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Abstract. D. SHANKS [11 ] has given a heuristical argument for the fact that there 
are "more" primes in the non-quadratic residue classes mod q than in the quadratic 
ones. In this paper we confirm SHANKS' conjecture in all cases q < 25 in the fol- 
lowing sense. If l, is a quadratic residue, 12 a non-residue modq, e (n, q, l,, ~z) takes 
the values -F 1 or - l according to n = I I or l~ mod q, then 

lim ~ ~ (p, q, l,, ~2)logpp-~exp ( - (logp)2/x) = - DO 
x~oo 

P 

for 0 ~ ~ < 1/2. In the general ease the same holds, if all zeros ~ = fl + i y of all 
L (s, :~ mod q), q fix, satisfy the inequality fl" - 7 "~ < l/4. 

1. CHEBYSHEV asse r t ed  in 1853 t h a t  

lira ~ ( -  1 ) ( r - ' ) / 2 e - p l ~ =  - ~  (1) 
x --~ ~:) p > 2  

b u t  n e v e r  ga ve  a p r o o f  [5]. His  s t a t e m e n t  is indeed  v e r y  deep,  for  it  is 
equ iva l e n t  to  an  ana logue  o f  t he  f amous  R i e m a n n - H y p o t h e s i s :  

L (s, •t) ~ O, R e  (s) > �89 (2) 

w i th  nonpr inc ipa l  X1 m o d  4. Th is  was  shown b y  HARDY, LITTLEWOOD 
and  LANDAU in 1917/18 [6], [9]. 

I f  cor rec t ,  (1) wou ld  i m p l y  a ce r t a in  p r e d o m i n a n c e  o f  t h e  p r imes  
- 3 m o d  4 over  those  --- 1 m o d  4. N u m e r i c a l  ca lcu la t ions  show t h a t  

A ( x ) . =  ~, ( i )  - ~3 ( x )  (3) 

is p r e d o m i n a n t l y  nega t ive .  A l t h o u g h  sign changes  o f  z] seem to  be 
v e r y  r a re  ( the first one  occurs  a t  X = 26861 [10]) we k n o w  f ro m  
theo re t i ca l  i nves t iga t ions  [6] t h a t  

lim ~ ~up A ( i n f  - -  ( X ) }  = 91- o 0 .  ( 4 )  

x - - ,  ~) 

0 0 2 6 - - 9 2 5 5 / 8 0 / 0 0 9 0 / 0 0 9 1 / $ 0 2 . 0 0  
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So, the "naive" stament that  there are more primes - 3 mod 4 than 
- ]  mod4 is certainly wrong and one has to look for another 
interpretation of the numerical phenomena. 

KNAPOWSKI and TURAN created a new path in the theory of prime 
numbers, the so called "Comparative Prime Number Theory". Their 
series of papers during the  years 1960-70 [7], [8], contain a lot of 
interesting problems and results. In the Chebyshevian case they 
found tha t  

lim ~ ( -  1)~-~)/21ogpe -~~ -- ~ (5) 
x~,~O p >  2 

is as well equivalent to (2). 
In 1978 the first of us I gave an unconditional proof of the 

predominant behaviour of the primes in the class 3 rood 4, namely 

lim ~ ( -  1)V-I)/21ogpp-~e-(l~ = - oo (6) 
x - ~  p > 2  

~[3]. f o r 0 ~ < ~ <  

The proof is based on explicit formulas. A more direct way, which 
is very simple in the case ~ = 0, can be found in our paper [1]. 

It  turned out that  the weight-function exp ( - ( log2p) /x)  is 
easier to handle than exp( - log2(p /x ) )  (KNAPOWSKI, TURAN) or 
exp( - -p /x )  (CHEBYSHEV). Therefore it is naturally to investigate 
some generalisations of the "Chebyshev-problem", using the first of 
these functions. 

Under some hypothesis (weaker than the Riemannr--Piltz hypo- 
thesis and fulfilled for every character modq with q < 25) we have 
shown in another paper [2] that  the following statement holds for 

1 
0 ~ < a < g :  

lim ~ 21 (p)logPp -~e-0~ -- ~ ,  (7) 
X--* oO 19 

where Z1 (n) is a real non-principal character. 
D. SHANKS [l 1 ] has given a heuristical argument for the fact that  

there are "more" prime numbers in the "non-quadratic" residue- 
classes mod q than in the "quadrat ic" Ones. As (6) shows, this is true 
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in the case q ---- 4. In addition, just the same can be obtained for some 
other moduli, e. g. q -- 3,8 and in some weaker form for q -- 5, see [4]. 

Here, we will fully affirm SHANKS' conjecture in all cases q < 25 
(theorem 2 and 4 below). In general (theorem 1 and 3), our result 
tends in the same direction but  depends on some hypothesis  
concerning the non-trivial zeros of L (s, 9~) "near"  to the real axis. 

2. We formulate the following hypothesis for Dirichlet 's L- 
functions: 

R2" The domain 
I 

> 2, Itl <<. 1 (8) 

is zero free and there is no zero at 8 = ~. 

With other words the R iemann- -P i l t z  hypothesis  (RP) is assumed to 
be valid up to the height t = 1, and there is no real zero. This 
hypothesis  can be considered as plausible. In contrary  to RP it has a 
further  advantage,  for it can be verified with computat ions  for any  
concrete L-function. In  fact, Re was verified (even for an extended 
region) for every L-funct ion L (s, Z modq), q < 25, by g .  SPiRA [12]. 
To prove the above mentioned phenomena for these L-functions it is 
even enough to assume a weaker form of R2, namely  : 

II2" A l l  zeros e = fl + i y satisfy the inequality 
I 

f 1 2 _ y 2 <  u (9) 

Fur the r  we introduce the nota t ion  

1 i f n - l ,  modq 
s(n ,q ,  1,,/2) ---- - 1 if n - -  12modq. (10) 

0 otherwise 

Theorem 1. I f  11 is a quadratic residue, 12 a non-residue modq and 
the hypothesis Re or even II2 is valid for all L-functions mod q, then 2 

lim ~ e (p, q, l,, l~) logp exp ( - (log2p)/x) = - ~ .  (11) 
x - - + ~  p 

2 We always mention both hypothesis R 2 and It2 together, although It2 (as the 
weaker one) would suffice to prove the theorems, but it is easier to imagine the 
'region' which is denoted by R2, and, in addition, some hypothesis of type R2 are 
used in related contexts. 
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Taking in account  the cited calculations of SPIRA,  this implies 
immediate ly  

Theorem 2. I f  It is a quadratic residue, 12 a non-residue mod q, then 

lira 

holds for all q < 25. 

For brevi ty we take  

s(p ,q , l , ,12) logpexp(-  (log2p)/x) = - ~  (12) 

1 L'  
F(s)'---- - - -  ~ ( i( l , )  - i(12)) - ~ ( s , z ) ,  (13) (q) 

where X runs through all characters mod q. Then using the simple 
integrat ion formula 

, 
1 ~ eA~+B~ds = ~ - - - e x p  -- , (14) 

2 ~ i  (2) 2 x / z A  

which is valid for real A > 0 and  arbi t rary  complex B, we get 

1 ( log2 n~ 
I - - 2 x / ~  ~ e(n,q,l, , le)A -~Y ] -- (15) 

1 1 ( log2n~ 
= 2 x / ~ "  ~(q---~ 2x ( i (1 , ) -  i(le)) 2z(n)A(n)exp, -~y-] -- 

1 
- Z (q) 

= 1 ~ F(s)eY~,ds= 
2 u i  (2) 

1 
- ( i r  iq )) (q) 

Now we use 

l ~ e y~" 
~ z (n) A (n) ~ J --2-7~ ds ---- 
n (2) n 

e y~2 -4- 1 2zl----i S F (s) ey~ds" 
~=e~ ( -  I/4) 

L'  , i t ,  z) 0 (log (it[ +2))  Z ( - ~ +  = (16) 

The constants  in the O-Symbols and the positive constants  c~, c2, c3 
below, may  depend on q. (16) gives 
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F(s)eU~ds=O( S log(It[ + 2)eUO/16-t-')dt) = 0(ey/'6). 
- ~ (17) 

1 

2~i  ( -  I/4) 

Fur thermore  we know 

~, 1 = 0 (log (n + 2)), 
n~<lIm~oi~<n+l 

o~o z 

and this gives for y -~ oc 
(3O 

I Z  eU~ ~< Z eU(~2-'~)+O ( Z  ey( ' -"~) log(n+21)= 

= 0 (exp (y. max (f12 _ yz)) + 0 (1) = 0 (e y(I/4 - 0,)), 

Irl<J 
with 51 > 0, depending on q only. 

(15), (16), (19) together  give 

I = 0 (eU(~/4-~2)), 

with ~2 = ~2 (q) > 0. E lementa ry  estimations imply 

S (x) :=  ~ s (n, q, l,,/.2) A (n) = 
n<~x,  n not a prime 

= 2 logp + O ( 3 v / x ) >  c ,x/~ I 

p'-'<~x 

for x > c2 (/> 3). So we get for y -~ oo 

~ ( ~ ,  q ,  l , , / 2 )  A (n) exp ( -  log2n/4y) = 

n # p  

(18) 

(19) 

(20) 

(21) 

-- S S(x)exp  ( -  log2x/4y) ( -  21ogx/4y) (dx/x) >>. 
3 

~> S c,x/~-ex p ( -  log2x/4y) (logx/2y) (dx/x) + 0 (l/y) 1> 
~2 

e,, (22) 
(c,/2y) I x/~ exp ( -  logx/4) (dx/x) + 0 (l/y) = 

e2 

= (2cl/y) e y/4 + 0 (l/y). 

Now (15), (20) and (22) prove theorem 1. 

3. In  this section we shall investigate a generalisation of theorem 
1. The same phenomenon occurs if we use a more general weight- 
function, i.e. 
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log____pp P~ ( l o ~ 2 p )  , (23) exp , 0 ~ < ~ < ~ .  

Theorem 3. I f  R2 or only He is true for all L-functions mod q, l, is a 
quadratic residue, 12 a non-residue mod q, then for 0 <. :r < 

lim ~s(p,q,l,,12) l~ ( l ~  (24) P~ exp = - ~ .  

Since our assumption It2 or Its is valid for q < 25 we can state 

Theorem 4. I f  11 is a quadratic residue, 12 a non-residue modq,  
q < 25, then for 0 <~ :r < 

(lo?) 
lim ~ e ( p , q ,  1,,12) P~ exp - = - o e .  (25) 

x - * o O  20 

! 
With some extra  effort, one can prove theorem 3 (and 4) for e = g, 

1 but if ~ > g the situation changes. 

Analogously to (15) we get from (13) and (14) 

( 1 ) ( log2n~ 
I~.~__. ~ ~s(n,q, l ! ,12)A(n)n-~exp -~y -]-- 

(_~___~ ) 1 ~ ( ~ (1, ) - Z (l~ ) ) ~ x (n ) A (n ) n - ~ exp ( l~ 

- - - - ( -~)  ~ (~(1,) - ~(12))~):(n)A(n)n-~'n - -  1 ~ eY~ds 
2~i (2) n~ 

(26) 

(2) 

Now we transform the line (2) of integration. The new line 1 consists 
of a part  Ii of the hyperbola : 

( ~ _ _ ~ ) 2 _ t  2 _  4" 4' ~< ~ ~<0' (27) 

and of the straight lines 12,/3: 

= - 1, Itl >~x/2. (28) 

With  this choice of l we can observe tha t  for all non-trivial zeros ~ the 
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points ~ - ~ lie to the right of 1. This is trivial for 171/> x/~. If[ 7[ ~< ~/2 
and/3 >t ~ we have 

]~-+ ~ - / 3 [  </3, (29) 

and hypothesis If2, i.e. (9), gives 

_ _  [ 1  __ (/3 __ ~ ) ]2  72 ~< ~2 __ 72 < 4"  ( 3 0 )  

I 
I f  [71 ~<x/~ and/3 ~< ~ by (9) we have again 

s [~- - (/3 - a) ]2  _ 72 ~< (1 - / 3 ) 2  _ 72 < 4' ( 3 1 )  

for if e =/3 + i 7 is a zero of L (s, Z) then by the functional equation 
Q' = 1 - / 3  - i 7 is a zero of L (s, ;~). 
Thus we get 

1 ~F(s+~c)eU~,ds q~(q--~l z'~" I~--2~i(l) - (2(/,) - ~( /2))Ze y(-~ . (32) 
q = 0 z  

Taking in account that by (27) for sel, 

Res 2 = a 2 -  t "~ = a <~ 0 (33) 

and F (s + ~) is regular on l,, we get 

(1/2~i) ~ F(s + ~)eY~"ds = O(1).  (34) 
(1,) 

Fur ther  we have for It[ 1> x/~ 

L'  -~(- 1 + :r + i t )  = 0 ( l o g  ]tl) ( 3 5 )  

and by (28) 

(1/2~i) ~ F(s+:c)eYS~ds=O(~ logt.e('-t")Ydt)= 0(1).  (36) 

Now, for all non-trivial  zeros, hypothesis II2 implies 

Re(Q -- ~)2 = (f l_  a)2_ 72 < (~__ ~)2. (37) 

I To prove this, first take/3/> ~, then by (9): 
| 

(fl _ ~)2 _ 72 = f12 _ 72 _ 2 /3  ~ + ~2 < ~ _ ~ + ~ .  ( 3 8 )  

1 
Secondly, if/3 < ~, we consider the zero Q' ----/3' + i7 '  = 1 - / 3  - i7 
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of L (s, ~). This zero gives Ifl' - ~] > Ifl - ~l and wi th  (38) 

(fl _ ~)e  _ 72 < (fl, _ a)2 _ ~,2 < (~  _ a ) e  ( 3 9 )  

Thus we get wi th  tt 3 = 63 (q, ~) > 0 

e ~(e-~V = 0 (eU[(l/~-~)~-~]). (40) 

Using (18) we have 

eY(-~ = 0 (~~ log(n + 2) eY(i -":)) -- 0(1 ). (41) 
Q=~z n ~ 2  
lyl>~2 

Now, from (32), (34), (36), (40) and (41) we get 

I~ = 0 (e ~[()f2- ~)~-~]). (42) 

On the  other  hand  analogously to (22) we have  from (21) 

( log2n~ 

n~p 

~2 

>/ (~_~y) e''(I-:~'tci ~ exit ( log" (J- -- 2at)) " -  "i /2- ~< dx = -  T 
C2 

=(?) 
This together  wi th  (26) and (42) proves theorem 3. 

4. In  addit ion to theorem 3 we shall now determine how fast the 
infinite sum, oeeuring in (24), tends to  infinity. 

Theorem G. Under the conditions of theorem 3 we have 

~ ( n , q , l , , 1 2 )  logp ( l o ~ 2 p ) N ( q )  / - ~  
P~ exp -,- --7-7, ~ /~x  e (~/4)(j/2-~)'), (44) 

where N (q) denotes the number of solutions of x: = 1 rood q. 
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This theorem of course implies 

Theorem 6. Under the conditions of theorem 4 we have 

~ e(n,q,  ll,l.2) P~ exp ~ . 
. ~ (q) 

To prove theorem 5 we need the estimate 

logp 
S~(x)_-- ~ s (n, q, l, ,12) An ~(n) _ ~ pea 

n ~ x  p'-'<~x 
n ~ p  p "--~l, (q) 

N (q) 1 
~ - -  _ _  x l l  2 - : ( ,  

qJ(q) 1 - 2or 

- - + 0  7:)- 
(46) 

which can be obtained by partial summation from the prime number 
theorem for arithmetical progressions, using the simple fact that  for 
any quadratic residue 1 the congruences x 2 --- 1 mod q, x 2 - 1 mod q 
have the same number of solutions. 

log2n ~ 
e (n, q, 11,/2) A (n) exp 

n---7- ~ y  ] n # p  

( log2x~( 21ogx~ dx 
- -  ~ S~(x)exp ~ 7 4U / x ~ ! 

N(q)  1 ( log2x~ logx dx 
- - x  o/2)-~ exp 

~(q) 1 - 2 ~  4y 7 2u x 

( u~ 1 1 e~O/2-~)exp -- u" '~udu = 
1 -  2:r 2 y  o 4 y ]  

1 

N (q) 

v (q) 

_ N ( q )  

(q) 

N (q) 

(47) 
ey,'/2 ( [ u  

eY(i/2 _ :~).z 

j e-~(2,,/~-t + 2y(1 - 2~))2, /~-dt ~ 
~(q) 2y(1 - 2~) -,/~o/2-~) 

N (q) e y (1/2- ~):~ 
j e-'"(2.,/~-t + 2u(1 - 2~))dt = 

v(q)  , , / y - 0  - 2~ )  _ ~  

N (q) 2 ~ / ~  e y(1/2-~)~. 
(q) 



100 H.,J.  BENTZ and J. PINTZ: Quadratic Residues and the Distribution 

T h e o r e m  5 is n o w  t h e  i m m e d i a t e  c o n s e q u e n c e  o f  f o r m u l a e  (26), (42) 

a n d  (47). 
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