 4n + 3 over 
those of the form 4n + 1. He asserted that lim,,,, x.,>Z (-l)lp I”’ emplr = -co. 
This was unproven until today. G. H. Hardy, J. E. Littlewood and E. Landau have 
shown its equivalence with an analogue to the famous Riemann hypothesis, namely. 
L(s. 1, mod 4) # 0. Re(s) > f. S. Knapowski and P. Turin have, given some similar 
(unproven) relations, e.g.. lim,, , xD ? (-I)“’ “” logpe “w-‘~~~” = -co. which 
are also equivalent to the above. Using Explixit Formulas the author shows that 

holds without any conjecture. (In addition, the order of magnitude of divergence is 
calculated.) It turns out that (*) is only a special case (in several respects). At first. 
it may be enlarged into 

Then, it can be generalised to a wider class of progressions. For example, the same 
is true if one sums over the primes in the classes 3n + 2 and 3n + 1. with a ‘--” 
and a “+” sign, respectively. All results of this type depend on the location of the 
first nontrivial zero of the corresponding L-series. D. Shanks has given some 
arguments for the predominance of primes in residue classes of nonquadratic type. 
He conjectured “If m, mod k is a quadratic residue and m2 mod k a non-residue, 
then there are “more” primes congruent m, than congruent m, mod k.” This indeed 
turns out to be true in the sense of (*), not only for k = 3,4, but for some higher 
moduli as well. Finally. numerical calculations were made to investigate the 
behaviour of d,(X) := n(X, 2 mod 3) - n(X. 1 mod 3) in the interval 2 <X < 18. 
633. 261. No zero was found in this range. In the analogue case of d,(X) := 
n(X. 3 mod 4) - n(X, I mod 4) the first sign change occurs at X = 26, 861. 

1. PRELIMINARIES 

Dirichlet’s famous theorem states that every arithmetic progression 
am + b, (a, b) = 1, contains an infinitude of prime numbers. As usual, let 

* Translation of the author’s “Habilitationsschrift.” 
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x(x) denote the number of primes up to x, and rr (x, b mod a) that part of it 
which lies in am + b, and 4, Euler’s totient function. Then we have a more 
precise formulation of the above statement: 

x(x, b mod a) - h n(x) 
1 w-e- 

#(a) 10Xx’ (1) 

From this we see that the primes are “equally distributed” over the classes b 
mod a in the given asymptotic sense. The error term in (1) permits 
discrepancies of the primes in the different classes. 

Chebyshev has noticed some kind of discrepancy in the special case a = 4. 
In a letter written by Kronecker, Kummer and Weierstrass we find the 
following remark: “Endlich ist Herr Tschebyschef der erste Mathematiker, 
welcher fur die Anzahl der Primzahlen bis zu einer hohen Grenze den 
UberschuB der Primzahlen der Form 4n + 3 i.iber diejenigen von der Form 
4n + 1 konstatiert und fur den den asymptotischen Ausdruck vG/log .Y 
angegeben hat” 141. 

Nowadays we have numerical data up to 3,000,000, which affirm 
Chebyshev’s statement. The “naive” conjecture 

d(x) := x(x, 3 mod 4) - 71(x, 1 mod 4) + 00 if x+ a2 

does not hold, as Hardy and Littlewood have shown. In 19 17 they proved 
I71 

lim sup d(x) = *al. 
x+?;~ inf (2) 

Now, Chebeshev’s original statement is much more subtle and was 
undecided until today. It is 

Here the primes 4n + 1 give the “+” sign and the other odd primes ;give the 
ii -” sign. 

Landau did not believe that Chebyshev had a (correct) proof of (3). One 
reason for his doubt is the fact that the truth of (3) would imply 

L(s, x1 mod 4) # 0, Re(s) > 4, (4) 

x, nonprincipal character mod 4 1131. But (4) has the same depth as the 
famous Riemann hypothesis 

C(s) f 03 Re(s) > :, (5) 

641/15/2-8 
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“und dies erhoht fur Unglaubige die Wahrscheinlichkeit, da13 Tschebyschef 
sich geirrt hat, und fur Glaubige den Wunsch, aus seinen Papieren den 
Beweis von (1) rekonstruiert zu sehen”- as Landau has noticed [ 131. On 
the other hand Hardy and Littlewood have proved that (3) will follow from 
(4), so the statements (3) and (4) are fully equivalent. Actually, none of it is 
known to be true. 

In a series of 15 papers [ 11, 12 ] Knapowski and Turin have investigated 
a number of questions concerning discrepancies and have considerably 
enlarged our knowledge in a field of prime number theory which we call 
“comparative prime number theory” since then. Especially in the 
Chebyshevian case these two mathematicians have found that in addition to 
(3) 

lim \‘ (-I)+ logp . e-'OS'cPl-rb = -a 
-r-m P>2 

and 

are equivalent to (4), too. The proof of (7) u (4) was announced by Turan 
[ 10, 181, but has never been published. 

In the analogue case Hardy and Littlewood [ 71 removed the “log p” factor 
from 

to reach (3) without any new information about the zeros of L(s,x, mod 4). 
So, up to know, there exist some interesting but unproved conjectures of 

type (3). 
Numerical calculations by electronic computers could give a better insight 

into those irregularities. The present tables show that the first sign change of 
A(x) occurs at x = 26, 86 1, so we have 

A(26.861) = -1 [ 14, 161. 

Extended calculations by Shanks give a very good insight into the 
deviations of d(x) in the range from 1 to 3 . 106, see [ 161. In that range A 
varies between is maximum, 256, and its minimum, -8, but a certain prepon- 
derance to the positive side is obvious: The calculations show that A(n) > 0 
for 99.84% of the II < 3 . 106. 

Shanks notices: “This detailed description makes it highly plausible that 
the predominantly positive character of A(n) in this range of n is not merely 
a passing fancy of the integers ... but a permanent phenomenon for which a 
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sufficient number-theoretic cause should be assigned and of which a more 
precise formulation is desirable.” 

One kind of number-theoretic cause is given by Shanks, but his arguments 
are more heuristic. However, there seems to be a connection between the 
above kind of irregularities of the primes and the “quadratic” and “non- 
quadratic” residue classes mod k. More precisely, the numerical calculations 
confirm the following conjecture (Shanks): 

“If I, mod k is a quadratic residue and 1, mod k a non-quadratic residue, 
then we have “more” primes in I, mod k than in I, mod k.“’ 

It seemed to be very difficult to give statements about the regularity or 
irregularity of primes in residue classes which are (both) of quadratic or 
nonquadratic type. The situation is similar in the case of different types. 
which do not contain the class 1 mod k, as Knapowski and Turin noticed 
[ 12, V): “We wish to emphasize once more that we have not been able to 
prove a similar result in case where exactly one of the lj’s is a quadratic 
residue and none of I,, I, is ~1 (mod k). The simplest case in which our 
present method fails is that of k = 5, I, = 2 (or 3), I, = 4.” 

Precisely this will be investigated (as an example) in Section 4. Our 
method gives a result analogous to Theorem 1 below. 

The following chapters are a contribution to both demands expressed by 
Shanks. 

THEOREM 1. We have 

(9) 

The magnitude of divergence is given b-v 

Note 1. This is true without any conjecture! 

Note 2. Compare the weight-factor ‘ie-c’X” Chebyshev) with that in (9) 
“ e-“OgZZ)‘.r.” Both are of the same quality, i.e., they monotonically decrease 
to the constant function 1, if x increases to infinity. Looking at (2) the 
divergence of (9) is surprising, because the factor ‘(log z)/&” suggests con- 
vergence. 

Further investigations give 

’ See the note at the end of this section. 
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THEOREM 2. We have without any further conjecture 

for all u in 0 < a < 4. The magnitude of divergence is given 6.1 

-$ \/ICX.e+;“-:“‘?, 

Theorems 4 and 5 give similar statements for the progressions 3m + 1 and 
3m + 2. The question arises how the nontrivial zeros of L(s, x, mod 4) and 
other L-series influence the discrepancies of the primes. In the Chebyshevian 
case the “first” zero in the critical strip is 

and in the case L(s. xi mod 3) we have p,,? = 4 i i . 4 ,.... 
These zeros are not too close to the real axis. so the arguments to prove 

Theorem 1 (and others) work well. In all similar cases only the height of the 
first zero decides whether corresponding theorms hold or not. It is not 
important that the real part equals 4 (Riemann-Piltz conjecture)! The same 
peculiarity was noticed by Knapowski and Turan. They worked with the so 
called “Haselgrove Condition” [ 1 I, 12 1. In any case we emphasize that the 
position of that first zero conceals one further number-theoretic cause for the 
statements (9) and (10). 

In sections 2 and 3 we investigate the situation with the modules li = 4 
and k = 3. So all essential cases $(k) = 2 are treated. 

Section 3.2 gives some numerical data for the corresponding d(n) in the 
range 2 < n < 18,633,26 1. We recognize the same behaviour as in the 
Chebyshevian case, although no sign change occurs within this range. (Even 
with calculations up to 3.5 x IO’ a sign change was not found.) 

The situation in the cases k = 3, 4 is comparatively clear as all characters 
are real. The next size of moduli k = 5 and k = 8, is treated in Section 4, so 
we have dealt with all essential cases 4(k) = 4. The nonreal characters in the 
case k = 5 render the investigations more difficult. Nevertheless. we get 
results similar to Theorems 1 and 2. The case k = 8, however, is quite 
analogous to the case k = 4. The investigations show that in general the 
situation becomes more and more complicated with greater li. On the one 
hand this comes from the nonreal characters, and on the other hand we do 
not know the position of the first zero in the critical strip, besides some 
exeptions of lower k’s, 

Let us come back to Shanks’ remarks concerning the predominantly 
positive character of d(n). It is clear that Theorems I and 2 give at least a 
more precise formulation of the preponderance of the primes in 4m + 3 over 
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those in 4m + 1 (and analogue cases). As far as I know there exits no other 
statement of this kind which holds without any (unproven) conjecture. 

Note. With regard to Shanks’ conjecture concerning the quadratic 
residues and nonresidues, we refer to the paper “Quadratic Residues and the 
Distribution of Prime Numbers,” by the author and J. Pintz. In this paper we 
affirm Shanks’ conjecture in the sense of Theorem 1. In the general case this 
remains true under a hypothesis on the nontrivial zeros of the L-series, which 
is weaker than the Riemann-Piltz hypothesis [ 11. 

2. CHEBYSHEV’S CASE 

The equality (9), 

lim \‘ (-l)+logp e-(1°P2PP)ix = -00, 
x-00 ,f2 

v5 

is the final form of a special Explixit Formula. This formula is to be derived 
first. From [2] we take the general Explicit Formula: 

lim \’ M@) 
T+m p=o+iy 

IYI<T 

= Eo{M(O) + M(l)} + F(O) * logjp 

- y logp * p-“/2 MP”) . F&xP”) +xW”) . F(logP-“)i 
P.n 

-c . F(0) + v.p. i”’ F(x) * “1 Ie2,x, 
(+ 6)1X1 _ F(O) dx 

. 
--CC 

It holds for a special class of functions F and their Mellin-transform M. The 
sum on the left runs over the zeros p of L(s, x) in the critical strip. arranged 
in order of ascending ordinates. On the right we have 

Eo=Fo(x)= 1 for x=x01 x0 principal character, 

=o x+x0, 

6=6k)=l for x(=1) = -1, 

=o x(-l) = 1, 

f =f or), conductor of x, C = 0.577 . . . . Euler’s constant. The (double-) sum 
runs over the primes p and the natural numbers n, and the abbreviation v.p. 
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indicates the (Hadamard-) principal part of the integral if the function F is 
discontinuous at zero. 

The investigations in Sections 2.1, 2.2 and 2.3 are essentially based on 
formula (11). They work as paradigms to similar problems and questions. In 
addition, one more example is treated in Section 3. Historically, it has not 
had the same attention, but has the same significance as the one in this 
chapter. Some other (more complicated) examples (Section 4) show which 
types of conclusion are possible in the general case. 

2.1. The Explixit Formula with F(x) = e’. -“/Jq. 

Insert the function F(x) = emx”“, with the real parameter y, into (11). In 
the special case L(s, x) = L(s, x, mod 4), we obtain 

26 ~*e~v(p-‘~2F2=log$-2 x X,(P”) * 
1% P - . e-llo&Aw/4Y 

P(XI) P”.P#2 VP 

-c+2 i 
m e-.~v4ytx/2 -1 

1 -e2X 
dx. (12) 

‘0 

The asterisk means the ordered summation, The present choice of F has 
given a very simple Explicit Formula, because the terms 

x,(P”) . FWP”) and x,(P-“) * F(kp-“) 

are pairwise identical. Now, we isolate the sum in question (see (9)) and 
make y large. The other terms will be determined or estimated. To compare 
with Theorem 1 note that xl(p) equals (-l)y, p odd prime, and is zero if 
p = 2. We get 

y (-1) 
p-l logp 

2 . __ . e~(lo&?~P)/4Y 

P>2 v5 

=-fi \‘*e~‘~-fi’++,og+-+~+ f=’ e-x”4y+x’2-1 dx 
0(X,) -0 1 - e2X 

\‘ 
P”.LJ;iiJ22 

X,(P”) (13) 

2.1.1. The behaviour of C* if y is large. We use the following well- 
known facts about the zeros p of L(s, x1 mod 4) in the critical strip: 

(i) The first zero p = (T + iy, 0 < (J < 1, has the ordinate 

y = 6.02... 16, 171. 
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(ii) The number of zeros of L(s, xi) in the rectangle 0 < u < 1, 
T<lyj<T+l isoforder 

Wx 7’) if T-+co 1151. 

With this we obtain 

LEMMA 1. 

lim fi x * ey(p-‘/2)2 = 0, 
P+m P(XI) 

The fact (ii) generally holds for the Dirichlet series L&x), so L,emma 1 
always holds (in an analogue sense), if the “first” zero is far enough away 
from the real axis. (Note Section 5.) 

2.1.2. The behaviour of the integral. In this case the integral is 
particularly simple, and we get 

LEMMA 2. 

lim 
J 
.m e 

-x/4ytx/2 _ ] 

1 - ezX 
dx = O(1) (= -0.25432...). 

Y-r’x 0 

2.1.3. The higher prime powers. Use 

for Re(s) > 1 [9], 

to get 

LEMMA 3. 

lim F‘ l”gp -(log2p”)/4y 

P”rP> 2 

,yl(p”) . -. e 
Y+m 

G 

i G-3;(;) < 03. 

na3 

This leaves the squares of the primes to be examined. With 
~,,,10gp/p=10gx+0(1), for large x [15], we get 

LEMMA 4. 

lim T logp/p . e-(‘Og*p)‘y = +m. 
y-* py2 

Lemmas 1 to 4 and (13) immediately give the first part of 

(14) 
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THEOREM 1. We have 
lim \‘ (-I)+ lOgp/\/ij. e~(‘0p2p)‘x = -03. 

x-m P>2 

The magnitude of divergence is given by 

2.1.4. The exact order of the series in Theorem 1. The second part of 
Theorem 1 is proved by partial summation (e.g., 19, Theorem A]), which 
gives 151 

LEMMA 5. 
lim x logp/p . e-“°Kzp’lY = i fi + 0( 1). 
s - cc 

P>2 

For further details of the proofs of Lemmas l-5 see 131. 

2.2. An Explicit Formula with F(x) = e -y”4vt (i-n’~l- 
The function F(x) = e +“4y has given a very simple Explixit Formula. We 

now change this function F to the function 

with a new parameter a. This essentially gives an additional p-term in the 
Explicit Formula, which is weak enough to conserve the statements of the 
lemmas and of Theorem 1. But it is interesting to observe its effect on the 
order of divergence of the series in (9). We are still looking at the case 
L(s, x, mod 4). The function 

is defined on the whole real axis, the parameters are 4’ > 0, real, and a. The 
latter is at first arbitrarily real. From (11) we get 

\‘* 2 fieY(4 

P(XI) 

= log 4/n - 2: logp . p-“” . e-(‘“~2P”‘14g . x,(p”) 
P.tl 



DISCREPANCIES IN PRIME NUMBER DISTRIBUTION 261 

Note. If a = i some sums and integrals coincide and we have the simpler 
formula (12) from Section 2.1. We again investigate (15) with some 
sufficiently large y. For the sake of symmetry now the parameter a shall be 
within the range 

O<a<f. 

For, our formula (15) remains invariant by substituting 

a-l-a, 

because the zero p, = CT + iy, always has a “twin,” 

l-p,=l-o+iy,, if a#i. 

In addition, if x is purely real, then 

pb = 1 - u + iy, and pb = 1 - u - iy, 

are also zeros of L(s, x). 

2.2.1. The behaviour of 2 *, 

LEMMA 6. Let -5 < a < 6, then 

lim V * 2 6. ey(o-a)* = 0. 
y-m P(X,) 

Proof: At first we have 

/2&G-e 
y((o-n)2-y~+2i(u-a)] 

< 2 ~e-YIY~-(o-al~l 

_ e-EY . 2 fie-YIY2-k-a)*-El~ 

Take E = 10m2, then {y’ - (u - a)’ - E} > 0, for y, u and a are restricted by 

y > 6.02, O<u<l, -5<a<6. 

Now use the density statement (ii) (see 2.1.1.): 

x* 2 fiey(P-n)2 = O(emEY logy). 
P 

2.2.2. The integrals. In this section we work with a in 0 < a < 1, for this 
choice simplifies the proof of 
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LEMMA 7. Let 0 < a < 1 then 

(i) dx < 0 and 

(ii) - 
x~/4Yt(l--u)x 

dx ,< 0. 

Proof: If a = 0 then we have the equality sign on the right of (i), because 
the integral vanishes if y+ co. This is easy to see: The integrand is zero if 
x = 0. Let E > 0, then 

Now, if a > 0, the exponent -x2/4y + ax is positive as long as x < 4ay. so 
we have 

dx< 1 

.J,.” e pX’/4Y t (1x 2 
2x dx,<---. 

-0 e 2-a 

The tail 

! 

.cc e ~x?/4.v+ax _ 1 

ezx- 1 
dx 

.4av 

vanishes if y + co. The inequality (ii) holds by substituting a + 1 - a. 

2.2.3. The higher prime-powers. If divergent, the sum 

1 logp .p-“” . e-tlog*P“)/4Y . x,(p”) 

P>2 
ll=u 

is of higher order than 

\‘ logp . p-v(l-u) . e-~loE~Pw4Y . x,(p”), 
L 

P>2 
tl=u 

because the sums only differ in the exponent of p. As long as 0 < a < 4, we 
have -v(l -a) < -v . a. As x,(p’) = 1, we definitely know that in (15) 

y logp .p-2a . e-(loeZP)lY 

P>2 
n-2 

increases to infinity with larger order. This order of magnitude is given by 
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LEMMA 8. Let a in 0 < a ( f . If y --t 03 we have asymptotically 

5 logp . p-2u . e-“Og~p’ly N 6. ey(l-2a)*/4* 

P>2 
n=Z 

ProoJ By partial summation. 
Now, with Lemmas 6, 7 and 8, (15) gives 

\‘ logp , pPa . e--(‘og2P)/4y . x,(p) 
PZ2 

= _ fie~‘l-2d2/4 _ r logp. p-“” . e-“092P”‘/4~ . x,(p”) 

P’;; 
n>3 

+ 0(fieY(‘-2a)2’4). 

Concerning the sum Cp>2,n23, which is left, we first take 4 < a < +. then, 
comparing with 

\’ l%P -+s, < 03, 
- Pm= 

Re(s) > 1, 
P.m 

we get 

lim x logp . pP”” . e--(‘“g2pn)/4y . x,(p”) < ~13, 
y-O0 p>z 

n>3 

If a becomes smaller, then some new divergent series in Cp>2.n23 occur, but 
only a limited number, as long as a > 0. We know them by Lemma 8. Their 
magnitude is given by the maximal term ‘&P-‘~” in the preceding step. 

If a = 0 then JJp>2,n.+2 dominates for y + co, too. One has to compare the 
exponents 

-(log* p)/4y (case n = l), -(log’ p)/y (case n = 2), 

-(log’ p) -+ y (case n = 3),..., 
I 

-(log2 p) 
I 
$y (case n = b),.... 

Altogether, this gives 

THEOREM 2. Let a in 0 ,< a < 4, then 

lim T (-l)?logp. e - ClW~P,/4Y _ --co. 
x-m p2 P” 

(171 
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The order of divergence is given by 

- + $&+-2d1/‘6. 

This theorem shows that for x+ co 

S(x,a):= y (-$e=*e - mg~PMr 

P>Z Pa 

behaves “reasonably,” i.e., S(x, a) increases faster than S(x, a + F), E > 0. 
This is due to the more convergence forcing (monotonic) factors p-4 by 
which S(x, a + a) differs from S(x, a). 

2.2.4. Relations to the Chebyshev series. The just mentioned quality 
could have far-reaching importance. One is lead to proceed from (3) to (8) 
directly by pointwise multiplication with 

Unfortunately g(p) is monotonically decreasing in p, so that we cannot 
conclude 

S(x, a) + co a T(x) + co 

with T(x) := Cp>2 (-l)‘p~“‘2 logp . e- pLr. More insight could be derived if 
one uses the fact that the parameter x in S(x, a) and x in T(x) may increase 
independently from each other. So let us take S(h(x), a) and T(x), with 
h(x)-+ co ifx-, co, and 

gcp> = e-~l-ye - (log*p)lhW) 

Then we could derive some statements of the following type: “If (8) remains 
bounded, i.e., if (4) is wrong, then 

\’ (-1)‘P- I)/2 . logp . e-PI.x 

.4(X)<P<H(.T) 

increases to +co. The bounds A(x), B(x) also increase to infinity and depend 
on the choice of h(x).” 

This (rather heuristic) statement becomes interesting in connection with a 
theorem of Knapowski and Turin [ 12, VII]: “Denoting by c explicitly 
calculable positive numerical constants, there exist U, , U,, U,, U, numbers 
for T > c with 

log log log T< U, . eC’0g’s”hc!2 < U, < U, < T, 

log log log T,< U, . e- ‘0g’5.“bu4 < U, < U, < T 
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such that 

x (-1)‘p-“‘2 logp > \/v, 
c:,<p<l’? 

and 

\- _ (-l)‘p-“‘2 logp < -Ju, 
c,<pcC’, 

hold”. 

Note. We do not try here to remove the “log@ factor in (10). The same 
“heuristical” arguments as above give rise to the presumption that the 
behaviour of the series does not change if the logp factor is absent. (One 
could try to manage this with the same methods used by Landau [ 13, II] or 
by Hardy and Littlewood [7].) 

Remark. The results of Sections 2.1, and 2.2. are published under the 
author’s former name of “Besenfelder” in Crelles Journal, see [3]. 

3. THE PRIMES IN THE PROGRESSIONS 3n + 1 AND 3n + 2 

In this section we investigate an analogue case to the original one of 
Chebyshev, namely, the primes in the progressions 3n + 1 and 3n + 2. For 
this purpose we take the function 

xl(m) = $1 if m E 1 mod 3, 

=- 1 if m-2mod3, 

=o if m E 0 mod 3, 

so x, has a different meaning here than in the preceding sections. Now, if we 
sum the consecutive values of x1 over the primes only, up to a finite bound, 
we notice a similar behaviour as in the case mod 4. 

Our investigations are split into two parts, a theoretical one, 3.1, and a 
practical one, 3.2. In the latter, numerical data are given. based on computer 
calculations. 

3.1. Theoretical Investigations 
The same methods as used before can be used to give statements about the 

discrepancies of the primes in the progressions 3n + 1, 3n + 2. They 
correspond to those already given. So, essentially all moduli with q+(k) = 2 
are settled. (The case k = 6, #(k) = 2, is contained in k = 3, for the Dirichlet 
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character ,Y, mod 6 is generated by x1 mod 3, it is imprimitive.) The main 
Explicit Formula, which can be deduced in the same way as (12) is 

2\/ny x * ey(p-a’2 = log + _ x logp . p-na , e-l~~grPn/4J . Xl(P”) 
P(XI) P.n 

_ \’ logp .p-“+“l . e~loezP”/4Y . x,(pp”) 
- 
P.n 

y+nx 

-C+J 
.x, e-x2/4 

-1 

-0 
1 -ezx dx 

+i 

,a ,-*V4Y+~I -a)X _ 1 

1 -e2x 
dx. (18) 

-0 

This differs from (12) by the zeros poll) and the conductor f (=3). So the 
constant log 3/n is negative here (= -0.046 117...). Note that the sum Cp,” 
does not run over p = 3. We state 

THEOREM 3. Let x, mod 3 be given as above, then 

h; xx,(p) . logp/fi. e -‘OgZp’-’ = -co. 
P 

(19) 

The order of magnitude of divergence is given by 

a $G+ O(1). 

For the proof, we only have to look whether the first zero of L(s, x, mod 3) 
in the critical strip is far enough away from the real axis. We refer to the 
calculations of Davies and Haselgrove [6], or of Spira [ 171, which give 

This also proves 
p,.2~l mod 3) = 1 f i . 8 ,.... 

THEOREM 4. Let x, mod 3 be as above, then 

lim \’ xl(p) logp/p” . e-‘Og’p’x = --co 
x+02 7 

for all a in 0 < a < f . The order of magnitude of divergence is given bjl 

-f fi. e*;‘l-2*‘*. 

3.2. Computer Data 

Chebyshev, who asserted a preponderance of the primes congruent 3 
mod 4, was not able to use such fast calculating machines as those available 
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to us. So his upper bounds of calculations do not exceed some ten thousands. 
Nowadays it is possible to reach the millions (or even billions) within a short 
time. So the first sign change of 

n(x, 3 mod 4) - X(X, 1 mod 4) 

has been calculated and repeatedly checked. It is x = 26, 861. If we look at 
k = 8, the first sign change occurs a little “later” and we have 

x(588,067,889,5 mod 8) - 7c(588,067,889, 1 mod 8) = -1 

for the first time, see (81. 
To get a better insight into the numerical behaviour of 

d,(x) := 7c(x, 2 mod 3) - rc(x, 1 mod 3) 

I have calculated some values by a computer of the “Computer Gesellschaft 
Konstanz,” the TR 440. The range of computation is the interval 

2<x< 18,633,261. (1) 

The upper bound is chosen to be a number divisible by 3 (for technical 
purposes only). A, never changed its sign within this range, nor became zero. 
The data show its maximal value at the prime, p = 15,662,597. We have 

d,(15, 662, 597) = +465. 

The outcome shows the following: Every new extremal value, together with 
the point x (=p, prime), was printed. These values carry a “ - ” sign, i.e., 

was calculated. From lo6 onwards, steps of size 33, 333 were printed as 
intermediate values, so some (eventually) important information could be 
preserved. So we have the values of the sum 

x X‘(P) 
P<X 

at the intermediate values x. From this we notice, for example, that 
c X,GpGX,xl(p) may be large on “small” intervals [xl,xZ]: we have 

p( z4,,, xl(~) = -69 

but 
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As the intermediate value 200,001 is not prime (and rather chosen at 
random), it can happen that the sum increases if the upper bound of this 
inverval varies. The following table gives a first survey. 

TABLE I 

5 
59 

599 
5.393 

26,993 
69.959 
99.999 

122,963 
138,239 
174,569 
200,oo 1 
250,949 
174,041 
783.179 
999,999 

3,978,707 
6,788,429 
I. 291,259 
8.966, 649 

10.000,017 
10.200,009 
11,033,331 
13.310.819 
15.662.597 
17,366.607 
18,633,261 

-1 XI -Min 

2 
4 
8 

16 
32 
50 
23 
51 
64 
69 

2 
4 
8 

16 
32 
50 

51 
64 
69 

70 
128 
137 
135 
256 
300 
364 
150 
190 
162 

91 
365 
465 
192 

310 

70 
128 
137 

256 
300 
364 

364 
365 
465 

Further information is contained in a paper which shall be published 
elsewhere. (It contains numerical data not only for this case but also for 
some other moduli. By request it can be obtained as a preprint from the 
author.) 

As can be seen, the sum C,x,(p) has never changed its sign, and has 
never even reached zero. It may be that the primes 2 and 5 at the very 
beginning (so we have the “starting value” -2) overpower the whole range 
up to IO’. One should compare this with the two other cases mod 4 and 
mod 8: 

Take CPCx (-l)‘pP”‘2 with its “starting value” -1. The x in question is 
of order 104. 
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Take xi,, mods 1 - CzE5 mods I with its “starting value” -2. The x in 
question is of order 109. 

4. THE HIGHER MODULI, e.g., k = 5, k = 8 

The previous chapters settle all cases 4(k) = 2. Here we try to adapt the 
methods to the moduli of the next bigger size, p)(k) = 4. Essentially k == 5 and 
k = 8 are to be examined. In the latter case only real characters exist. There 
is only one quadratic residue class here, which is marked by a small circle. 
Following Shanks’ conjecture (p. 4), we can expect that there are “less” 
primes in 1 mod 8 than in each of the given classes. This is indeed true (in 
the sense of Theorem l), as the table shows. One only has to “read” it with 
an appropriate Explicit Formula! Take 

\’ logp/fi. e-(‘og2p)i4y . x(p) + 2 logp/p . e-c’0g2p”~ . x’(p) 
P P 

= O(1) if x+x0, 

=4\/71yaey’4+O(1) if x=x0. (21) 

This formula corresponds to (12) if x # x0. The terms which are bounded for 
large y are summarized in O(1) (they differ only slightly from those in (12)). 
The first zeros of L(s, x mod 8) are not too close to the real axis. 

If x =x0 (principal character) this L-series L(s, x0 mod 8) is essentially the 
Riemann zeta function, so the terms M(0) and M( 1) occur (compare with 
(11)). They give the exponentially increasing term 

To get a statement about the discrepancies we have to take (21) and Table 
II. Let x #x0, then 

x2= 1 

TABLE II 

@mod 8 3mod8 5mod8 7mod8 Other 

X0 1 1 1 I 0 
XI I -1 1 -1 0 
Xi 1 1 -1 -1 0 
X3 1 -1 -1 1 0 

641/15/2-9 
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if p E 1, 3, 5, 7 mod 8. The order of magnitude of 

y logplp . e~loP~Pl? 

is known by Lemma 5: + fi + 0( 1 ), if y -+ co. So (2 1) changes into 

1 log p/&y . e - (lo!s*P)/4Y 4P)=-~~+Ou) (22) 
P 

if y is large. Take this formula simultaneously for xi and xi, i, j = 1, 2, 3, 
if j, and add. This gives 

THEOREM 5. We have 

lim \‘ 1ogplfi.e 
x+m pal mod8 

lim 
x+cc D=lmodE 

lim \‘ 
x-m - log PI&. e 

p=l mod8 

(log~P)l-x _ \‘ 

p=3;od 8 

logp/fi. eP”0K2p)‘-r = -a, 

(23) 
(l0g’P)l.r _ _ logp/fi. e (lw*P)ls --co, \‘ 

p=5 mod 8 
(24) 

(l0lz~P)l.X _ \‘ 

p&&d 8 

logp/&. e- (‘*g+)l-r = -a). 

C-25) 

The order of magnitude of divergence is given by - $ fi + O(l), respec- 
tively. 

So we have got a quantitative comparison of p = 1 mod 8 and p = 3,5,7 
mod 8. If one would like to compare the quadratic nonresidues, one has to 
subtract the formulas. This leads to 

THEOREM 6. We have 

lim \’ - \’ 
x*cc p=3 mod 8 p&&d 8 

logp/fi. e-“0g2p”x = O(l), (26) 

lim \‘ - 
I-l= p=3?&d 8 

x log p/G . e ~“Og*p)‘~Y = 0( 1 ), (27) 
pal mod 8 

lim \‘ - \‘ 

~‘-O” p&mod 8 p&.&d 8 

logp/fi . e -(‘Op*pp)‘x = 0( 1). (28) 

We do not intend to find the liner discrepancies here. To do this one has to 
investigate the bounded terms, which are in O(1). Conserning the module 
k = 5, we have the following table. Here, the characters xx and x3 are not 
purely real, and this renders the investigations more complicated. The 
quadratic residues are marked as before. 
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TABLE III 

@mod 5 2mod5 3mod5 @mod 5 Other 

X0 1 1 I I 0 
XI 1 -1 -1 I 0 
X2 1 i -i -1 0 
X3 1 -i i -I 0 

The Explicit Formulas for the two real characters do not much differ from 
(21). However, if we take those for x2 and x3, we have, in general, 

X2,3(P? f x*,3W”). 

So the terms in the sum over the prime-powers do not coincide here. If 
x = x2,3 we have to work with 

T logp/fi a e-(‘og2Pn)‘4y(&n) + x(p-“)) = O(1) if y-+ co. (29) 
P” 

Take the Explixit Formulas for x0 and for x, and subtract them. Then the 
table gives 

j/kjeyi4 + O(l) zz x + s logp/& . e-““g2p)‘4y. (30) 
pz2 p=3 

However, the sum of the two gives 

$ijeY14 + O( 1) = 1 + \‘ logp/fi . e-(‘0g*p)‘4y 
PZI pZ 

+ F‘ 
pY2 

+ \i logp/p . e-“og2P’ly. 

pT3 

The single formula for x2 is 

(31) 

O( 1) = s - x log*/&. e-(‘0gzp”4y 
PC1 p=4 

+ x _ E - x + x logp/p . e-(‘Og*p)‘y. (32) 
p,11 p-2 p=3 ps-4 

The sum and the difference, respectively, of (31) and (32) give the following 
information: 

v log p/fi . e (‘ogzp”4y 
pZ1 

= 4 *eY14 - p;2 - p;3 logp/p * e-(‘Ogzp)‘y + O(1) (33) 
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and 

\’ logp/fi. e+los~P)14? 

pc4 

= 5 fiey’4 -p;, J4 logp/p. e-(‘@P)‘? + O(1). (34) 

Both formulas show that CPG r and Cprd as well, if y + co, increase slower 
than i fieY14. For we have 

lim \‘ logp/p . e--(‘“g2P)lY = +a 
Y-m pzj 

for j = 1, 2, 3,4. However, (30) says that 

holds for at least one of the two sums. Altogether we state 

THEOREM 7. For at ieast one of the two classes 2 mod 5, 3 mod 5 we 
have 

\’ - 1 logp/fi. e~“ogzp”4y 
p?,? p z-4 

(35) 

This theorem also holds if one changes p = 4 into p = 1 mod 5. 
Finally we note that such tables (Tables II and III) show which 

comparisons can be made. But our method always depends on the location 
of the first zero of L(s, x) in the critical strip. For some small k these zeros 
all have the desired property. 

5. CONCLUDING REMARKS 

5.1. The Zeros with “Smal?’ Ordinates 
We have learned the importance of the location of the first zero for the use 

of the Explicit Formulas. Now the conditions for this use is to be examined 
more exactly. 

First we reformulate the “Haselgrove condition,” which was referred to in 
the papers of Knapowski and Turin: 

(,FiY) “There is a number A(k) in 0 < A(k) < 1 such that 

L(s, xl) f 0. s = c7 + it, 

in the rectangle 0 < u < 1, 1 tI <A(k).” 
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The results in this paper can be obtained if no nonreal zero of the given L- 
series is in the “bow-tie” B. 

4 Im 

The difference between this and (ZF) is mainly, that real zeros are 
allowed in B. The condition is: 

(B) “There is no nonreal zero of L(b, ,y mod k), s = u + it. in the 

Of course, from the present state of knowledge, it is important to find an L- 
series which vanishes in this region B. 

5.2. Some Further Problems 

We refer to the long list of problems given by Knapowski and Turin 
[ 11, I] and would like to add the following: 

1. If k is large, do theorems like 1, 2, 3 still hold? If not, what are the 
reasons for the failure? 

2. Let F from 2.1 be restricted on (0, co) only. Then Table III 
immediately applies. How does the C* behave if y increases? 

3. Prove the following conjecture: 

“L(s, x) never vanishes in the “bow-tie” B.” 

4. Are there some other weight-functions (see Section 1) which give 
statements similar to Theorem l? In the author’s opinion all these points are 
important for further investigations. 
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