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Abstract. D. SHANKS [11] has given a heuristical argument for the fact that there
are “‘more’’ primes in the non-quadratic residue classes mod ¢ than in the quadratic
ones. In this paper we confirm SHANKS’ conjecture in all cases ¢ < 25 in the fol-

lowing sense. If /; is a quadratic residue, ; a non-residue modg, & (n,q,1 , ) takes
the values + 1 or — 1 aceording to n =, or , modg, then

im ) ¢(p,q,h,b)logpp  exp(— (logp)¥z) =—
=0 P

for 0 < « < 1/2. In the general case the same holds, if all zeros ¢ = § + ¢y of all
L (s,ymod g), ¢ fix, satisfy the inequality 82 — y? < t/4.

1. CHEBYSHEV asserted in 1853 that
lim Z (_ 1)@_‘)/ze_p/x= — o0 (1)
>0 p>2
but never gave a proof [5]. His statement is indeed very deep, for it is
equivalent to an analogue of the famous Riemann-Hypothesis:
L(S,XI)?éO, Re(3)> %, (2)
with nonprincipal y; mod 4. This was shown by HARDY, LITTLEWOOD
and LANDAU in 1917/18 [6], [9].

If correct, (1) would imply a certain predominance of the primes
= 3mod 4 over those = 1 mod4. Numerical calculations show that

A(X):=a (X) — 23 (X) (3)

is predominantly negative. Although sign changes of 4 seem to be
very rare (the first one occurs at X = 26861 [10]) we know from
theoretical investigations [6] that

lim {22 A (X)} = + 0. )

X—-o0
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So, the ‘“‘naive’” stament that there are more primes = 3 mod 4 than
= 1mod4 is certainly wrong and one has to look for another
interpretation of the numerical phenomena.

KxNaprowskl and TURAN created a new path in the theory of prime
numbers, the so called “Comparative Prime Number Theory”. Their
series of papers during the years 1960-70 [7], [8], contain a lot of
interesting problems and results. In the Chebyshevian case they
found that

lim ) (— 1" "2logpe ¥ = — o0 (5)
>0 p>2
is as well equivalent to (2).
In 1978 the first of us' gave an unconditional proof of the
predominant behaviour of the primes in the class 3 mod4, namely

lim Y (—1)¢""2logpp e~ (8P = — oo (6)

TR0 p>2
for 0 < o < 5[3].

The proofis based on explicit formulas. A more direct way, which
is very simple in the case o =0, can be found in our paper [1].

It turned out that the weight-function exp(— (log?p)/x) is
easier to handie than exp (— log?(p/z)) (KNAPowsKI, TURAN) or
exp (— p/x) (CHEBYSHEV). Therefore it is naturally to investigate
some generalisations of the ‘“Chebyshev-problem”, using the first of
these functions.

Under some hypothesis (weaker than the Riemann—7Piltz hypo-
thesis and fulfilled for every character mod ¢ with ¢ < 25) we have
shown in another paper [2] that the following statement holds for

{
0<d<§:

lim 3y (p)logpp*e” ¢ = — oo, ()
x— X »
where y; (n) is a real non-principal character.
D. SHANKS [11] has given a heuristical argument for the fact that
there are “‘more” prime numbers in the “‘non-quadratic” residue-
classes mod ¢ than in the “‘quadratic’” ones. As (6) shows, this is true

' Up to now this author has published under the name of BESENFELDER.
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in the case ¢ = 4. In addition, just the same can be obtained for some
other moduli, e. g. ¢ = 3,8 and in some weaker form for ¢ = 5, see [4].

Here, we will fully affirm SHANKS’ conjecture in all cases ¢ < 25
(theorem 2 and 4 below). In general (theorem 1 and 3), our result
tends in the same direction but depends on some hypothesis
concerning the non-trivial zeros of L (s, ) ‘near’” to the real axis.

2. We formulate the following hypothesis for Dirichlet’s L-
functions:
Ry : The domain

{

G> 5,

It <1 (8)
1

5

With other words the Riemann—Piltz hypothesis (RP) is assumed to
be valid up to the height { =1, and there is no real zero. This
hypothesis can be considered as plausible. In contrary to RP it has a
further advantage, for it can be verified with computations for any
concrete L-function. In fact, Ry, was verified (even for an extended
region) for every L-function L (s, y mod g), ¢ < 25, by R. Spira [12].
To prove the above mentioned phenomena for these L-functions it is
even enough to assume a weaker form of Ry, namely :

18 zerofree and there is no zero at s =

H,: All zeros o = p + 1y satisfy the inequality
B2 -y < ;. (9)
Further we introduce the notation

1ifn=1, mod g
e(n,q,li, )= —1if n =lLmodg. (10)
0 otherwise

Theorem 1. If l, is a quadratic residue, l; a non-residue mod g and
the hypothesis Ry or even Hy is valid for all L-functions mod g, then?

lim Y ¢(p.q.li,b)logpexp(— (log’p)fa) = —c0. (1)

r— o0 P

2 We always mention both hypothesis R, and H, together, although H; (as the
weaker one) would suffice to prove the theorems, but it is easier to imagine the
‘region’ which is denoted by R,, and, in addition, some hypothesis of type R, are
used in related contexts.
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Taking in account the cited calculations of SPIRA, this implies
immediately

Theorem 2. If 1, is a quadratic residue, Iy a non-residue mod g, then

lim ) ¢(p,q,li, k) logpexp (— (log?p)/z) = — (1‘2)

holds for all ¢ < 25.

For brevity we take

!

L
F(s) --—Zi () 7 (:2). (13)

where y runs through all oharacters mod ¢. Then using the simple
integration formula

2
_l__j A32+Bsds_ 1 (_B;>, (14)

ex
2710 5 2. /n A P\7 %A

which is valid for real 4 > 0 and arbitrary complex B, we get

1 log? ]
- 1 ogtn )
IENET q) 2 () ~ 7 (k) Zx(n)A(n)exP<_ 4y )_

i
= — v (1) — 7 ——
(p(q) Z(x(n) x(lz))gx(n) )5 £

I F(s eysids =

27{@()

-—_z @@ - i) X ey@2+§ylz_@' [ F(s)er’ds.

=gz (—1/4)

Now we use ,
L . '

—(- L+t 7)) =0(log(lf] +2)). (16)

The constants in the O-Symbols and the positive constants ¢; ¢z, ¢3
below, may depend on ¢. (16) gives
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1 s © ,
— j F (s)evs ds‘=0( j 10g(lt| +2)ey(l/16—t—)dt) = 0 (e¥%).
2m (~1/4) - (17)
Furthermore we know

Y 1 =0 (log (n + 2)), (18)

n<{Ime|<n4i

o=0,

and this gives for y — o0

T

o< F @10 (L 0 log n +2)) =
] 1

4 i<t n= (19)
=0 (exp (y- max (82 — ?)) + O (1) = O (ev (/4 =),
lrIsi
with é; > 0, depending on q only.
(15), (16), (19) together give
I = 0 (ey(l/4—6z)) , (20)
with 8, = 6 (q) > 0. Elementary estimations imply
S (x):= y e(n,q, b, L) An) =
n<z, n not a prime ’ (21 )
= X logp+03/z)>cJx,
r’=hig
pisx

for z > ¢y (= 3). So we get for y » ©

)3 S(k,q,ll ,b) A (n)exp (— log*n/4y) =

nFEPD

S (z)exp (— log*z/4y) (— 2log /4 y) (dx/x) =

G ——y 8

\

> [ a/zexp (— logz/dy) (log/2y) (dxfx) + O (1/y) >
e (22)
> (/2y) [ /o exp (= logz/4) (dajz) + 0 (1]y) =

= (2¢i/y) e + O (1]y).
Now (15), (20) and (22) prove theorem 1.

3. Inthis section we shall investigate a generalisation of theorem
1. The same phenomenon occurs if we use a more general weight-
function, i.e.
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! log®
ogap exp (— o8 p), 0<a< ’5 (23)
P x

Theorem 3. If Ry or only Hs is true for all L-functions mod g, l; isa
quadratic residue, by a non-residue mod g, then for 0 <« < 3

exp ( lo%;p) = — 0. (24)

lo
lim ¥ e(p,q, b, k) g

— 00 P

Since our assumption H, or Ry is valid for ¢ < 25 we can state

Theorem 4. If I, is a quadratic residue, Iy a non-residue modgq,
g <25, then for 0 < « < ;

p(— 185;£>= — 00. (25)

lim ) & (p, q,zl,m

x— 0 P

With some extra effort, one can prove theorem 3 (and 4) for a = %,

but if o > 1§the situation changes.

Analogously to (15) we get from (13) and (14)
log® n)

' (2\/—) e(n,q,b, 1) A (n)n““exp<_ i
(—) Z -1 (&) ;x(n) A (n)n—"exp (_ 104gzn> _

2 y
ysz (26)

1
=(;g) T @0 - i@z g 1S

9@/ 7

&
<2n ) j)F (5 + o) erds.

Now we transform the line (2) of integration. The new line / consists
of a part [; of the hyperbola:

G0y — =

1
1

i
1 <0<0, 27)

and of the straight lines l,,/;:
o=—1, lt| 22, (28)

With this choice of [ we can observe that for all non-trivial zeros ¢ the



Quadratic Residues and the Distribution of Prime Numbers 97

pointsg — alie to theright of /. Thisis trivial for || > \/ 2. If ly| < \/ 2
and 8 > ‘5 we have

|y +o—BI<B, (29)
and hypothesis Hy, i.e. (9), gives
53— B-aF— <P -r<i. (30)
If |y] </2 and § < 1 by (9) we have again
3= (B— P —P<(U—pP—y <1, (31)

for if g = + ¢y is a zero of L (s, y) then by the functional equation
o'=1—pf—1iyisazeroof L(s,j).

Thus we get
1 s 1
L=c—)F(s+a)e?"ds——) (7(L)— 5 (L)) e’ (32)
szl) ( q)(q)};(x(l) x(z))@i
Taking in account that by (27) for s€l,

Res* =0~ 2=0<0 (33)
and F (s + «) is regular on [, , we get

(1/270) | F(s+a)e?"ds=0(1). (34)
(h)

Further we have for |{| 2\/5

7 (= 1+a+it)=0(loglt) (35)

and by (28)

(1/273) | F(s+«)e?"ds =0 (Ojo_logt- e'=PYdt) = 0 (1). (36)
Now, for al(IZZ)llon-trivial Zeros, hyp?)thesis H, implies
Re(e—2)*=(f— a)’ — y* < (3 — ). (37)
To prove this, first take § > ;—, then by (9):
B—of ===y —20a+ ¥ < [ — a4l (38)

Secondly, if g < _]5, we consider the zero o' =8 + iy ' =1 -8 — iy
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of L (s, x). This zero gives |’ — «| > |f — «} and with (38)

B—af =y <(f —a)~y2< (3~ ) (39)
Thus we get with 03 = é5 (g, ) > 0
Z e¥ €4 = O (evlli2-ar—hi]) (40)
IS
Using (18) we have
Y e =0(3 log(n +2)e" ) =0 (1). (41)
izt "=
Now, from (32), (34), (36), (40) and (41) we get
1, = 0 (102~ 7=t (42)
On the other hand analogously to (22) we have from (21)
log’n
Y ng.h k) A mncexp( - <) =
nEP 4?/
< log’x 2logx 1 « \l
= — — =T R =) = >
[ swene( =) - (557) - () - (e
< log*2\ /logz\ / dz
Zicl\/xexp (- 4y,)(2y)<xl+l)> (43)
it~ 22}
e\ © logz ) i
? — o — /2 zxd —
(Zy) i exp( 1 (1 —2a)}z x

This together with (26) and (42) proves theorem 3.

4. In addition to theorem 3 we shall now determine how fast the
infinite sum, oceuring in (24), tends to infinity.

Theorem 5. Under the conditions of theorem 3 we have

' ] log? N .
Ye(n,g,h,b) (;g“p exP<* _woi p) ~ ((5))\/;; el (2 -8 (44)

where N (q) denotes the number of solutions of 2* = 1 modg.
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This theorem of course implies

Theorem 6. Under the conditions of theorem 4 we have

lo log® N (q
DRTFRRAECS exp (- EL) ~ e \/mcex/‘* 2=, (45)
To prove theorem 5 we need the estimate
A(n lo A(n
S, @)=Y, e(n,q,l,k) (a)= Y gf+0< Y fna)>~
n<x n p<z P X p
n#Ep p2=li (g) mz3 (46)
N(q) 1 12—
— T,
plg) 1-2«

which can be obtained by partial summation from the prime number
theorem for arithmetical progressions, using the simple fact that for
any quadratic residue / the congruences z?>=1modgq, 2=Imodgq
have the same number of solutions.

1 2
Z (m,q, 1, k) (n)exp< g n):

n#p n’ 4y

_ 3? ( log® x>< 210gx> dx

o S 4y ) x
0 2

~ j‘ ﬂ . 1 x(‘/2)_1 exp <_ lo_gi) l_()g_?{il_ﬁi —_—
i elg) 1—2a 4y / 2y «x
N 1

glg) 1-2a 2y -
_ N(q) ?/(1/2—01 © B )
B ()2y(1—2a J ex ( [\/y \/5(5 “)})udu:
_N(g et 0 i _
T el 2y(1 - 2a) ﬁ.{/zhm)e (2\/yt+2y(1 2a))2\/ydt
N(q) s

(2 /Yt +2y(1 — 20))dt =

h—,s
CD
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Theorem 5 is now the immediate consequence of formulae (26), (42)
and (47).
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