
BIT 17 (1977), 121--127 

T H E  S E G M E N T E D  S I E V E  O F  E R A T O S T H E N E S  

A N D  P R I M E S  I N  A R I T H M E T I C  P R O G R E S S I O N S  T O  101~ 

CARTER BAYS and R I C H A R D  H. HUDSON 

Abstract .  
The sieve of Eratosthenes, a well known tool for finding primes, is presented in 

several algorithmic forms. The algorithms are analyzed, with theoretical and actual 
computation times given. The authors use the sieve in a refined form (the "dual  
sieve") to find the distribution of primes in twenty ari thmetic progressions to l0  m. 
Tables of values are included. 

1. Introduction.  

The sieve of Eratosthenes is a well-known technique for finding all 
primes up to a given value, x. To apply the sieve, we first write down 
all the integers from 1 to x. We then cross out all multiples of 2, all 
multiples of 3, all multiples of 5, etc., until we have crossed out all mul- 
tiples of primes not exceeding l/x. The remaining integers are all the pri- 
mes between l/x and x and, if we take care not  to cross out 2, 3, 5, etc. 
(the primes __< l/x) our sieve gives us all the primes up to x. 

The sieve of Eratosthenes is eomputationally exceedingly fast; just 
how fast is easily shown below. Let  p~ = the ith prime, g(x) = the number 
of primes not exceeding x. Then the time, t, in term of "cross out" ope- 
rations we must make is given by  

t = x ( l /2+  1/3+ 115+ . . .  + ilpk) 

where Pk = largest prime not exceeding I/x. Thus 

t = x I / p i  ~ x l o g  log( ). 

Hence as x increases, the computation time for any interval of given 
length increases only as log log(xt). From a practical standpoint, on a 
digital computer with a word size of, say, 32 bits, the computation time 
is essentially linear with x. (E.g. for x = 2  is, log log (xt) -1 .75  and for 
x =  231 - 1, log log(x½) - 2.37). 

l~eeeived August 11, 1976. Revised Feb. 15, 1977. 

BIT 17 - -  9 



] 2 2  CARTER BAYS AND RICHARD H. HUDSON 

2. Extending the Sieve. 

Of course we have made the assumption that  our sieve size is x. This 
assumption is obviously unreasonable, since it would require an absurd 
amount of computer memory for even "small" values of x such as 10 7 
or 10 s. Fortunately,  this situation can be resolved at a small expense 
in computer time. The idea is to create a predetermined fixed sieve size, 
d.  Then since we observe that  x = x o + kd we may calculate all the pri- 
mes up to x by  finding all the primes between x 0 and x0 + A, between 
x 0 +A and x0+ 2A, etc. Our modified sieve is complicated only by  the 
fact that  at  the j t h  sifting, where we are concerned with numbers in 
the range 

x o + ( j - 1 ) z l  <-_ y < xo+jzJ 

we must find, for each p i < ( X o + j A ) ½  the starting point, y~, which is 
the smallest y within the above range such that  P~I Yp~- We then proceed 
by  striking out y~, y~i + Pf, Yp~ + 2Pi . . . .  until all multiples of Pi within 
the range 

x o + ( j - 1 ) d  < y ~ + l c p ~  < x o + j d  , lc = 0,1 . . . .  

have been crossed out. 
I t  is advantageous, as will be shown later, to use as large a value 

for A as is practical; also, by  dealing only with the odd integers, we 
may effectively multiply the size of A by  2. We are now ready to state 
a version of the segmenting algorithm. 

3. Algorithm A: The Segmented Sieve. 

Let  p t = t h e  ith prime, and let moda(b ) denote b(moda). Also, let 
array S be composed of elements sl ,  s~ . . . . .  s,~, initially zero, and let 
x o = an odd integer > A½. Then to find all primes between x 0 and x o + 2A ,  

execute the following algorithm for i = 2, 3, 4 . . . .  ~((x 0 + 2A)½) 

1) [calculate starting point] 
Set y = modp~(p i -mod~,[(x  0-pi) /2])  + 1. 
[y is now the starting point for sifting out multiples of pi] 

2) [cross out multiples of Pt] 
F o r j  = y , y + p t ,  y + 2 p i . . ,  u p t o j  < A s e t s  i = 1 . 

Upon completion, each s i = 0 corresponds to a prime p = x 0 + 2 ( j -  1). 



T H E  S E G M E N T E D  S I E V E  OF  E R A T O S T H E N E S  . . .  123 

Hence, to complete the algorithm and set up the sieve for the next  
iteration, execute the following for j = 1, 2, 3 , . . .  A, 

3) if s j =  1, then set s j = O ;  otherwise 
4) x0+ 2 ( j - 1 )  is a prime. 

Now, we may  set x o = x0 + 2A and repeat the algorithm. 

3.1.  E x e c u t i o n  T i m e  on  a D i g i t a l  C o m p u t e r .  

We shall now obtain an approximation for the computation time 
necessary to calculate all of the primes between x 0 and x0+ 2A. The 
four steps of the algorithm comprise four distinct processes taking place 
during the sifting. Associate with each step a constant, ki(i = 1,2, 3,4), 
which represents the computation time necessary to effect one iteration 
of that  step. Assume that  xo>>A. Then the time t 1 spent in step (1) is 
given by 

t 1 = k~=(Xoi ) ~ lClXo~/log(xo~ ) . 

Our expression for t 3 is similar to the expression derived in section 1.0 
except we are not  looking at  multiples of 2 (i.e. p~ is excluded from the 
sum). Hence, 

t2 = k2 A ~o+2z)½).= 1/p  i ~ keA(log log(x0½ ) -  ½). 

Here we ignore the fact tha t  for i approaching ~((x0+ 2A)½) our starting 
point, Ym might be greater than A. This is particularly likely when 
pi>>A, but  is overshadowed by  the fact that  when p~>>A,t  1 becomes 
noticeable. Completing our evaluation, t~ represents the time to "query"  
and reset the sieve and is given by 

~3 = k3A , 

while Q is the t ime required to "process" each prime (determine mem- 
bership in an arithmetic progression, etc.). Since at a given x o the den- 
sity of the primes is ~ I/log (Xo) we observe that  

t a ~ Ic4A/ logx  o . 

Thus, the total computation time, T, is simply given by 

T = t ~ + t ~ + t s + t  4 .  

4. R e f i n e m e n t s  to  the S e g m e n t e d  Sieve.  

Several modifications may  be made to algorithm A which will speed 
up the sieve operation considerably. For example, note that  step 1 



124 CARTER BAYS AND RICHARD H. HUDSON 

requires at  least one division, which on most computers is a very slow 
operation m slowed down further when a double precision divide is 
used. Thus, on the IBM 370/158 when x 0 exceeds 2 a l -  1 (~2.147 x 109) 
a double precision floating point division is required, along with a double 
precision subtract.  The execution time for these two operations totals 
25.5/zsec. Altering step I to require only a subtract  and a store operation 
will speed the execution to 1.5/zsec. 

This refinement is not as difficult as one might suspect. We need 
merely maintain a value, Lt, along with the i th prime. Then modify 
algorithm A as shown below. 

Algorith/ra B 

Initially set sj = 0, j = 1,2, 3 , . . .  A and set m = 1. 
1) [Initialize the necessary L~] 

:For m < i _-<  ((zo + 2A) ) 

Set L, = m o d , , ( p , -  modm[(x 0 -  I0,)/2] + 1). Then 
set  = 

Now, to locate all primes between x o and x0+ 2A perform steps 2-4 
for i = 2, 3, 4 , . . .  m. 

2) S e t y = L ~ .  
3) Set sj = 1 for j =y ,y  +Pi,Y+ 2p~ up to j <A. Exi t  this step as soon 

a s j > A .  
4) Set L~ = j -  A. [This resets L i for the next sieve operation]. 

Upon completion of steps 2-4, we query and re-initialize the sieve as 
in Algorithm A. For j =  1,2,3 . . . .  A : 

5) if sj = 1, set s~. = 0; otherwise 
6) x 0 + 2 ( j -  1) is prime. 

We may  now set x o = x o + 2A and return to step 1. 

4.1. Further l?efinements. 

I t  is possible to modify the sieve further to obtain another improve- 
ment in speed and a more precise picture of how the algorithm operates. 
Let  p~ __<_A <Pb+l and let xo>p~+l. Now when we apply algorithm B 
note that  for 2 _< i -< b there is at  least one element of S which will be ac- 
cessed (i.e. there exists at  least one Ji such that  1 <ji<A.)  This means 
that  for all values of i up to b we need not cheek to see if L~ < A since 
we know this to be true. Similarly, for all i > b we must  check to see if 
L i < A; if not  then we do not access S for this Pi at  this sifting. On the 



T H E  S E G M E N T E D  S I E V E  O F  E R A T O S T H E N E S  . . .  125 

o the r  hand  when  L i < A,i > b t hen  we know t h a t  we access S exac t ly  
once. This suggests the  possibil i ty of breaking up  the  sieve opera t ion 
into two phases, which are g iven in the  a lgor i thm below. 

Algorithm C (The Dual Sieve). 

(Assume x o >__ lo~b+l and  Pb < A < 1%+1; for  example,  A = 250,000, lob = 
249989,b=22044 and  xo= 101L) Ini t ia l ly ,  set  st=O, j =  1,2,3 . . . .  A and  
set m --- 1. 

I) [Initialize the  necessary L~] For  m < i < ~((xo+ 2zJ)½) set 
L ,  = m o d , , ( p , -  mod, , [ (x  o -  pi)/2]) + 1. Then  set  m = z((x o + 2A)½). 

Now, to  locate  all pr imes between x 0 and x 0 + 2A fh'st per form steps 
2-4 for i = 2, 3, 4 . . . .  b. 

2) Set  j = Li  
3) Set s t = 1, set j = j + Pi and  if j =< A repeat  step 3 
4) Set  L ,  = j - A .  

Nex t ,  per form steps 5-7 for i = b + 1, b + 2, b + 3 . . . .  m. 

5) Set j = L ,  
6) I f  j > A, set L i = j  - A, otherwise 
7) Set  s t=  1, set L i = j + p t - A .  

[We are now r eady  to  que ry  the  sieve] Pe r fo rm steps 8-9 for  j = 1,2, 3 . . . .  A. 

8) I f  s t = 1 set a~ = 0, otherwise 
9) x o + 2 ( j -  1) is a pr ime.  

Now, set  x 0 = x 0 + 2A and  go to  step 1. 
We can save a l i t t le t ime in steps 8-9 b y  in t roducing a b inary  variable,  

F ,  which will a l t e rna te  be tween one and  zero each sifting. In i t ia l ly  set 
each e lement  of S = ( 1 -  F) .  Then  a t  steps 3 and  7 set st = F .  Steps 8-9 
can now be combined:  

8) Fo r  j =  1,2,3 . . . .  A 
if s t = ( l - F )  t hen  s e t s j  = F and  x 0 + 2 ( j -  1 ) is prime. 

Then  set x 0 = x 0 + 2A, F = 1 -  F and  go to  step 1. B y  using the  var iable  
2', we el iminate the  need to  reset  each non-pr ime me mb e r  of S back  to  
zero. 



126 CARTER BAYS AND RICHARD If. HUDSON 

4.2. Further Analysis .  

When we analyze the performance of algorithm C we find that  steps 
2,3,4,8,9 may be treated in the same manner as steps 1,2,3,4 of algo- 
ri thm A, namely 

b 1 t 1 "- k~b,t~ - k2A ~,~=2 /Pl, ta - kaA, and t~ - k4d/logx o 

We still need to find the contribution of steps 5, 6, 7; this contribution 
is easily arrived at if we make the (not unreasonable) assumption that  
the length of time required to execute step 6 equals the time required 
to execute step 7. Then, 

and the total  execution time, T = ~ =  ltl. 
Note that  T z = t 1 + t~ + t 3 is constant for a given A. Hence T = T z + t 4 + t 5. 

4.3. Observed Speed of the Dual  Sieve. 

These theoretical results have been corroborated by  the observed 
execution speed of the dual sieve program written for the IBM 370/168. 
For our particular program we can specify the k t in terms of the number 
of machine instructions at each algorithm step, obtaining k I = 18, k~ = 2, 
/ca= 6, k4= 18, ks= 11. 

Unfortunately, the execution time of instructions on the 370/168 va- 
ries greatly; depending upon the size of the loop, observed execution 
rates were found to be 3.5 instructions/10 -6 second for a 2 instruction 
loop and 4.0 instructions/10 -6 second for a 10 instruction loop. Using 
3.75 as an average rate, the observed and theoretical rates were within 
5% of each other for lOS<x<lO12,A=250000.  (The execution speed 
was essentially linear, with the sieve slowing down by  about  15% over 
the range of x from 109 to 101e). 

The greater speed of instructions which are executed in larger loops 
suggests a further refinement to the dual sieve whenever a computer 
like the 370/168 is employed. Since step 3 of algorithm C is only two 
instructions long (and therefore less efficient than a longer loop would 
be) we could construct a third sieve which would combine several (prob- 
ably 2, 3, or 4) p~ into one loop. This would be most effective only for the 
smaller Pi; for example we could pick d, where l < d < b  and p ~ e ~ d .  
Then use this third sieve for 2 < i-< d, steps 2-4 for d < i < b, and steps 
5-7 for the remaining i. Of course, the value chosen for d would depend 
upon the computer used, as well as the value for A. 



THE SEGMENTED SIEVE OF ERATOSTHENES . . .  127 

Since the initialization of the sieve for large x 0 is the most expensive 
par t  of the algorithm it pays off to make the removals of the found 
multiples in bits instead of computer words. The time t i will then decrease 
by  a factor of 32 while the other times will increase by  a small factor 
if the removal is clone by  one of the 32 prestored masks. 

5. Pr imes  in Ari thmet ic  Progress ions  for the Modul i  3, 4, 8, 12 and 24. 

Let  ~b,e(x) denote the number of primes not exceeding x that  are con- 
tained in the arithmetic progression bn + c, n = 0,1,2, . . . .  Table 1 gives 
counts for primes in all the arithmetic progressions for b = 24. The values 
for g24,i(x) are given directly. To obtain values for g2a, c(x), s=5 ,7 ,  11 
etc., simply add the number in the proper column to the value for ~a,  i(x) - 
For example, g~a, ~(5.10 ii) = 2,413,491,259 + 24948. 

A similar procedure may  be used to find prime counts for all the pro- 
gressions for b = 3,4, 8, 12. For example, gs, a(x) =~4,i i (x)  +g2a, ig(x) + 1 
(The prime 3 is not counted in the progressions of 24). For  x = 2-10 li, we 
get 2.1,000, 872,637 + 17200+ 18075+ 1 = 2,001,780,550. 

Table 1. 

X 24n+1 +5  +7  +11 +13 +17 +19 +23 ~(x) n(x½) 
( x 1@ ~) 

1 514,742,404 17670 20329 12688 14818 18176 13905 17993 4,118,054,813 27293 
2 1,000,872,637 12750 13725 17200 23829 21365 18075 17017 8,007,105,059 37499 
3 1,477,282,891 19210 26003 22786 30200 27006 25929 24871 11,818,439,135 45147 
4 1,947,603,834 26067 27716 20818 25707 26293 22819 25563 15,581,005,657 51526 
5 2,413,491,259 35623 24948 20541 27245 30227 32877 34607 19,308,136,142 57084 
6 2,875,911,324 28788 24232 24264 36745 25183 39596 32384 23,007,501,786 62074 
7 3,335,479,816 42952 40137 35218 27841 23289 32079 34264 26,684,074,310 66650 
8 3,792,644,848 38878 32891 44463 31304 22381 26334 28490 30,341,383,527 70882 
9 4,247,727,818 30456 19116 44043 17340 16052 21370 16663 33,981,987,586 74812 

10 4,700,968,265 30413 33433 36463 5547 15320 21480 23240 37,607,912,018 78498 

R E F E R E N C E S  

1. D. E. Knuth, The Art of Computer .Programming Vol. I I  Seminumerical Algorithms, 
Addison Wesley, Reading, Mass. (1971). 

DEPARTMEI~T OF ~[ATHE}~IATICS AND COMPUTER SCIE,NCE 
UNIVERSITY OF SOUTH CAROLINA 
COLUMBIA, S.C. 29208 
USA 


