


THE ZETA FUNCTION AND PRIME NUMBERS

H. L. Montgomery

< -
1. Zeros of /. n s,
nN
2. Zeros on the critical line.
3. Sums of independent random variables.
4. Vaughan's version of Vinogradov's method,

PREFACE: In these lectures we present unrelated
results. In the first lecture we discuss work of Turdn
concerning the Riemann Hypothesis. In the second lecﬁure
we give a brief account of Levinson's work concerning
zeros of the zeta function on the critical line. If the
Riemann Hypothesis is true then the error term in the
prime number theorem has a limiting distribution (after
normalization and a change of variables) which can be
related to sums of random variables; we investigate this
in Lecture 3. Finally in Lecture 4 we present Vaughan's
improved version of a method of Vinogradov for estimating

sums of the sort 2 f(p) .
p=x




1. ZEROS OF ; n~®
n

Turdn proved that if for all large N QN(S) =
Z n~% does not vanish in the half plane ¢ > 1 then the
n

Riemann Hypothesis is true. We shall show presently that

this hypothesis is false, but as the argument may have

some use in a modified form, we first give Turdn's proof.
Suppose that QN(S) # 0 for o >1 . Then by

Bohr's theory of values of absolutely convergent Dirichlet

series (as found, for example, in the last chapter of

Apostol's”Modular Functions and Dirichlet Series in
Number Theory'), it follows that if f is totally

multiplicative and unimodular, then the Dirichlet poly-

nomial E fi%l does not vanish in the half-plane ¢ > 1 .
n

n
We take the particular case f(n) = NMn), where N(n) is

Liouville's lambda function, A(n) = (_1)Q(n). (Here Q(n)
is the total number of prime factors of n, counting

multiplicity.) From the fact that E Zi%l does not
n<N n
vanish in the half-plane ¢ > 1 it follows in particular

that it does not vanish on the ray o > 1. That is,

E Aﬁﬂl + 0 for o >1. But this is a continuous
n<N n°

fonction which tends to 1 as ¢ tends to ®; hence

;E: Aiﬂl >0 for o >1, and in particular :E; ziﬂl >0
n<N n® n<N o
: _ Nn) .
for all large N. We put now L(u) = ;E; . This
n<u o
is a coefficient sum of a Dirichlet series, which we

recognize by its Buler product:
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We now relate 22:) tovthe coefficient sum L(u). In
: @

general, if we have a Dirichlet series A(s) = S ann—s .
n=1

then
(1) A(s) = f(7'an) du
n<N u
To see this, write n® = SJ' _QE_' Then
n us+l

A(S)anéanJ:;%}l':SJ (Z s+1 .

We have not said when (1) is valid. The argument just

given shows that (1) holds when o > max(O,ca]. By
arguing more carefully it can be shown that (1) holds

when ¢ > max (O,dc). In the case at hand we have

(2) C%%Syl . (s-l)Jl Ll(l‘sl) du .

A general theorem of Landau asserts that if a general

=N S
Dirichlet series A(s) =iZ£ane n has non-negative
then the

coefficients and abscissa of convergence o0 ,
c

point o, is a singular point of A(s). This theorem

applies also to the integral in (2), and hence o, is

a singularity of the meromorphic function




But it is easy to check that the only real pole of

(2s) . 1 . '
TE§T73T§7 is at s = 5 . Hence the integral (3)
converges for o > L so that TMQL%E%WT is regular in
2 2 s=1)C{s ~
this half-plane. But if p = B + iy were a 2ero of (=)
: 1, (2s)

with 8 > 5 then Tg:%jogj would have a pole at o ;
hence no such zero exists, and the Riemann Hypothesis is
true.

Turan also found a bound for the zeros of QN(S)

If N is sufficiently large then QN(S) 4 0 for

2 log log N
log N :

(4) 5> 1 +

To see this, note that QN(S) = ((s) - ZZ; n-s, and hence
n>N

ey > e - 2_ o0

n>N

But for o > 1,

., -1 -1
inf| ¢ (ot+it) | = infﬂ |-p~07t] = ﬂ(Hp—o) _ L(29)
t t p p Clo

and this is > (G;l) . On the other hand
[0} 1_0
n~ 9 S.f u %du = E—:T s
noN N o
so that
1-0
(0_1) N ~
|CN(S)I > o - O"-l > 0
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. 2 log log N
if o> 1 + Tos N and N > NO

I have shown (in a paper to appear in a volume

dedicated to Turdn's memory) that Turdn's hypothesis is

badly false, and in fact that the bound (4) is close to the

truth., (Turdn never conjectured that his hypothesis is

true, he merely showed that it implies the Riemann

Hypothesis.) More precisely, if c < % - 1 and

N > No(c) then gN(s) has zeros in the half-plane
c log log N
(5) o> 17+ Toz N

By a different method, using Haldsz's method for

estimating sums of multiplicative functions, I have also

4

shown that if ¢ >= -1 and N > NO((:) then gN(s) # 0

for s in the half-plane (5).
We now give a simple proof of a weaker result,

namely that there is an absolute constant ¢ > 0 such

that for all large N, QN(S) has a zero in the half-plane

c
(6) o> 1 + ng“ﬁ .

Let a_ and bn be unimodular totally multipli-

cative functions. By Bohr's theory it suffices to

construct b so that 2 b n—s
n n
n<N

plane (6). We start with a sum ann_s
n<N

has a zero in the half-

which has a

Zzero near 1, and seek to move it to the¢ right by

altering the definition of the a_ Suich an alteration




on several primes means that we must alter a on all
multiples of these primes, which leads to complications.
However, if we alter a_ = only on primes p € (%,N]

then no other terms =n < N are affected. Accordingly we

take

e(8)) if pE(%,N],

ap otherwise;

here the e(ep) are selected later. Then

S

n<N n s
= T} n

(7) Z?_rsl:Z.__ ZJ;S- e(9)-a,)-
<<y P

NIZ

We try first a = NMn). By the prime number theorem,

(8) Z 7\.(n) = g(%zg + O(Nl_cexp(—w\/log N))

n<N n ¢

for o > 1, |t] < exp(W/Tog N). If we take s =g in
(7) then the sum over p ‘takes on all values in the disc

|z-r| < r as the e(ep) vary, where

r o= § ._].'—NN]--’G
g ™7 log N ’

ol =
A
2

ho!

This does not work, for in (7) both terms have
positive real part. The further idea needed here is that
by taking a slightly more complicated choice of a, we

can essentially change the sign of the main term on the

right in (8). Take
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i if p <P,

-1 4if p > P ,

and let P be an absolute constant determined by the

property that P is the least number for which

-1

arg \ l (1 - —) > v,
p<P

The

Z-% %%T—u-—> (1 +—-)+0(N1 exp (=/Tog N))

for o >1, |t] < exp(J/Tog N) . Hence in particular

2 = “U’A()+o( 5)
n<N n® e (log N)‘

for ¢ > 1, where A(g) is continuous, A'(¢) K 1, and

arg A(1) = n + 8§ with 0 < § < 1%0 . Now we see that if
C .y .
co=1+ Tog N * © small and p081t§ve, then a suitable
choice of e(8_) in (7) gives z = =0 .
P n<N n°®

Note that our argument shows that the real parts

of the zeros of 2 n~° are dense in the interval
, n<N
(1,1 + ng—ﬁ]’ Reynolds Monach has used a similar argu-

ment to show that gN(s) has a zero in ¢ > 1 for all

N >30 .




2. ZEROS ON THE CRITICAL LINE

Let N(t) denote the number of zeros of ¢(s)
for which 0 < p<1,0<7y<t%, let N,(T) denote the
number of zeros for which B = %, 0 <y <T, andlet

Nl(T) denote the number of simple zeros such that B = %,

0<y<T. Then N(T)m~ 5=log T as T-x. Itwas
proved by Hardy in 1914 that NO(T) = o , Later NO(T) > ¢T

was obtained in several ways; the proof of Siegel

(Collected Works) is notable. In 1942 Selberg proved that

that Ny > cN(T), so that a positive proportion of the
zeros are on the critical line. 1In 1974, Levinson
(Advances Math. 13 (1974), 383—436) devised a new method
which gives c¢ = 0.34 . [Later Selberg (unpublished) and
Heath-Brown (Bull., London Math. Soc.

independently observed that with a slight modification the
same lower bound applies to Nl(T). We give an account

of Levinson'!s method. '

We begin by proving a theorem of Levinson and

Montgomery (Acta Math 133 (1974), 49-65).

THEOREM 1. Let N;(T) and N (T) denote the
aumber of zeros of ((s) and of ¢'(s), respectively,
in the rectangle -1 <o < %, 0<t<T. Then
N (T) = Ny (7) + 0(Log T).

Tt was proved by Speiser (Math. Ann, 110 (1934),
-8 -




514-521) that the Riemann Hypothesis is equivalent to the

assertion that (¢ (s) # 0 for 0 < g < %

Proof: We examine the change in argument of él(s)
along the path from % + 1A to % + iT, to -1 + iT +to
-1 + iA. To avoid passing through a zero of Q(s) on the
critical line we take a semicircular detour to the left

around the zero., Let h(s) = P(%)ﬂ-s/z . Then .((s)h(s)

Y
is real when ¢ = %; consequently %L(%+it) + %—(%+it) is

purely imaginary. But %l(s) = %1og s + 0(1) so that
%l(%+it) < 0 along our path from % + iA  to % + iT
To treat the other vertical range we take logarithmic
derivatives of the functional equatidn,

C(s)h(s) = ¢(1-s)h(1-s), to get

$(s) = - £(1-5) - §H(=) - $r(1-s)

Taking s = -1 + it, we See that %L(m1+it) = ~log t + 0(1).
Heﬁce Re %L(-l+it) < 0 on this path also., The change of
argument of él(s) on the horizontal segments is 0(log T),
as we see from Lemma 9,4 of Titchmarsh's Theory of the
Riemann zeta function. Hence the result,

We now outline the proof of

THEOREM 2. For all large T, Nl(T) > (0.34)5%1og T.
Let ’Né(T) denote the number of zeros of (7(s)

with real part % and imaginary part between O and T . By
-0 -




the proof of Theorem 1 we see that Q'(%+it) = 0 can
happen only when g(%+it) = 0, Hence if p is a zero of
¢(s) of multiplicity m then it is a zero of ('(s) of

multiplicity m - 1, so that NY(T) = ; (m =1).
P 0 A= P
O0<y<T
distinct vy
1
B =3

1 1 : .
Let NG(T) = NL(T) + NO(T), so that NG(T) is the

aumber of zeros of ('(s) din the closed rectangle
-1 <o 5-%, A<t <T. Ve write the functional equation
as ((1-s) = E%%%%j t(s), and differentiate to obtain

the identity

(1 (1-8) = - PSS (E (s )4ER(1-s)) ()47 (=)

h(s)
~ h(i-s) VG(S)’

say. The factor h(s)/h(l-s) is regular and non-

vanishing, so that NG(T) is the number of zeros of G

in the rectangle % < 0'5 2, A<t < T. Since

N(T) = NO(T) + ZNL(T), it follows from Theorem 1 that

N(T) - 2N (T) + 0(log T) = 2 (Z—mp) < n ()

0<y<T
Y distinct

Thus it suffices to show that N,(T) <-9%%§ T log T for
all large T. To this end we employ a method which is

standard in the theory of the zeta function. First we have
- 10 -




Littlewood's Lemma., If F(s) is regular in the

rectangle a < g <2, T<t<T+ U, andif F(s) has

Zeros Zysee.sZp in this rectangle, then
K 1 T+U
(1) E (Rezk—a) = 5= ir log|F(a+it)|dt
k=1
1 T+U
- 5= IT lo%|F(2+{E)[d?
1 2
+ pr fa arg F(o+i(T+U))do
3 7 ]
1 .
- 3-1—‘[ Ia arg F(O+1T)df3 .

This is an analogue of Jensen's formula, and is
proved in the same way. Since we want an upper bound for

N, (T+U) = N (T) we must take a < 2 ; in fact we take

1 R . :
a =73 - 551 where R is a parameter to be chosen later.
Hence

K
N, (T+U) - N (1) < 12%—2‘52: (Re z, - a)
=1

We do not take F = G, but rather F = G, where {(s)
is chosen to smooth out the peaks of G, so that our
estimate for the first term on the right in (1) is
improved, This may introduce further zeros, i.e. zeros
of {, but this only makes the sum (1) larger. Levinson

chose the mollifier

N
log =
¢(S),= ZE:: Au(n)l - - Toz § ,

n<N S+-§—




where N = Tl/z(log T)"ZO ., It is difficult to determine
precisely which mollifier will yield the best results;

this one is clearly quite good. The last three terms on

the right hand side of (1) are easily seen to be 0(log T).

Thus it suffices to show that

T+U

[ 1loglGy(a+it)]dt < (0.33)TR .
T

We are not in a position to deal directly with this

integral; instead we use the geometric—arithmetic mean

inequality:
T+U 1 L THU o
[ loglGy(a+it)|dt < 35 Ulog(gf |Gy(a+it)|“dt)
T T
=10 . .
Here U= T(log T) . Tt now takes Levinson 45 printed

pages to show that

T+U ) ‘ 1
T Gy (a+it) | “dt = UF(R) + 0(U(logT) ),
T

where

]
(a2}

2R, 1 1 1

2

(2) F(R) = e 12 °

|

S
)

aoh“
[NV
NG
el

Despite being very long and complicated, this calculation
is essentially routine. We take R = 1.3, %o get

F(R) < 2.3502, and then we see that
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3 log F(R) < 0.42725 < 0.420 = (0.33)(1.3) .

Note that in our estimate NG(T)’< %%T log T, if
c > % we obtain no result. Thus it is necessary to prove
(2) before one can see that the method succeeds. This is

different from earlier methods, which succeed without the

need of calculating constants.




3, SUMS OF TNDEPENDENT RANDOM VARIABLES

N.B. I have tried in vain to find Theorems 1 and
2 in the literature. Any useful references would be greatly
appreciated.

If Xl’X2’°" are independent random variables
and X =Z:Xk converges almost everywhere, wWe seek to
estimate the distribution of X in terms of the distri-

bution functions of the‘ X We restrict our attention to

k.

o8]
a special case; we let £(8) = E r, sin amg, where
k=1
o8] 2 ©
rk\\(D and z Ty < ©, Here § €T, and our
k=1 .
probability measure is Lebesgue measure on 7 . The

condition that rk\x 0 does not occasion any loss of
generality, since we may permute k's and translate ek‘s
without altering the distribution function of £(8) -
The condition that Zrkz < © is the necessary and
sufficient condition that the sum defining £(8) should
converge almost everywhere (as we see by Kolmogorov's

theorem). (If Z:Tkz — ® +then the sum diverges a,e.) .

THEOREM 1. Let £(8) be as above. For any

integer K > 1,

K K -1
3 2 2
P(£(2)22 :éi e < expl- 302 7 (2 w2 ),

k>K

- 14 -



and

K -1
r.) > 2“4@exp(m100(§§% Tk>2<jgl rkz) ) .

P(£(8)> 5
k>K

If the Riemann Hypothesis is true and the
imaginary parts Yy > 0 of the zeros are linearly indepen-
dent then the asymptotic distribution function of
i£2§lzgz is the distribution function of the random

27
e

. 2 , \
variabl g) = / ; sin2md . That is, for ever
a e e(8) =5 ToT o ? Y

real number V,

1
5y
1im % meas {y€[0,Y]: §(e¥)-e"2e”" V} = P(g(g)>V) .

Y =0

By means of Theorem 1 we obtain rough estimates for this
probability: There are constants 0 < cq < Cy such that
for lavrge V > 0,

szv CIJV

exp (~e ) < P(g(8)>V) < exp(-e ) .

We can refine the upper bound by taking more care, but the
lower bound presents more difficulties. However, when the
Ty decrease very rapidly, as they do here, we can obtain

a8 sharp lower bound from

THEOREM 2, Let £{8) be as in Theorem 1. If 3§
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rk>6

2
mwr
P(£(8)>V) > L exp(- i Z log k)
w7 s - D 2 = 28
rk,-a

Using the above, we can show that there are

constants 0 < cq < c2 such that

exp(-c /7 &/FV) < P(g(8)>V) 5 expl-cp/V & 2TV

This inequality suggests the following

CONJECTURE.
- y(x)-x .
1im l = i =
2

x“(logloglog x)z

To prove Theorem 1 we use the method of the Laplace
transform; that is we use the function
ekf) _ J ekf

E( dy .

Ar, sin2md
Here e7\'f is a product of factors e k k, each
depending on only one coordinate, so the integral above 1is
o 1 krkSinZﬂe o
=T1J e ag = I(hry )
k=170 k=

- 16 -




where

1 rsin2mb
(1) - I(r) = f gt e de .
0

Before proceeding further, we establish the following

basic inequalities:

r
[
(2) I(r) < 1.2 all r>o0,

o4
r
Zez r>7,

I(r) > _r_z
el o0<r<7

The first bound in (2) is trivial, since the
integrand in (1) is never more than e° . (A deeper
T

analysis reveals that I(r) ~ for r - © ,) Now

2
, 3, Ve V3,
eSIR2ME 5 27 eor L <<l 5o that I(r) > 3e?
- 1. 6 - - 3 =%
and this is >2e2 for r > 7. To derive the remaining

bounds, which pertain to small values of r, we determine
the power series expansion of I(r). Using the power

L . Z .
Series expansion for e°, we find that

n 1
I(r) = %-,- T (sin2m6)™de .
=0 “. 0o

Here the integrals vanish for odd n, so that




> on 1 : j?_ on 1 n 1 L
Zi : 2n 1 r T2 2
Ii(r) = Lz f (sin2me)“'dp = = - x (1-x)“dx .
= DR n 4o (27 j;
, 2
(x=(sin2mp)“)
This last integral is
1 1
B(n + 11, _ T(n+5)r(3) _ (on)inm
s T . ]
2°2 T{n+l) 22n(n1)2
hence
2n
I(r) = Z 2 5 -
n=0 (nl)
We recognize this as a Bessel function. (I guess we do =~
the library is closed). As for the remaining
inequalities, we see that
© r 2n r2
&) LI
1) < 22— = et
nl
n=0
and that
r_2
I(r) 21+
2
r_
19

if 0 <r <7 then this > e .

From the second part of (2) we note that

(e8]

2
E(e%f) < exp(zi- E rkz) < o
k=1

- 18 -



thus all integrals that we have considered are absolutely

convergent and lfl < ® a.e.; we need Kolmogorcv's

theorem only to see that the condition zirkz < © is not

unduly restrictive.

With more work we could show that the first part of
(3) holdszfor r > 5, and that if 0 <r < 5 then

T

I(r) > éTF. This would yield better constants in the

lower bound of Theorem 1, but we prefer to give a self-
contained account which can be easily verified.

To obtain the upper bound in Theorem 1 we use

Chernoff's inequality, which asserts that for any

AN>0, V>0,

P(£>V) < & VE(™)

To see this we note that

P(£>v) < [ du < jek(f_v)du = e-kyf May = e V(M)

£V

For the lower bound, we use the inequality

(4) P(F> %E(F)) > %E(F)Z/E(FZ},

valid for any non-negative F, To see this, we first note




j Fdu < 3E(F)
F< %E(F')

f Fau < 3E(F) .
F> -12-E(F)

g(F)? = (JF an)? < (2 f Fdu)? ,
F> %E(F)

and by Cauchy’'s inequality this is
2 1oy 2
< 4 1 dp Fody < 4P(F> —2E(F))E(F ) -
F> %E(F) F> %E(F)

We shall apply this with F = e .
We now proof the upper bound in Theorem 1. By (2)

we have

We now take

k>K

K K
E E 2 —
o= ( rk)/ v s V=2 ? Ty o
k=1 =
Then by Chernoff’s inequality

K K
SNV MY L axp (- 2 2 2y.
P(f> 2k§=lrk) < e TE(eT) xp ( 4(k2= r, ) /é{ v )

- 20 -



this is the desired result.

we take AN > 0 so that

that there is a A

of (5) are continuous functions of

Ieft hand side is =1

k=1
and

Thus there is such a A,

(6) N < 7/1"k

k>K

Moreover, by (3) we see that if A\ >

2
E(F) >.T_T I(krk) > exp(%@

For the lower bound we use (4) with F

K
(5) B(e™) = zexp (G 5wy -

if and only if (and only if and only if)

such that (5) holds.

N

7

k

2

k>K

The two sides

then

K

for A =

= K . 2 Z
E(F) > ] iI(krk) > 2 exp(-lz-?\.E re) 2 2 exp(3
k=1 k=1

ANE
e

3

F
K
Z:I%;' Before proceeding further we demonstrate

0 +the

while the right hand side is

rk)

7\"




But if a7\.2 < bN + ¢ with a,b,c > O then

2
. < bﬂ{b +4ac _ (141/1 4ac )y < -——(]_-1-1 2ac

2a b

o)
©

Thus

K
é:rk
19 %=1 2 log 2

3 2 R

(8) A<

=
Y
=
"3
P
]
et

Finally, by (5) we have

) K
Le(r)?/6(r?) = exp(?n;rk)/E(Fz) :

and by (2) this is

K
> exp(—?xz —7\. z
‘ k=1

k>K

By (7) this is

K
-1 21
> 2 Wexp(- 3¢ ; r)s

and by (8) this is

> 27 exp(— 21, 19(:E: ) /;E:

k>K

which gives the desired bound.

The above proof was suggested to me by Andrew
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Odlyzko. My original (much more complicated) proof

depended on moment inequalities,

(9) f lgiérke(ek)lzndu < nl(éi&rkz) .

A corresponding lower bound

(10) f Igi;rke(ek)lzndu > Z—nn!(;§; ry.

holds provided that

0

Z 2 1 2
(11) r “ <= Z r .
=n K 245 K

It is not difficult to derive an upper bound for

P(|f|>V) from (9), but the condition (11) restricts our
- K
use of (10). We use (10) if ( r )2 <ik r. 2.
= kK -3 g Kk

Otherwise we use a less refined form of Theorem 2, which

asserts that

o K
P(IE;; rke(Gk)lz %‘E;; r.) 2> 7K

One advantage of the moment method is that we can deal

directly with a complex-valued random variable.

We now prove Theorem 2. We break the sum

defining f into two ranges, f = S' + = fl + f
rkSé r, 6

f, fl >V and f2 >0 then f > V. Hence

- 23 -




P(E>V) > P(£2VIP(£,20) =

for all k such that I For

ry 8

for all x, Aif |ek_ %| < (__%__)1/2 then
21 T
1/2

sin 2m 6k > cos(%é) >1 - ﬁl

k k

Let B C T be the box for which | 6, %i < (

%P(fIZV). Since cos x > 1 - x

i/2
o ) /
Zﬁzr
k

8 € B we have

_ > - D 5
fl(ﬁ) = 4 . r, sin2m & > e rk(l- rk) .
k k
and by hypothesis this last quantity is 2 V. Thus

P(fle) > meas B, and it suffices to note that

1
o T ] (27 = o= 3 2 106

rk>5

'l‘le"
—K)
25




G aie

4. VAUGHAN'S VERSION OF VINOGRADOV'S METHOD

We develop a method for estimating sums of the

sort f(p), or equivalently, z An)f(n). The
PS qSX
method fails if f dis multiplicative, but it can be
J
used to estimate averages Z l ;zi f.(p}! over
j=1 p<x J
multiplicative functions. In this way Vaughan has given a

simple proof of Bombieri's theorem. This is also the
method used by Heath-Brown and Patterson to settle
Kummer's conjecture on the cubic Gaussian sum.

Let P = i i p » The sieve of Eratosthenes

p< VX

asserts that the number n, 1 <n <X is prime if and

only if (n,P) = 1. Hence Vinogradov started by writing

(1) + Z, f(p) = Z f(n) = Zf(n) pit) =

1 n<X n<X tln
X <p<x (n,P)=1 t|P
= 2 u(v) £(rt)

t|p r< &

£<X

1us we are led to estimate sums of the sort E f(rt).
r< X/t

€ expect such a sum to be o(%) when % is large.

t is nearly as large as X we must perform

ther regrouping of terms to obtain cancellation.
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We now present Vaughan's decomposition of Aln),

Let

F(s)=ZI\(r2), G(s)=Z-H?(-g—); .
v d
Then

- .%l(s) - F(s) - c(s)F(s)c(s) - ¢r(s)e(s) +

(- %§<s)-F<s>)(1-g(sag<s))

for g > 1. We compare the Dirichlet series coefficients

of these functions, and find that

A(n) = al(n) + az(n) + a3(n) + a4(n),

where

A(n) =n<U ,

al(n) =
0 n>U

ay(n) = - Z_ A(m)ul(d);

mdr=n
m<U



and

mk=n
m>U
k>1

A
a, = - Z Am) (L u(d)).,
d|k

d<v

We multiply by f(n) and sum to find that

S = AMn)f(n) = S, + S, + S. + S

where S, = E a.(n)f(n) .
1 n<x t

Although it is not necessary for the method we

assume henceforth that
[£(n)] = 1
for all n; this helps us to gauge the power of the

method. The trivial bound for S is thus << X; we seek

a bound which is o(X) .

The sum Sl we bound trivially:
S << U 8

The sum S2 we write as




S Z_ (Z p(t)n(m)) Z £(rt).

2~ t<ov  t=md
m<U
a2

Note that we again have a linear combination of the sums

f(rt), but that now we can control the range of ¢

=
by ensuring that UV

Z: A(m) = log t < log UV,
m|t

is rather smaller than X. As

we see that

(2) s << (log UV) Z | ; £(rt)|
r<X/t

2 v

is of the same form, since

h
s = ZP(d) Zf(dh)logh ZH(d) ;f(dh)f ngl
d<v h<X/d 1
X
S ATID IO

1 whX /d

Hence

wehX /a
- 28 -

(3) 53 << (log X)Z max | Z £(ah)|
o=




The sum S is more complicated., We note that

4
u(d) = 0 for 1 <k <V, so that

dlk
d<v
5, = ZE; A(m) ( zz u(d))f(mk).
LW A

Suppose that A = A(£f,M,X,V) is such that

1 1
IM 2 2 9 2
b e fmk)| < A(j{ilbm' ) fer 1)
M<m<2M <X
— V<k<~= M V<k<gr
—qn e
for all complex numbers bm, e Such bilinear forms are
familiar, and we are equipped to estimate A. Then we
see that )
1 1
2M 2 2
: 2 2
S, << (log X) max A(%;;A(m) ) (;E: d(k)“)
UM k<
1
2 3
<< X“(log X) max, A .
U<M<%
We now pause to examine how much we have lost. If

1 we obtain the trivial bounds, S1 < U,
<< X(log UV)Z, 83 << X(log XV)Z. In this case we also
L ' _
ve the trivial bound A << X2, which gives S, << X(log x)3 .

if we can obtain some cancellation in the sums
- 20 -




f(rt) then 52,53' = o(X), while 3 good estimate of

A gives S5, = o(x). Note, however, that if £ is
totally multiplicative then from the choice

b= T@), o = %) we see that A2 xt/%, and the
method fails. To estimate A We use Cauchy's inequality

to see that the bilinear form above is

in\ m{%m o £m) %)

Here the second sum over m is

= z ) Z 'cz Z f(mk)m.

VR  vagsy  MensoM
mfx7k
mSX/&

1

2

pafb

2M 9
< (2 Ipyl )

We note that \ck c \ < %\ck‘z + %\c&\z; hence the above

« 5 el S 1> e )| -

V<< Vi< M<m<2M
~ m<X/k
m<X /4

Thus we £ind that

1
(5) A << (max<x Z \ Z ’f(mk)]‘?(nvb)\)2 .
V<ksw v<&§f\-4 M_<_m_§2M
m<X/k
ﬁEX/L

1
If £ =1 we again obtain the ipivial estimate 0 << x2 .

Combining estimates (1) - (5), we see that we have
- 30 - :




]

Sty

5

e

proved that if U > 2, V> 2, UV <X, [f(n)]| <1, +then

f(n)A(n) << U + (log X) Z max | » £(rt)]
n<X t<UV  w w<r<X/t
1
2 3
+ X“(log X)° max max

( |
USM_<—Y, Vﬂcﬁ—i V<L_% MSn<2M
"

£(mk)f(m2)|)

-




