Monatsheftefür
 Mathematik

(C) by Springer-Verlag 1980

Quadratic Residues and the Distribution of Prime Numbers

By

H.-J. Bentz, Osnabrück, and J.Pintz, Budapest

(Received 15 January 1980)

Abstract

D. Shanks [11] has given a heuristical argument for the fact that there are "more" primes in the non-quadratic residue classes $\bmod q$ than in the quadratic ones. In this paper we confirm Shanks' conjecture in all cases $q<25$ in the following sense. If l_{1} is a quadratic residue, l_{2} a non-residue $\bmod q, \varepsilon\left(n, q, l_{1}, l_{2}\right)$ takes the values +1 or -1 according to $n \equiv l_{1}$ or $l_{2} \bmod q$, then $$
\lim _{x \rightarrow \infty} \sum_{p} \varepsilon\left(p, q, l_{1}, l_{2}\right) \log p p^{-\alpha} \exp \left(-(\log p)^{2} / x\right)=-\infty
$$ for $0 \leqslant \alpha<1 / 2$. In the general case the same holds, if all zeros $\varrho=\beta+i \gamma$ of all

 $L(s, \chi \bmod q), q$ fix, satisfy the inequality $\beta^{2}-\gamma^{2}<1 / 4$.1. Chebyshev asserted in 1853 that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{p>2}(-1)^{(p-1) / 2} \mathrm{e}^{-p / x}=-\infty \tag{1}
\end{equation*}
$$

but never gave a proof [5]. His statement is indeed very deep, for it is equivalent to an analogue of the famous Riemann-Hypothesis:

$$
\begin{equation*}
L\left(s, \chi_{1}\right) \neq 0, \operatorname{Re}(s)>\frac{1}{2} \tag{2}
\end{equation*}
$$

with nonprincipal $\chi_{1} \bmod 4$. This was shown by Hardy, Littlewood and Landau in 1917/18 [6], [9].

If correct, (1) would imply a certain predominance of the primes $\equiv 3 \bmod 4$ over those $\equiv 1 \bmod 4$. Numerical calculations show that

$$
\begin{equation*}
\Delta(X):=\pi_{1}(X)-\pi_{3}(X) \tag{3}
\end{equation*}
$$

is predominantly negative. Although sign changes of Δ seem to be very rare (the first one occurs at $X=26861$ [10]) we know from theoretical investigations [6] that,

$$
\begin{equation*}
\lim _{X \rightarrow \infty}\left\{\frac{\text { sup }}{\inf } \triangle(X)\right\}= \pm \infty . \tag{4}
\end{equation*}
$$

So, the "naive" stament that there are more primes $\equiv 3 \bmod 4$ than $\equiv 1 \bmod 4$ is certainly wrong and one has to look for another interpretation of the numerical phenomena.

Knapowski and Turán created a new path in the theory of prime numbers, the so called "Comparative Prime Number Theory". Their series of papers during the years 1960-70 [7], [8], contain a lot of interesting problems and results. In the Chebyshevian case they found that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{p>2}(-1)^{(p-1) / 2} \log p \mathrm{e}^{-\log ^{2}(p \mid x)}=-\infty \tag{5}
\end{equation*}
$$

is as well equivalent to (2).
In 1978 the first of us ${ }^{1}$ gave an unconditional proof of the predominant behaviour of the primes in the class $3 \bmod 4$, namely

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{p>2}(-1)^{(p-1) / 2} \log p p^{-\alpha} \mathrm{e}^{-(\log p)^{2} \mid x}=-\infty \tag{6}
\end{equation*}
$$

for $0 \leqslant \alpha \leqslant \frac{1}{2}[3]$.
The proof is based on explicit formulas. A more direct way, which is very simple in the case $\alpha=0$, can be found in our paper [1].

It turned out that the weight-function $\exp \left(-\left(\log ^{2} p\right) / x\right)$ is easier to handle than $\exp \left(-\log ^{2}(p / x)\right)$ (Knapowski, Turan) or $\exp (-p / x)$ (Chebyshev). Therefore it is naturally to investigate some generalisations of the "Chebyshev-problem", using the first of these functions.

Under some hypothesis (weaker than the Riemann-Piltz hypothesis and fulfilled for every character $\bmod q$ with $q<25$) we have shown in another paper [2] that the following statement holds for $0 \leqslant \alpha<\frac{1}{2}$:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{p} \chi_{1}(p) \log p p^{-\alpha} \mathrm{e}^{-\left(\log ^{2} p\right) / x}=-\infty \tag{7}
\end{equation*}
$$

where $\chi_{1}(n)$ is a real non-principal character.
D. Shanks [11] has given a heuristical argument for the fact that there are "more" prime numbers in the "non-quadratic" residueclasses mod q than in the "quadratic" ones. As (6) shows, this is true

[^0]in the case $q=4$. In addition, just the same can be obtained for some other moduli, e.g. $q=3,8$ and in some weaker form for $q=5$, see [4].

Here, we will fully affirm Shanks' conjecture in all cases $q<25$ (theorem 2 and 4 below). In general (theorem 1 and 3), our result tends in the same direction but depends on some hypothesis concerning the non-trivial zeros of $L(s, \chi)$ "near" to the real axis.
2. We formulate the following hypothesis for Dirichlet's L functions:
\mathbf{R}_{2} : The domain

$$
\begin{equation*}
\sigma>\frac{1}{2},|t| \leqslant 1 \tag{8}
\end{equation*}
$$

is zerofree and there is no zero at $s=\frac{1}{2}$.
With other words the Riemann-Piltz hypothesis (RP) is assumed to be valid up to the height $t=1$, and there is no real zero. This hypothesis can be considered as plausible. In contrary to $\mathbf{R P}$ it has a further advantage, for it can be verified with computations for any concrete L-function. In fact, \mathbf{R}_{2} was verified (even for an extended region) for every L-function $L(s, \chi \bmod q), q<25$, by R. SPíRa [12]. To prove the above mentioned phenomena for these L-functions it is even enough to assume a weaker form of \mathbf{R}_{2}, namely:
\mathbf{H}_{2} : All zeros $\varrho=\beta+i \gamma$ satisfy the inequality

$$
\begin{equation*}
\beta^{2}-\gamma^{2}<\frac{1}{4} . \tag{9}
\end{equation*}
$$

Further we introduce the notation

$$
\varepsilon\left(n, q, l_{1}, l_{2}\right)=\left\{\begin{align*}
& 1 \text { if } n \equiv l_{1} \bmod q \tag{10}\\
&-1 \text { if } n \equiv l_{2} \bmod q \\
& 0 \text { otherwise }
\end{align*}\right.
$$

Theorem 1. If l_{1} is a quadratic residue, l_{2} a non-residue $\bmod q$ and the hypothesis \mathbf{R}_{2} or even \mathbf{H}_{2} is valid for all L-functions $\bmod q$, then ${ }^{2}$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{p} \varepsilon\left(p, q, l_{1}, l_{2}\right) \log p \exp \left(-\left(\log ^{2} p\right) / x\right)=-\infty . \tag{11}
\end{equation*}
$$

[^1]Taking in account the cited calculations of SPIRA, this implies immediately

Theorem 2. If l_{1} is a quadratic residue, l_{2} a non-residue $\bmod q$, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{p} \varepsilon\left(p, q, l_{1}, l_{2}\right) \log p \exp \left(-\left(\log ^{2} p\right) / x\right)=-\infty \tag{12}
\end{equation*}
$$

holds for all $q<25$.
For brevity we take

$$
\begin{equation*}
F(s):=-\frac{1}{\varphi(q)} \sum_{\chi}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \frac{L^{\prime}}{L}(s, \chi) \tag{13}
\end{equation*}
$$

where χ runs through all characters $\bmod q$. Then using the simple integration formula

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{(2)} \mathrm{e}^{A s^{2}+B s} d s=\frac{1}{2 \sqrt{\pi A}} \exp \left(-\frac{B^{2}}{4 \mathrm{~A}}\right) \tag{14}
\end{equation*}
$$

which is valid for real $A>0$ and arbitrary complex B, we get

$$
\begin{align*}
I & =\frac{1}{2 \sqrt{\pi y}} \sum_{n} \varepsilon\left(n, q, l_{1}, l_{2}\right) \Lambda(n) \exp \left(-\frac{\log ^{2} n}{4 y}\right)= \tag{15}\\
& =\frac{1}{2 \sqrt{\pi y}} \cdot \frac{1}{\varphi(q)} \sum_{\chi}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \sum_{n} \chi(n) \Lambda(n) \exp \left(-\frac{\log ^{2} n}{4 y}\right)= \\
& =\frac{1}{\varphi(q)} \sum_{\chi}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \sum_{n} \chi(n) \Lambda(n) \frac{1}{2 \pi i} \int_{(2)} \frac{\mathrm{e}^{y s^{2}}}{n^{s}} d s= \\
& =\frac{1}{2 \pi i} \int_{(2)} F(s) \mathrm{e}^{y s^{2}} d s= \\
& =\frac{1}{\varphi(q)} \sum_{z}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \sum_{\varrho=e_{z}} \mathrm{e}^{y e^{2}}+\frac{1}{2 \pi i} \int_{(-1 / 4)} F(s) \mathrm{e}^{y s^{2}} d s
\end{align*}
$$

Now we use

$$
\begin{equation*}
\frac{L^{\prime}}{L}\left(-\frac{1}{4}+i t, \chi\right)=O(\log (|t|+2)) \tag{16}
\end{equation*}
$$

The constants in the O-Symbols and the positive constants c_{1}, c_{2}, c_{3} below, may depend on q. (16) gives

$$
\frac{1}{2 \pi i} \int_{(-1 / 4)} F(s) \mathrm{e}^{y s^{2}} d s=O\left(\int_{-\infty}^{\infty} \log (|t|+2) \mathrm{e}^{y\left(1 / 16-t^{2}\right)} d t\right)=O\left(\mathrm{e}^{y / 6}\right)
$$

Furthermore we know

$$
\begin{equation*}
\sum_{\substack{n \leqslant|\operatorname{lng} \underline{g}| n+1 \\ \varrho=\sum_{x}}} 1=O(\log (n+2)), \tag{18}
\end{equation*}
$$

and this gives for $y \rightarrow \infty$

$$
\begin{align*}
& \mid \sum_{\varrho=0_{x}} \mathrm{e}^{y e^{2} \mid} \leqslant \sum_{|y| \leqslant 1} \mathrm{e}^{y\left(\beta^{2}-y^{2}\right)}+O\left(\sum_{n=1}^{\infty} \mathrm{e}^{y\left(1-n^{2}\right)} \log (n+2)\right)= \tag{19}\\
& \quad=O\left(\exp \left(y \cdot \max _{|y| \leqslant 1}\left(\beta^{2}-\gamma^{2}\right)\right)+O(1)=O\left(\mathrm{e}^{y\left(1 / 4-\delta_{1}\right)}\right),\right.
\end{align*}
$$

with $\delta_{1}>0$, depending on q only.
(15), (16), (19) together give

$$
\begin{equation*}
I=O\left(\mathrm{e}^{y\left(1 / 4-\delta_{2}\right)}\right), \tag{20}
\end{equation*}
$$

with $\delta_{2}=\delta_{2}(q)>0$. Elementary estimations imply

$$
\begin{align*}
S(x): & =\sum_{n \leqslant x, n \text { not a prime }} \varepsilon\left(n, q, l_{1}, l_{2}\right) A(n)= \tag{21}\\
& =\sum_{\substack{p^{2}: l_{1}(q) \\
p^{2} \leqslant x}} \log p+O(\sqrt[3]{x})>c_{1} \sqrt{x},
\end{align*}
$$

for $x>c_{2}(\geqslant 3)$. So we get for $y \rightarrow \infty$

$$
\begin{align*}
\sum_{n \neq p} \varepsilon \dot{(n, q}, & \left.l_{1}, l_{2}\right) \Lambda(n) \exp \left(-\log ^{2} n / 4 y\right)= \\
& =-\int_{3}^{\infty} S(x) \exp \left(-\log ^{2} x / 4 y\right)(-2 \log x / 4 y)(d x / x) \geqslant \\
& \geqslant \int_{c_{2}}^{\infty} c_{1} \sqrt{x} \exp \left(-\log ^{2} x / 4 y\right)(\log x / 2 y)(d x / x)+O(1 / y) \geqslant \\
& \geqslant\left(c_{1} / 2 y\right) \int_{c=}^{e y} \sqrt{x} \exp (-\log x / 4)(d x / x)+O(1 / y)= \tag{22}\\
& =\left(2 c_{1} / y\right) \mathrm{e}^{y / 4}+O(1 / y) .
\end{align*}
$$

Now (15), (20) and (22) prove theorem 1.
3. In this section we shall investigate a generalisation of theorem 1. The same phenomenon occurs if we use a more general weightfunction, i.e.

$$
\begin{equation*}
\frac{\log p}{p^{\alpha}} \exp \left(-\frac{\log ^{2} p}{x}\right), \quad 0 \leqslant \alpha<\frac{1}{2} \tag{23}
\end{equation*}
$$

Theorem 3. If \mathbf{R}_{2} or only \mathbf{H}_{2} is true for all L-functions $\bmod q, l_{1}$ is a quadratic residue, l_{2} a non-residue $\bmod q$, then for $0 \leqslant \alpha<\frac{1}{2}$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{p} \varepsilon\left(p, q, l_{1}, l_{2}\right) \frac{\log p}{p^{\alpha}} \exp \left(-\frac{\log ^{2} p}{x}\right)=-\infty \tag{24}
\end{equation*}
$$

Since our assumption \mathbf{H}_{2} or \mathbf{R}_{2} is valid for $q<25$ we can state

Theorem 4. If l_{1} is a quadratic residue, l_{2} a non-residue $\bmod q$, $q<25$, then for $0 \leqslant \alpha<\frac{1}{2}$

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sum_{p} \varepsilon\left(p, q, l_{1}, l_{2}\right) \frac{\log p}{p^{x}} \exp \left(-\frac{\log ^{2} p}{x}\right)=-\infty . \tag{25}
\end{equation*}
$$

With some extra effort, one can prove theorem 3 (and 4) for $\alpha=\frac{1}{2}$, but if $\alpha>\frac{1}{2}$ the situation changes.

Analogously to (15) we get from (13) and (14)

$$
\begin{align*}
& I_{\alpha}:=\left(\frac{1}{2 \sqrt{\pi y}}\right) \sum_{n} \varepsilon\left(n, q, l_{1}, l_{2}\right) \Lambda(n) n^{-\alpha} \exp \left(-\frac{\log ^{2} n}{4 y}\right)= \\
& =\left(\frac{1}{2 \sqrt{\pi y}}\right) \cdot \frac{1}{\varphi(q)} \sum_{\chi}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \sum_{n} \chi(n) \Lambda(n) n^{-\alpha} \exp \left(-\frac{\log ^{2} n}{4 y}\right)= \\
& =\left(\frac{1}{\varphi(q)}\right) \sum_{\chi}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \sum_{n} \chi(n) \Lambda(n) n^{-\alpha} \cdot \frac{1}{2 \pi i} \int_{(2)} \frac{\mathrm{e}^{y s^{2}}}{n^{s}} d s= \tag{26}\\
& =\left(\frac{1}{2 \pi i}\right) \int_{(2)} F(s+\alpha) \mathrm{e}^{y s^{2}} d s .
\end{align*}
$$

Now we transform the line (2) of integration. The new line l consists of a part l_{1} of the hyperbola:

$$
\begin{equation*}
\left(\frac{1}{2}-\sigma\right)^{2}-t^{2}=\frac{1}{4},-\frac{1}{4} \leqslant \sigma \leqslant 0, \tag{27}
\end{equation*}
$$

and of the straight lines l_{2}, l_{3} :

$$
\begin{equation*}
\sigma=-1,|t| \geqslant \sqrt{2} \tag{28}
\end{equation*}
$$

With this choice of l we can observe that for all non-trivial zeros ϱ the
points $\varrho-\alpha$ lie to the right of l. This is trivial for $|\gamma| \geqslant \sqrt{2}$. If $|\gamma| \leqslant \sqrt{2}$ and $\beta \geqslant \frac{1}{2}$ we have

$$
\begin{equation*}
\left|\frac{1}{2}+\alpha-\beta\right| \leqslant \beta \tag{29}
\end{equation*}
$$

and hypothesis \mathbf{H}_{2}, i.e. (9), gives

$$
\begin{equation*}
\left[\frac{1}{2}-(\beta-\alpha)\right]^{2}-\gamma^{2} \leqslant \beta^{2}-\gamma^{2}<\frac{1}{4} . \tag{30}
\end{equation*}
$$

If $|\gamma| \leqslant \sqrt{2}$ and $\beta \leqslant \frac{1}{2}$ by (9) we have again

$$
\begin{equation*}
\left[\frac{1}{2}-(\beta-\alpha)\right]^{2}-\gamma^{2} \leqslant(1-\beta)^{2}-\gamma^{2}<\frac{1}{4}, \tag{31}
\end{equation*}
$$

for if $\varrho=\beta+i \gamma$ is a zero of $L(s, \chi)$ then by the functional equation $\varrho^{\prime}=1-\beta-i \gamma$ is a zero of $L(s, \bar{\chi})$.
Thus we get
$I_{\alpha}=\frac{1}{2 \pi i} \int_{(l)} F(s+\alpha) \mathrm{e}^{y \varepsilon^{2}} d s-\frac{1}{\varphi(q)} \sum_{\chi}\left(\bar{\chi}\left(l_{1}\right)-\bar{\chi}\left(l_{2}\right)\right) \sum_{\varepsilon=e_{z}} \mathrm{e}^{y(o-\alpha)^{2}}$.
Taking in account that by (27) for $s \in l_{1}$

$$
\begin{equation*}
\operatorname{Re} s^{2}=\sigma^{2}-t^{2}=\sigma \leqslant 0 \tag{33}
\end{equation*}
$$

and $F(s+\alpha)$ is regular on l_{1}, we get

$$
\begin{equation*}
(1 / 2 \pi i) \int_{(4)} F(s+\alpha) \mathrm{e}^{\mathrm{e}^{2}} d s=O(1) . \tag{34}
\end{equation*}
$$

Further we have for $|t| \geqslant \sqrt{2}$

$$
\begin{equation*}
\frac{L^{\prime}}{L}(-1+\alpha+i t)=O(\log |t|) \tag{35}
\end{equation*}
$$

and by (28)

$$
\begin{equation*}
(1 / 2 \pi i) \int_{\left(L_{2}\right)} F(s+\alpha) \mathrm{e}^{y s^{2}} d s=O\left(\int_{\sqrt{2}}^{\infty} \log t \cdot \mathrm{e}^{\left(1-t^{2}\right) y} d t\right)=O(1) \tag{36}
\end{equation*}
$$

Now, for all non-trivial zeros, hypothesis \mathbf{H}_{2} implies

$$
\begin{equation*}
\operatorname{Re}(\varrho-\alpha)^{2}=(\beta-\alpha)^{2}-\gamma^{2}<\left(\frac{1}{2}-\alpha\right)^{2} . \tag{37}
\end{equation*}
$$

To prove this, first take $\beta \geqslant \frac{1}{2}$, then by (9):

$$
\begin{equation*}
(\beta-\alpha)^{2}-\gamma^{2}=\beta^{2}-\gamma^{2}-2 \beta \alpha+\alpha^{2}<\frac{1}{4}-\alpha+\alpha^{2} . \tag{38}
\end{equation*}
$$

Secondly, if $\beta<\frac{1}{2}$, we consider the zero $\varrho^{\prime}=\beta^{\prime}+i \gamma^{\prime}=1-\beta-i \gamma$
of $L(s, \bar{\chi})$. This zero gives $\left|\beta^{\prime}-\alpha\right|>|\beta-\alpha|$ and with (38)

$$
\begin{equation*}
(\beta-\alpha)^{2}-\gamma^{2}<\left(\beta^{\prime}-\alpha\right)^{2}-\gamma^{\prime 2}<\left(\frac{1}{2}-\alpha\right)^{2} \tag{39}
\end{equation*}
$$

Thus we get with $\delta_{3}=\delta_{3}(q, \alpha)>0$

$$
\begin{equation*}
\sum_{\substack{o=0, \mid y \leqslant 2}} \mathrm{e}^{y(o-\alpha)^{z}}=O\left(\mathrm{e}^{\left.y[1 / 2-\alpha)^{2}-\delta_{3}\right]}\right) . \tag{40}
\end{equation*}
$$

Using (18) we have

$$
\begin{equation*}
\sum_{\substack{e=0,0 \\|y| \geqslant 2}} \mathrm{e}^{y\left((-\alpha)^{2}\right.}=O\left(\sum_{n=2}^{\infty} \log (n+2) \mathrm{e}^{y\left(1-n^{2}\right)}\right)=O(1) . \tag{41}
\end{equation*}
$$

Now, from (32), (34), (36), (40) and (41) we get

$$
\begin{equation*}
I_{\alpha}=O\left(\mathrm{e}^{y\left[(1 / 2-\alpha)^{2}-\delta_{3}\right]}\right) \tag{42}
\end{equation*}
$$

On the other hand analogously to (22) we have from (21)

$$
\begin{align*}
& \sum_{n \neq p} \varepsilon\left(n, q, l_{1}, l_{2}\right) A(n) n^{-\alpha} \exp \left(-\frac{\log ^{2} n}{4 y}\right)= \\
& \quad=-\int_{3}^{\infty} S(x) \exp \left(-\frac{\log ^{2} x}{4 y}\right)\left\{-\left(\frac{2 \log x}{4 y}\right) \cdot\left(\frac{1}{x^{1+\alpha}}\right)-\left(\frac{\alpha}{x^{1+\alpha}}\right)\right\} d x \geqslant \\
& \quad \geqslant \int_{c_{2}}^{\infty} c_{1} \sqrt{x} \exp \left(-\frac{\log ^{2} x}{4 y}\right)\left(\frac{\log x}{2 y}\right)\left(\frac{d x}{x^{1+\alpha}}\right) \geqslant \tag{43}\\
& \quad \geqslant\left(\frac{c_{1}}{2 y}\right)^{\int_{c_{2}}^{y y(1-2 z)}} \exp \left(-\frac{\log x}{4}(1-2 \alpha)\right) x^{-1 / 2-\alpha} d x= \\
& \quad=\left(\frac{c_{3}}{y}\right) \mathrm{e}^{y(1 / 2-\alpha)^{2}}+O\left(\frac{1}{y}\right)
\end{align*}
$$

This together with (26) and (42) proves theorem 3.
4. In addition to theorem 3 we shall now determine how fast the infinite sum, occuring in (24), tends to infinity.

Theorem 5. Under the conditions of theorem 3 we have

$$
\begin{equation*}
\sum_{n} \varepsilon\left(n, q, l_{1}, l_{2}\right) \frac{\log p}{p^{\alpha}} \exp \left(-\frac{\log ^{2} p}{x}\right) \sim \frac{N(q)}{\varphi(q)} \sqrt{\pi x} \mathrm{e}^{(x / 4)(1 / 2-\alpha)^{2}} \tag{44}
\end{equation*}
$$

where $N(q)$ denotes the number of solutions of $x^{2} \equiv 1 \bmod q$.

This theorem of course implies
Theorem 6. Under the conditions of theorem 4 we have

$$
\begin{equation*}
\sum_{n} \varepsilon\left(n, q, l_{1}, l_{2}\right) \frac{\log p}{p^{\alpha}} \exp \left(-\frac{\log ^{2} p}{x}\right) \sim \frac{N(q)}{\varphi(q)} \sqrt{\pi x} \mathrm{e}^{(x / 4)(1 / 2-\alpha)^{2}} . \tag{45}
\end{equation*}
$$

To prove theorem 5 we need the estimate

$$
\begin{align*}
S_{\alpha}(x) & =\sum_{\substack{n \leqslant x \\
n \neq p}} \varepsilon\left(n, q, l_{1}, l_{2}\right) \frac{\Lambda(n)}{n^{\alpha}}=\sum_{\substack{p^{*} \leq x \\
p^{2}=l_{1}(q)}} \frac{\log p}{p^{2 \alpha}}+O\left(\sum_{\substack{p^{m} x<x \\
m \geqslant 3}} \frac{\Lambda(n)}{p^{m \alpha}}\right) \sim \tag{46}\\
& \sim \frac{N(q)}{\varphi(q)} \cdot \frac{1}{1-2 \alpha} x^{1 / 2-\alpha},
\end{align*}
$$

which can be obtained by partial summation from the prime number theorem for arithmetical progressions, using the simple fact that for any quadratic residue l the congruences $x^{2} \equiv 1 \bmod q, x^{2} \equiv l \bmod q$ have the same number of solutions.

$$
\begin{align*}
& \sum_{n \neq p} \varepsilon\left(n, q, l_{1}, l_{2}\right) \frac{\Lambda(n)}{n^{\alpha}} \exp \left(-\frac{\log ^{2} n}{4 y}\right)= \\
& =-\int_{1}^{\infty} S_{\alpha}(x) \exp \left(-\frac{\log ^{2} x}{4 y}\right)\left(-\frac{2 \log x}{4 y}\right) \frac{d x}{x} \sim \\
& \sim \int_{1}^{\infty} \frac{N(q)}{\varphi(q)} \cdot \frac{1}{1-2 \alpha} x^{(1 / 2)-\alpha} \exp \left(-\frac{\log ^{2} x}{4 y}\right) \frac{\log x}{2 y} \frac{d x}{x}= \\
& =\frac{N(q)}{\varphi(q)} \cdot \frac{1}{1-2 \alpha} \cdot \frac{1}{2 y} \int_{0}^{\infty} \mathrm{e}^{u(1 / 2-\alpha)} \exp \left(-\frac{u^{2}}{4 y}\right) u d u= \tag{47}\\
& =\frac{N(q)}{\varphi(q)} \frac{\mathrm{e}^{y(1 / 2-\alpha)^{2}}}{2 y(1-2 \alpha)} \int_{0}^{\infty} \exp \left(-\left[\frac{u}{2 \sqrt{y}}-\sqrt{y}\left(\frac{1}{2}-\alpha\right)\right]^{2}\right) u d u= \\
& =\frac{N(q)}{\varphi(q)} \frac{\mathrm{e}^{y\left((1 / 2-\alpha)^{2}\right.}}{2 y(1-2 \alpha)} \cdot \int_{-\sqrt{y}(1 / 2-\alpha)}^{\infty} \mathrm{e}^{-t^{2}}(2 \sqrt{y} t+2 y(1-2 \alpha)) 2 \sqrt{y} d t \sim \\
& \sim \frac{N(q)}{\varphi(q)} \frac{\mathrm{e}^{y(1 / 2-\alpha)^{2}}}{\sqrt{y}(1-2 \alpha)} \int_{-\infty}^{\infty} \mathrm{e}^{-\varepsilon^{2}(2 \sqrt{y} t+2 y(1-2 \alpha)) d t=} \\
& =\frac{N(q)}{\varphi(q)} \cdot 2 \sqrt{\pi y} \mathrm{e}^{y(1 / 2-\alpha)^{2}} .
\end{align*}
$$

Theorem 5 is now the immediate consequence of formulae (26), (42) and (47).

References

[1] Bentz, H.-J., and J. Pintz: Uber das Tschebyschef-Problem. (To appear.)
[2] Bentz, H.-J., and J.Pintz: Uber eine Verallgemeinerung des Tscheby-schef-Problems. (To appear.)
[3] Besenfelder, H.-J. : U'ber eine Vermutung von Tschebyschef. I, II. Part I: J. reine angew. Math. 307/308, 411 - 417 (1979); Part II: J. reine angew. Math. 313, 52-58 (1980).
[4] Besenfelder, H.-J.: Diskrepanzen in der Verteilung der Primzahlen. (To appear.)
[5] Chebyshev, P. L. : Lettre de M. le professeur Tchébychev à M. Fuss, sur un nouveau théorème relatif aux nombres premiers contenus dans les formes $4 n+1$ et $4 n+3$. In: Oeuvres de P. L. Tchebychef I, pp. 697-698. (Ed. by A. Markoff and N. Sonin.) New York: Chelsea Publ. Comp. 1962.
[6] Hardy, G. H., and J. E. Littlewood: Contributions to the theory of the Riemann Zetafunction and the theory of the distribution of primes. Acta Math. 41, 119-196 (1917).
[7] Knapowski, S., and P. Turán: Comparative Prime Number Theory IVIII. Acta Math. Sci. Hung. I--III: 13, 299-364 (1962); IV-VIII: 14, 31-78, 241-268 (1963).
[8] Knapowski, S., and P. Turán : Further Developments in the Comparative Prime Number Theory I-VII. Acta Arithm. I: 9, 23-40 (1964); II: 10, 293-313 (1965); III-V: 11, 115-127, 147-161, 193-202 (1966); VI: 12, 85-96 (1966); VII: 21, 193-201 (1972).
[9] Landau, E.: Über einige ältere Vermutungen und Behauptungen in der Primzahltheorie I, II. Math. Z. 1, 1-24, 213-219 (1918).
[10] Leech, J. : Note on the distribution of prime numbers. J. London Math. Soc. 32, 56-58 (1957).
[11] Shanks, D.: Quadratic residues and the distribution of primes. Math. Tables and other Aids to Computation 13, 272-284 (1959).
[12] SPiRA, R.: Calculation of Dirichlet L-functions. Math. Comp. 23, No. 107, 484-497 (1969).
H.-J. Bentz

FB 6 Mathematik/Philosophie
Universität Osnabrück
D-4500 Osnabrück
Federal Republic of Germany
J. Pintz

Mathematical Institute of the Hungarian Academy of Sciences
H-1053 Budapest, Hungary

[^0]: ' Up to now this author has published under the name of Besenfelder.

[^1]: ${ }^{2}$ We always mention both hypothesis \mathbf{R}_{2} and \mathbf{H}_{2} together, although \mathbf{H}_{2} (as the weaker one) would suffice to prove the theorems, but it is easier to imagine the 'region' which is denoted by \mathbf{R}_{2}, and, in addition, some hypothesis of type \mathbf{R}_{2} are used in related contexts.

